
Cons T Åhs
Keeper of The Code

cons@klarna.com
@lisztspace

Erlang 24/7
Chalmers 2014-02-26

onsdag 26 februari 14

mailto:cons@klarna.com
mailto:cons@klarna.com

Cons T Åhs
• Keeper of The Code at klarna

• Architecture - The Big Picture
• Development - getting ideas to work
• Code Quality - care about the details
• Increase competence of developers - better

developers are more productive and delivers better
solutions

onsdag 26 februari 14

Cons T Åhs
• Student in Uppsala 1981 - 85 (writing code for five

years, Lisp before starting in Uppsala)
• Uppsala University (1985-2000, 2002, 2009, 2012),

research & teaching; foundations, algorithms, functions,
relations, objects, compilers, pragmatics, theory, theorem
proving, formal program correctness..

• Consultant (1991-); online poker, low level networking,
medical imaging, graphics, finance, musical notation
(Lisp), speech synthesis (Lisp, Prolog), compilers (Lisp,
Prolog), real time video decoding, teaching..

• Klarna from Feb. 28, 2011

onsdag 26 februari 14

Klarna - The Business
• Make shopping on the net simpler, safer, more fun.
• Pay by invoice after the goods are delivered
• Customer checks out at estore

• Klarna identifies customer and investigates credit
• estore sends goods and invoice
• Klarna pays estore (Klarna takes the risk)
• customer pays Klarna

• Identification and risk determination needs to be done
fast (a few seconds)

onsdag 26 februari 14

Klarna - The Business
• Klarna makes money by taking a calculated risk

• We’re buying and selling invoices
• What do we need to be good at?

• Identifying our customers - do you exist?
• Interesting algorithms, lots of data

• Evaluate risk - are you going to pay?
• Interesting algorithms, lots of data

• Bookkeeping - we’re essentially a bank.
• Only lots of data, no algorithms

onsdag 26 februari 14

• Founded in 2005
• Revenue doubled every year from start - we’re growing

exponentially
• Sweden, Norway, Denmark, Finland, Germany, Netherlands,

Austria - more to come..
• Over 800 employees
• Over 15K estores and growing

2005 2006 2007 2008 2009 2010 2011 2012 2013

Klarna - The Facts

Very nice for the
shareholders..

onsdag 26 februari 14

Klarna - The Facts
• Currently over 2.5M transactions/month

• average ≈ 1/s, but there are peaks both over the day
and the year

• you can’t build for the average
• People shop all the time

• Available 24/7 - no downtime
• Software upgrades with no downtime
• Hardware upgrades and relocation with no downtime

.. we need to build and maintain a robust system

onsdag 26 februari 14

Klarna - The technology
• Use technology from a domain with similar needs

• large amount of messages/transactions
• high demands on availability, scalability, robustness
• low tolerance for downtime for software or hardware

upgrades
• We’re using Erlang/otp

• “functional,” state is handled in processes
• easy to distribute and communicate
• can handle large amounts of processes
• robust
• soft real time

onsdag 26 februari 14

Erlang
A functional language

• Dynamically typed functional language
• No side effects; variables are bound once and the value

can not be changed
• Every expression computes a value
• Pattern matching provides parallel binding and compact

programs (mixed blessing - beware!)
• Looks very much like Prolog
• The power of higher order functions and closures
• It is easier to understand, reason about, compile and

debug a functional program.

onsdag 26 februari 14

24/7 implies interesting
challenges

• 24/7 means having a goal of 100% availability
• 99.99% availability translates to about 4 minutes of

allowed downtime/month
• There is not too much you can do in 4 minutes
• No planned shutdown, even for upgrades
• Code and data format change without downtime
• Subsystem switching without downtime
• Hardware switching without downtime
• etc..
• There is no notion of stopping and starting the system -

it just runs..

onsdag 26 februari 14

Each���������	
��
������������������ year���������	
��
������������������ your���������	
��
������������������ sequential���������	
��
������������������ p
rograms

will���������	
��
������������������ go���������	
��
������������������ slower.

Joe���������	
��
������������������ Armstrong���������	
��
������������������ says:

Each���������	
��
������������������ year���������	
��
������������������ your���������	
��
������������������ concurrent���������	
��
������������������ programs
will���������	
��
������������������ go���������	
��
������������������ faster.

onsdag 26 februari 14

Concurrent and distributed programming
• With concurrent programming troubles form when you

have a shared and mutable state.
• Problem typically solved by using synchronisation with

locks
• Complicated - you have to know when to lock
• Can lead to more problems - performance degradation
• Cooperative model - all parts of the program must

agree
• Take away one and your on safe ground.
• Erlang takes away both!

onsdag 26 februari 14

No shared state, no mutable state
• Each process has a state of its own, or rather a

sequence of states; possibly a new state after receiving
a message

• Each process has a private heap
• Each process has a message queue (the implementation

handles these)
• Processes can not share state, even when they live in

the same VM.
• All communication must be done with messages.
• Asynchronous message passing - messages are copied

between processes

onsdag 26 februari 14

No shared state
• Why?

