Message Passing

K.V.S. Prasad
Dept of Computer Science

Chalmers University
9 Feb 2015

Questions?

 Meeting with course reps after lecture
— Last chance: talk to your rep during break

* Anything you want to say
— Comments, questions, stray thoughts, etc.

— Are we too fast/slow?

* Practical problems?
— Labs ok?

Plan for today

* Shared memory: recap
* Chap 8: Message passing

Chap 3 & 4 (skipped for now)

REMINDER: exercises in Chaps. 1, 2, 3,6, 7

Shared memory problems

e Critical section (atomic actions)
— Mutex needed
— Avoid deadlock, livelock, starvation and busy
waiting
e Other examples
— Producer — consumer
— Dining philosophers
— Readers and Writers

Shared memory solutions

Test-and-set (hardware) with busy wait
Semaphores

— Correctness of processes interdependent
— Not modular

Monitors: mutex ops, and modular, but

— Need condition queues
* With explicit waitC and signalC operations

— Need immediate resumption or other discipline
Protected objects

— Barrier entries solve monitor problems

— But can cause starvation with unfair scheduler

Monitors centralise

e Access to the data

— Natural generalisation of objects in OO, but
* With mutex
* With synchronisation conditions

* Could dump everything in the kernel

— But this centralises way too much

* SO monitors are a compromise

Protected objects

* Tidy up the mess

— No separate condition variables
* Or queues for them
e Or detailed choices “immediate release”, etc.

* The simplicity of 7.6 is worth gold!
— Price: starvation possible
— Can be fixed, at small price in mess (see exercises)

Correctness of
shared memory programs

e By state diagram (p 112, s 6.4)
— Mutex, because we don’t have a state (p2, 92, ..)
— No deadlock

* Both blocked, no hope of release

— No starvation scenario with fair scheduler

* By invariants or other reasoning on code

— E.g., A wait will be executed
* A blocked process will be released

Transition

* Why do we need other models?

* Advent of distributed systems
— Mostly by packages such as MPI

* Message passing interface

e But Hoare 1978

— arrived before distributed systems
— | see it as the first realisation that

e Atomic actions, critical regions, semaphores, monitors...

e Can be replaced by just I/O as primitives!

Models of Communication

* Speech = broadcast
— Synchronous communication
— Asynchronous actions (not clocked)
— Speaker autonomous
* Post or email = asynchronous channel (buffer)
— Both communication and action asynchronous
— Speaker autonomous
 Telephone = synchronous channel = 0 size buffer
— Synchronous communication and actions
— Only internal actions autonomous

Addressing

e Broadcast

— Sender and/or receiver anonymous
e Can be named (maybe) in message

* Post, email, telephone

— Receiver named (envelope, header, number)
e Sender need not be (but can)

e What is addressed?
— Processes? Channels?

What do processes

communicate or share?

Data
— Tell me what you’ve heard

Resources

— Databases — don’t want inconsistent DB
— printer —don’t want interleaved printouts

Timing signals

— Pure timing signals: empty envelopes, beeps, etc.
So expect (equivalents of) semaphores, etc.
Channels can be shared between processes

— In some languages
— But in Erlang, e.g., only one proc can input from it

Semaphore by synchronous channels

Each user:
loop
chwait => token
crit sec
chsignal <= token
Semaphore:
loop
chwait <= token
chsignal => token

Explanation: Only one of contending users gets the token from chwait,
and the semaphore then waits till this user returns the token.

The token is just a dummy (uint type, empty envelope)

Semaphore by asynchronous channels

Each user (i): Semaphore:

local integer i

loop loop

chrequest <=i chrequest =>i

chwait(i) => token chwait(i) <= token
crit sec

chsignal <= token chsignal =>token

Explanation: Channels request and signal are received by the semaphore .
Simplest to have only receiver, with asynchronous channels.
One user gets its request accepted; other requests stay in the buffer.
The accepted request says on which channel the token is to be sent.
If all the users share a wait cannel, the token can be stolen.

Broadcast channel is a semaphore!

Each user (i):

loop

either -
ch <=
crit sec
ch <=done

or
ch=>j
ch =>done

Explanation: Did | succeed in speaking (tjing)? If not, | wait till | hear another thing.

Here the channel is used only for this semaphore. If it is used for other
things too, the losing process should test what it hears till it hears done.

Examples from the book

 Producer-consumer
— Doesn’t matter whether synch/asynch

* Matrix-multiplication

— Here, could be synchronous action : gangstepped

* Dining philosophers

— Wit
— Eac
— Bot

n synchronous channels only.
h fork behaves like a semaphore

n deadlock and starvation seem possible!

The matrix example

123 102
456 | X [012
/7 89 100

Have to do a series of dot products like

[7,8,9]X |2 | =7%2 +8*2 + 9*0 =14+16+0=30

N

Rendezvous

Like synchronous channel, except
— Addressing asymmetric

* Sender knows receiver’s address (entry), not v-v.

— The communication may involve computation and
return of value by the receiver

— So made for client-server

Ada

Uses protected objects
— Since the 1980’s

* though the concept was around earlier
— Thus has the cleanest shared memory model

Also has a very good communication model
— Rendezvous

Ada was decided carefully through the 1970s

— Open debates and process of definition

Has fallen away because of popularity of C, etc.
— Use now seen as a proprietary secret!

Robin Milner (1934-2010)

Turing Award 1992 for CCS, ML and LCF!
Went on to develop pi-calculus

— Functions as processes

Bigraphs

CCS uses synchronous channels to make a

complete calculus (programming and
reasoning)

