Shared memory review

K.V.S. Prasad
Dept of Computer Science

Chalmers Univ
Thu 18 Sep 2014



WARNING

e There’s a lot more detail in the book than the
lectures can possibly cover

— And the slides are a tiny “trailer” of the lectures
* So: WORK with the TEXTBOOK

* Alittle good news:

— You may skip the Ada, BACI and Promela sections
if you wish



Readers-writers with protected object

* Look again at slide 7.16 (175/363)

* Protected objects
— Mutex as for monitors
* Only one operation at a time

— Condition variables (queues) -> barriers on ops
» Separate queue for each barrier
* Implicit wait managed by implementation

— No explicit waits or signals in code
— All barriers rechecked on any exit



Invariants for the R-W problem

* R>=0
— Does not follow from just the protected object
— Need to look at user code

e W>=0,infact, W<=1
— Easier to see in prot. obj. because of boolean

e (R>0->W=0) and (W=1 ->R=0)

— If R>0 then at least one reader is at p2 or p3. They got
there because W=0. Can W change while R>0. No, by
mutex, and by reader code.

— W:=1 only if R=0 barrier passed, etc.



Lemmas needed for monitor version

* |f readers waiting, then W=1
 |f writers waiting, then R>0 or W=1

At least these are immediate from the code of
the protected object.

Can either readers or writers starve? Both can,
up to implementation to be fair.



How bad can the proofs get?

* Very (hard, not necessarily long)

— If the decent protected objects still need so much
thought, ...

* The less structured methods are surely messier
— Hence the search for syntactically expressed structure

* So maybe sane people should skip proofs?

— No, they should skip programming instead
* Particularly of safety- or mission-critical systems

* |f you don’t want to study hard and always be
very thorough and careful

— Please don’t become a surgeon!



Monitor fr dining philosophers

* Look again at slide 7.11 (170/363)

* Invariants
— Not empty(OKtoEat[i]) -> (fork[i]<2)
— Sum (i=0..4) (fork[i]) = 10— 2*E
 Where E is the number of eating philosophers
* Deadlock implies E=0 and all enqueued.
— impossible



Intro to functional programming

Computation = rewriting preserving value
Rewrite lhs of equation by rhs

— Set of equations is program
Read-eval-print loop

No assignment
— Value of var not time-dependent



