Software Engineering using Formal Methods

Formal Modeling with Linear Temporal Logic

Wolfgang Ahrendt

18th September 2014

SEFM: Linear Temporal Logic CHALMERS/GU 140918 1/59

Recapitulation: FormalisationFormalisation: Syntax,
SemanticsFormalisation: Syntax, Semantics,
ProvingFormal Verification: Model Checking

Translatio

TL of NegsfBn Biichi \ic

5@* Promela Automaton
(\\?-“ / PEYS I
Real * ® Transition . Transition
World Sm. SO¥ERELs | System
S@/))Q Intersection
Ol‘/c*s accepts
no run?

SEFM: Linear Tempora¥togic CHALMERS/GU SN\ _A40918 2 /59

The Big Picture: Syntax, Semantics, Calculus

Syntax

Formula

2

Semantics

“Valid”
Com pletenesq, 1‘Sou ndness

Calculus
“Derivable”

SEFM: Linear Temporal Logic CHALMERS/GU

140918

3/59

Simplest Case: Propositional Logic—Syntax

PropositionalProgos

FormulasFormulas

=L

InterpretationInterp -
Var — {T, F}

2 1

Sequent Calculus,
SAT Solver, ...

SEFM: Linear Temporal Logic CHALMERS/GU 140918 4 /59

Syntax of Propositional Logic

Signature

A set of Propositional Variables P (with typical elements p, q,r,...)

Propositional Connectives
true, false, A, V, =, —, <>

Set of Propositional Formulas For,
» Truth constants true, false and variables P are formulas
> If ¢ and v are formulas then

0 OANY, VY, 9= P&

are also formulas

» There are no other formulas (inductive definition)

SEFM: Linear Temporal Logic CHALMERS/GU 140918 5 /59

Remark on Concrete Syntax

Text book SPIN

Negation - !
Conjunction A &&
Disjunction v I
Implication —, D -
Equivalence ~ <>

We use mostly the textbook notation
Except for tool-specific slides, input files

SEFM: Linear Temporal Logic CHALMERS/GU 140918 6 /59

Propositional Logic Syntax: Examples

Let P = {p, g, r} be the set of propositional variables

Are the following character sequences also propositional formulas?

> true — p

> (planr))vp X

> p—(qn) X

» false A(p— (g Ar))

SEFM: Linear Temporal Logic CHALMERS/GU 140918 7 /59

Simplest Case: Propositional Logic—Syntax

PropositionalProgos

FormulasFormulas

=L

InterpretationInterp -
Var — {T, F}

2 1

Sequent Calculus,
SAT Solver, ...

SEFM: Linear Temporal Logic CHALMERS/GU 140918 8 /59

Semantics of Propositional Logic

Interpretation 7

Assigns a truth value to each propositional variable

I:P—{T,F}

Example

Let P = {p,q}
p— (qg = p)

P q
I, F F
L, T F

SEFM: Linear Temporal Logic CHALMERS/GU

140918

9/59

Semantics of Propositional Logic

Interpretation 7

Assigns a truth value to each propositional variable

I:P—{T,F}

Valuation Function
valz: Continuation of Z on Fory

valr : Forp — {T,F}

valz(true) = T
valz(false) = F
valz(pi) = Z(pi)

(cont'd next page)

SEFM: Linear Temporal Logic CHALMERS/GU

140918

9/59

Semantics of Propositional Logic (Cont’d)

Valuation function (Cont’d)

_ T if Va/1(¢) =F
valz(=¢) = { F otherwise
_ [T ifval(¢) = T and valr(yp) = T
valz(¢p A) = { F otherwise
_J T ifvai(¢) =T or valr(y) = T
valz(¢ V ¢) = { F otherwise

[T ifvalg(¢) = F or valz(¢p) =T
valz(¢ = ¥) = { F otherwise

T if valr(¢) = valz()
valz(¢ < ¢) = { F otherwise

SEFM: Linear Temporal Logic CHALMERS/GU 140918

10 /59

Valuation Examples

Example
Let P ={p,q}
p— (g = p)
P q
., F F
I, T F

How to evaluate p — (g — p) in Zp7?

val,(p — (¢ — p)) = Tiff val,(p) =Forval,(gq — p)=T
val,(p) = Io(p) = T

valr,(q — p) = Tiff val,(q) = F or valg,(p) =T

valp,(q) = I2(q) = F

SEFM: Linear Temporal Logic CHALMERS/GU 140918 11 /59

Semantic Notions of Propositional Logic

Let ¢ € Foryg, I C Fory

Definition (Satisfying Interpretation, Consequence Relation)
T satisfies ¢ (write: Z |= ¢) iff valz(¢p) = T

¢ follows from I (write: T |= ¢) iff for all interpretations Z:

If Z =4 for all ¢» €T then also Z |= ¢

Definition (Satisfiability, Validity)

A formula is satisfiable if it is satisfied by some interpretation.

If every interpretation satisfies ¢ (write: = ¢) then ¢ is called valid.

