Concurrent Programming

K.V.S. Prasad
Dept of Computer Science

Chalmers University
January — March 2015

Teaching Team

K. V.S. Prasad
Behrouz Talebi
Raul Pardo Jimenez
Anton Ekblad

John Camilleri

Website

 http://www.cse.chalmers.se/edu/course/TDA383

e Should be reachable from student portal
— Search on ”“concurrent”
— Go to their course plan
— From there to our home page

Contact

* Join the Google group

* From you to us: mail Google group
— Or via your course rep (next slide)

* From us to you
— Via Google group if one person or small group

— News section of Course web page otherwise

Course representatives

* Randomly chosen by admin

TKDAT bennhage@student.chalmers.se DENNIS BENNHAGE
TKDAT linujoh@student.chalmers.se LINUS JOHANSSON
TKITE simlindk@student.chalmers.se SIMON LINDKVIST
TKDAT rahnf@student.chalmers.se FREDRIK RAHN
MPCSN kims@student.chalmers.se KIM STRANDBERG

Expecting two more from GU
Plan to meet after Monday lecture, weeks 2, 4, 6.

Practicalities

An average of two lectures per week: for schedule, see
— http://www.cse.chalmers.se/edu/course/TDA383/time_inf.html

Rough guidelines (marks out of 100):

— Pass = >40 points, Grade 4 = >60p, Grade 5 = >80p
— To pass, must pass all [abs and exam separately
Written Exam 68 points (4 hours, closed book)

Four programming assignments (labs) — 32 points
— To be done in pairs

— See schedule for submission deadlines and marks

— Supervision available at announced times

Textbook

M. Ben-Ari, ”Principles of Concurrent and
Distributed Programming”, 2nd ed

Addison-Wesley 2006

Central to your study. Exam based entirely on
Chaps 1 through 9 of book.

Student wiki for problems from the book, and
for past exams.

Other resources

Old slides (both mine and Alejandro Russo’s)
Ben-Ari’s slides with reference to the text
Language resources — Java, Erlang

Gregory R. Andrews

— Foundations of Multithreaded, Parallel, and
Distributed Programming

e Recommended reading

Joe Armstrong

— Programming in Erlang
e Recommended reading

Programming Languages

 For labs

— Java (labs 1 and 2), Erlang (labs 3 and 4)

— Erlang untyped functional language with
asynchronous channels

— Tutorials on Erlang next week
* GET STARTED NOW WITH ERLANG EXAMPLES

e For lectures and exam

— Ben-Ari’s pseudo code
e Can use Java+Erlang in exam, BUT WITH CARE

— Spin/Promela as teaching aid (ignore if you wish)
* All but Erlang supported by Ben-Ari’s textbook

Course always in transition!

We now use Java and Erlang
— Only as implementation languages in the labs

Orally graded labs newish
— Worked well last term

Good text book

— But we sadly still have no machine-aided proofs
officially in course

For discussion
— pseudo-code as in book

What we did today

* |deas from other sciences, music and cinema
* Correctness, semantics, dangers, debugging ...
 Example: Unit Record Equipment (mention)

Parallelism in nature

* Everywhere!

— The world is a parallel place

* Physics, chemistry, biology, economics, medicine, history, football,
tennis,

— 10 million agents to simulate spread of infection
— Simulate patient at various levels
» Cannot predict what will happen, but can show what might

— And in art
* Music, cinema

 Programming may be the only field where only one
thing happens at a time

— Was never really true (interrupts, etc.)
* But education still 30 years out of date

Music

e Parallel

— Time holds everything together (“real time” in CS)

 What is held together?

— Threads (themes, motifs)
» Can be logical or physical (which instrument, which hand)

* Things that happen in time are called “events” in CS
* The themes and motifs are called “processes”

— Synchronisation is everywhere

— Harmony and counterpoint are music’s version of
“coordination”

Cinema

* Concurrent (potentially parallel)

— There is only one screen
» So stories go on (or pause) off screen
— There are cuts
* within a scene (punctuation in a story)
* and intercuts between scenes (“meanwhile”, ...)

— The priest’s voice provides a time-stamp.

 Without it, the other scenes could be “meanwhile”, but not
necessarily at the same instant

— With the trains, synchronisation is visual or audible
(phone)

Death by concurrency

The presence of death in those film clips was
not incidental — it was intended

Concurrent systems are often embedded (in

cars, planes, medical equipment, train signals)

— Get them wrong and you too can kill
* Not just in your video games, but for real

Train crash in NE India (see website)

Therac radiation therapy machine (see
website)

Debugging doesn’t work

* Concurrent systems are non-deterministic
— Don’t know who speaks first
— Don’t know who arrives first at a meeting

e SO cannot re-run

— So cannot set break points, backup and find bugs

* Then what do we do?
— Use model checkers or proof checkers
— They check spec versus implementation

Semantics

What do you want the system to do?
How do you know it does it?

How do you even say these things?
— Various kinds of logic

Build the right system (Validate the spec)
Build it right (verify that system meets spec)

