Lecture 3: Semaphores (chap. 6)

K.V.S. Prasad
Dept of Computer Science

Chalmer University
5 Sep 2014



Questions?

* Anything you did not get
 Was | too fast/slow?



Interleaving

e Each process executes a sequence of atomic
commands (usually called “statements”,
though | don’t like that term).

* Each process has its own control pointer, see
slide 2.1 of Ben-Ari

* Forslide 2.2, see what interleavings are
impossible



Why arbitrary interleaving?

* Multitasking (2.8 is a picture of a context switch)
— Context switches are quite expensive
— Take place on time slice or I/O interrupt
— Thousands of process instructions between switches
— But where the cut falls depends on the run

* Runs of concurrent programs
— Depend on exact timing of external events
— Non-deterministic! Can’t debug the usual way!
— Does different things each time!



Arbitrary interleaving (contd.)

 Multiprocessors (see 2.9)

— |If no contention between CPU’s
* True parallelism (looks like arbitrary interleaving)

— Contention resolved arbitrarily
e Again, arbitrary interleaving is the safest assumption



But what is being interleaved?

Unit of interleaving can be
— Whole function calls?

— High level statements?

— Machine instructions?

Larger units lead to easier proofs but make other
processes wait unnecessarily

We might want to change the units as we
maintain the program

Hence best to leave things unspecified



Why not rely on speed throughout?

* Don’t get into the train crash scenario
— use speed and time throughout to design

— everyday planning is often like this
e Particularly in older, simpler machines without sensors
* For people, we also add explicit synchronisation

* For our programs, the input can come from
the keyboard or broadband
— And the broadband gets faster every few months

* So allow arbitrary speeds



Atomic statements

The thing that happens without interruption
— Can be implemented as high priority

Compare algorithms 2.3 and 2.4
e Slides 2.12 to0 2.17

— 2.3 can guarantee n=2 at the end
— 2.4 cannot

* hardware folk say there is a “race condition”
We must say what the atomic statements are
— In the book, assignments and boolean conditions
— How to implement these as atomic?

What about arbitrary stretches as atomic?



What are hardware atomic actions?

Setting a register

Testing a register

Is that enough?

Think about it (or cheat, and read Chap. 3.10)



Obey the rules you make!

1 For almost all of this course, we assume
single processor without real-time (so
parallelism is only potential).

2 Real life example where it is dangerous to
make time assumptions when the system is
designed on explicit synchronisation — the

train
3 And at least know the rules! (Therac).



Semaphores to solve Critical Sections

We saw that the CS problem can be solved by

— Test-and-set, Compare-and-swap, ...
* Two things at once: minimal atomic actions

— But these are low level machine instructions
— Semaphores: same trick at language level

So we expect semaphores to solve CS
— Why is the CS problem so important?
— It is how we restrict interleaving

What else can they do? What problems in use?
How do we implement them?



Processes revisited

 We didn’t really say what “waiting” was

— Define it as "blocked for resource”
* If run will only busy-wait

— If not blocked, it is “ready”
* Whether actually running depends on scheduler

— Running -> blocked transition done by process
— Blocked -> ready transition due to external event

e Now see B-Asslide 6.1

* Define "await” as a non-blocking check of
boolean condition



Semaphore definition

Is a pair < value, set of blocked processes>
Initialised to <k, empty>
— k depends on application

* For a binary semaphore, k=1 or 0, and k=1 at first
Two operations. When proc p calls sem S
— Wait (S) =

 if k>0 then k:=k-1 else block p and add it to set
— signal (S)

* If empty set then k:=k+1 else take a g from set and unblock
it

Signal undefined on a binary sem when k=1



Critical Section with semaphore

See alg 6.1 and 6.2 (slides 6.2 through 6.4)

Semaphore is like alg 3.6
— The second attempt at CS without special ops

— There, the problem was

* P checks wantqg

— Finds it false, enters CS,
— but g enters before p can set wantp

We can prevent that by compare-and-swap
Semaphores are high level versions of this



Correct?

* Look at state diagram (p 112, s 6.4)
— Mutex, because we don’t have a state (p2, 92, ..)
— No deadlock

* Of a set of waiting (or blocked) procs, one gets in
* Simpler definition of deadlock now

— Both blocked, no hope of release

— No starvation, with fair scheduler

* A wait will be executed
* A blocked process will be released



CS problem for n processes

e Seealg6.3(p 113, s6.5)

— The same algorithm works for n procs
— The proofs for mutex and deadlock freedom work
* We never used special properties of binary sems

— But starvation is now possible

* p and q can release each other and leave r blocked

* Exercise: If k is set to m initially, at most m
processes can be in their CS’s.



Mergesort using semaphores

 See p 115, alg 6.5 (s 6.8)

— The two halves can be sorted independently
* No need to synch

— Merge, the third process,
* has to wait for both halves

— Note semaphores initialised to 0
 Signal precedes wait
* Done by process that did not do a wait

— Not a Critical Section problem, but a
synchronisation one



Producer - consumer

Yet another meaning of “synchronous”
— Buffer of 0 size

Buffers can only even out transient delays
— Average speed must be same for both

Infinite buffer first. Means

— Producer never waits

— Only one semaphore needed

— Need partial state diagram

— Like mergesort, but signal in a loop

See algs 6.6 and 6.7



Bounded buffer

 Seealg6.8(p119,s6.12)

— Two semaphores
e Cons waits if buffer empty
* Prod waits if buffer full

— Each proc needs the other to release ”its” sem

e Different from CS problem

— "Split semaphores”

— Invariant
* notEmpty + notFull = initially empty places