• Background (telecom switches) with a large number of
small and short lived processes

• When a process dies there is no risk reclaiming the
whole process

• No other process can access the memory it used
• Nothing happens if you send a message to a dead pid
• The dead process can not reference the memory of

another process
• Leads to robustness

onsdag 26 februari 14

Erlang
built for fault tolerance

• No shared state means that a crashing process will not
take another process down.

• A crashing process can notify another process, which
knows how to restart.
• Processes can be linked with each other, thereby

creating process and supervisor structures
• Ease of distribution and horisontal scalability also makes

it easy to build redundant systems - we have immediate
failover if a server dies.
• Not trivial, but support for it exists in the language

onsdag 26 februari 14

Build it robust
• Accidents happen

• “this can never happen”
• unexpected input
• missing case etc

• Be prepared!
• Don’t assume your program will never crash
• Limit effects of a crash - Erlang does this for you

• Note:
• Exceptions are for exceptional cases

onsdag 26 februari 14

Processes everywhere
• Processes in Erlang are cheap and flexible

• creation and destruction is fast and easy
• initial size is small, typically just hundreds of bytes
• they can grow surprisingly large..

• A typical system will consist of a (large) number of
communicating processes

• At any point, one of them can have a mishap and die
• A dying process screams out in agony
• Catch the death and act accordingly

• Restart a process that dies
• Restart other parts of the system

onsdag 26 februari 14

Linking Processes
• Simple creation of processes is done using spawn/1

• There is also spawn_link/1

• works like spawn/1

• creates a link between the calling process (self())
and the newly created process

• We’re saying that these processes are important to
each other.

• If one dies the other dies as well.
• Links are symmetrical
• A process can be linked to several other processes,

thus building process hierarchies

onsdag 26 februari 14

Catching the death of a process
• Instead of having process groups dying together a

process can catch the death of other processes it is
linked to

• Call process_flag(trap_exit, true)
• If a linked process dies, instead of getting an exit

signal that would kill the process, an ordinary message
of the form {‘EXIT’, From, Reason} is
received

• The message can be processed by an ordinary
receive ... end in a suitable manner

onsdag 26 februari 14

Workers vs Supervisors
• Trapping exit signals is asymmetric

• S is linked to W1, W2, W3
• S traps exits
• If S dies, W1, W2 and W3 will die
• If either of W1, W2, W3 dies, S

will get to know about it
• S is a supervisor
• W1, W2 and W3 are workers

S

W1 W2 W3

onsdag 26 februari 14

!DIY
• The low level mechanisms are few and simple
• Putting them together and getting it Right (tm) is tricky

(and distracts you from your core task)
• Use the supervisor behaviour (very similar to an

interface in Java)
• The supervisor behaviour states that you implement

one function init/1 which should return a term

{ok,

 {RestartStrategy, MaxRetries, Time},

 [ChildSpec]}

onsdag 26 februari 14

Restart Strategies
• Allow a maximum of MaxRetries during Time seconds.

If more are needed, the supervisor is terminated (and
possibly handled by another supervisor)

• one_for_one - restart children independently of each
other

• one_for_all - if one dies, restart all

• rest_for_one - if one dies, restart all “after” that one

• simple_one_for_one - like one_for_one, but all
workers run the same code and can be added dynamically

onsdag 26 februari 14

Brewer’s CAP Theorem

Consistency
Availability
Partition tolerance

- all nodes see the same data at the “same time”
- clients receive answers “immediately”
- service operates despite message loss between nodes

Good

FastCheap

Pick any two

Consistency

Availability Partition tolerance

When your network partitions, your distributed
system will be either consistent or available. At best.

onsdag 26 februari 14

Partition toleranceAvailability

Consistency

Brewer’s CAP Theorem

Pick any two

• Let the business decide which one to sacrifice
• Which two traits are crucial for making money?
• Three types of systems - examples?

• Consistent and available
• Available and partition tolerant
• Consistent and partition tolerant

onsdag 26 februari 14

Partition toleranceAvailability

Consistency

Brewer’s CAP Theorem

Pick any two

• We handle money and risk
• Consistency is definitely important!

• We want customers to spend money
• We have to be available!

• Good bye, partition tolerance..?

onsdag 26 februari 14

Theoretical Dilemma Meets Reality
• The problem:

• Construct a system that is consistent, highly available
and can scale when we grow exponentially

• Scalability is often solved by growing horisontally, i.e.,
by adding more nodes (thus exposing us to risk of
partioning).

• The reality [time to market is important]:
• We don’t know we’re going to grow exponentially -

focus on current problems; ignore the future.
• This is reality - solve problems when they come along

with simple real world solutions. Theory..?

onsdag 26 februari 14

The First System
• Focus on consistency and availability

• Use several nodes for fail over
• When, not if, a node dies another one can take over

• Replicate data between nodes
• Data is consistent between nodes and safe

• Know what you’ve done
• Logs can be used to rebuild state after failures

onsdag 26 februari 14

The First System

Site 1

Site 2

Master Slave

BO
Master

BO
Slave

• Each node runs erlang

• Mnesia is used for persistence

• Master and slave have different main tasks

• master handles incoming purchases

• slave handles web traffic

• Back office (BO) handles customer service

• Data is replicated among the nodes, so all nodes
have the same data

• If one node dies, the other takes over all
responsibilities until the dead one comes up again
(master and slave might then switch)

• Transaction logs are kept to rebuild state if
needed

• Regular backups are kept

onsdag 26 februari 14

The First System

Site 1

Site 2

Master Slave

BO
Master

BO
Slave

• Availability is covered by multiple nodes being
able to fail over fast; this is immediate.

• Consistency is covered by letting the nodes/sites
have different responsibilities and replicating
data.

• Partition tolerance is handled in the same way as
a dead node, i.e., a node will take over all
responsibilities in a site. Data is synced upon
contact again.

• We can keep availability even when external
services don’t answer.

• When one node has died, we’re vulnerable during
the time the other takes to restart.

• If both nodes die on a site, we have a serious
problem.

onsdag 26 februari 14

The First System

Site 1

Site 2

Master Slave

BO
Master

BO
Slave

• Software upgrades are done several times each
week without downtime or stopping the system.

• Code is loaded while normal traffic is flowing.

• OS, erlang and hardware can be upgraded without
downtime; stop one node, do maintenance and
restart.

• Hardware can be moved without downtime; stop
one node, move it and restart.

• This has served us well from the start and is still
doing quite nicely.

• Growth has been exponential, but this has also
been able to handle the needed scaling.

• How?

onsdag 26 februari 14

• Success means growth

• Adding new features is “just” a matter of code

• Adding new markets and customers means handling
more traffic and data - we need to scale up.

• Solve it by simple means and use the resources
available

• Buy a bigger box!

Solve Problems
When They Arise

2005 2006 2007 2008 2009 2010 2011 2012 2013

onsdag 26 februari 14

Theory is catching up
• We can’t scale like that forever

• Data sets will be extremely large

• We’re getting closer to the practical limits of certain aspects erlang/otp; it
wasn’t really designed for large scale systems

• Traffic increase, both incoming and between nodes will expose bottlenecks

• Moving into new markets might mean having nodes closer to the market,
either for latency or regulatory reasons

• Are we going to build a second system?

• No, the Second System Syndrome is Real.

• Change imposes risk and we need to maintain availability

• Remodel the existing system to be able to scale better by true horisontal
scaling.

• Rebuild and replace components incrementally

onsdag 26 februari 14

New Directions
• Scale horisontally by having multiple front end nodes,

handling purchases and external web traffic.
• Move towards SOA, with stateless services for

identification, risk assessment, payment handling.
• The front end has high demands for availability and

scalability; high SLAs.
• Scale vertically by separating a back end to a more

traditional transaction oriented bank like system.
• Less critical.
• We can tolerate inconsistency between front and back

end. Availability (FE) is more critical.

onsdag 26 februari 14

New Directions
• Availability still high priority.
• Consistency might suffer when moving purchase nodes

apart, but data will be consistent eventually.
• Fail over between purchase nodes, when a whole

purchase node fails
• Partition tolerance needs to be handled within a

purchase node between services.
• Messages to back end handled by a message queue and

handled in order. Less critical.
• This is currently work in progress.

onsdag 26 februari 14

Interested in Klarna?
• Starting points

• engineerng.klarna.com
• klarna.com/jobs
• recruitment@klarna.com

onsdag 26 februari 14

http://engineerng.klarna.com/
http://engineerng.klarna.com/
http://klarna.com/jobs
http://klarna.com/jobs
mailto:recruitment@klarna.com
mailto:recruitment@klarna.com