SEFM: Linear Temporal Logic CHALMERS/GU 140918

12759

Semantics of Propositional Logic: Examples

Formula (same as before)

p— (@9 = p)

Is this formula valid?

Fp—=(@—p7

SEFM: Linear Temporal Logic CHALMERS/GU 140918 13 /59

Semantics of Propositional Logic: Examples

p A ((=p) V q)

Satisfiable?

Satisfying Interpretation? I(p)=T,Z(q)=T
Other Satisfying Interpretations? X

Therefore, also not valid!

pA((=P) V@ EqgVTr

Does it hold? Yes. Why?

SEFM: Linear Temporal Logic CHALMERS/GU 140918

14 /59

An Exercise in Formalisation

1 byte n;

2 active proctype [2] P() {
3 n = 0;

4 n =mn+ 1

5}

Can we characterise the states of P propositionally?

Find a propositional formula ¢p which is true if and only if (iff) it
describes a possible state of P.

) ((PC03/\—|PC04/\ﬁPCO5)\/"')/\
P = Al

ANY
SEFM: Linedr T&rkpol QHALMERS)GU * YO) cee /140918

15 /59

An Exercise in Formalisation

1 byte n;

2 active proctype [2] P() {
3 n = 0;

4 n =n+ 1

5%}

P No, N1, Na, ... N7 8-bit representation of byte
PC03, PCQq4, PCOs5, PC13, PC14, PC1s next instruction pointer
Which interpretations do we need to “exclude”?
» The variable n is represented by eight bits, all values possible

» A process cannot be at two positions at the same time

> If neither process 0 nor process 1 are at position 5, then n is zero
| S

bp = ((PCO3 A =PCO4 A =PCOs) V - - -)A
P=\ ((#PCOs A —PCls) = (~Ng A+ A-Ng)) A~

SEFM: Linear Temporal Logic CHALMERS/GU 140918 15 /59

Is Propositional Logic Enough?

Can design for a program P a formula ®p describing all reachable states

For a given property W the consequence relation

O, =W

holds when W is true in any possible state reachable in any run of P

But How to Express Properties Involving State Changes?
In any run of a program P

> n will become greater than 0 eventually?

» n changes its value infinitely often

etc.

= Need a more expressive logic: (Linear) Temporal Logic J

SEFM: Linear Temporal Logic CHALMERS/GU 140918 16 / 59

Transition systems (aka Kripke Structures)

Notation

SEFM: Linear Temporal Logic CHALMERS/GU

140018 17 /59

Transition systems (aka Kripke Structures)

» Each state s; has its own propositional interpretation /;

» Convention: list values of variables in ascending lexicographic order
» Computations, or runs, are infinite paths through states

> Intuitively ‘finite’ runs modelled by looping on last state

» How to express (for example) that p changes its value infinitely
often in each run?

SEFM: Linear Temporal Logic CHALMERS/GU 140918 17 /59

Recapitulation: FormalisationFormalisation: Syntax,
SemanticsFormalisation: Syntax, Semantics,
ProvingFormal Verification: Model Checking

Translatio

TL of NegsfBn Biichi \ic

5@* Promela Automaton
(\\?-“ / PEYS I
Real * ® Transition . Transition
World Sm. SO¥ERELs | System
S@/))Q Intersection
Ol‘/c*s accepts
no run?

SEFM: Linear Tempora¥togic CHALMERS/GU SN__140918 18 /59

(Linear) Temporal Logic—Syntax

An extension of propositional logic that
allows to specify properties of all runs

Syntax
Based on propositional signature and syntax
Extension with three connectives:
Always If ¢ is a formula then so is ¢
Eventually If ¢ is a formula then so is O¢
Until If ¢ and v are formulas then so is ¢ UY

Concrete Syntax

text book SPIN

Always O []
Eventually O <>
Until u U
SEFM: Linear Temporal Logic CHALMERS/GU 140918 19 /59

Temporal Logic—Semantics

A run o is an infinite chain of states

Z; propositional interpretation of variables in j-th state
Write more compactly sps; s»s3. ..

If o0 = spsi---, then o|; denotes the suffix s;s;41--- of 0.

SEFM: Linear Temporal Logic CHALMERS/GU 140918 20 /59

Temporal Logic—Semantics (Cont’d)

Valuation of temporal formula relative to run: infinite sequence of statesJ

Definition (Validity Relation)

Validity of temporal formula depends on runs 0 = sy s;7...

ocEpPp iff
cE-¢ iff
clEdAY iff
cEVy iff
clEd sy iff

Zo(p) =T, for p € P.
not o = ¢ (write o [~ ¢)
ocE¢and o =9
cEdoraly
ofEporo =

Temporal connectives?

SEFM: Linear Temporal Logic

CHALMERS/GU 140918

21 /59

Temporal Logic—Semantics (Cont’d)
Run o

SAVACEC A

Definition (Validity Relation for Temporal Connectives)
Given arun o = 591 -+

ocE=0O¢ iff ol = ¢ forall k>0
ol=0¢ iff ol = ¢ for some k>0
o= oUy iff ol 1 for some k >0, and of; |= ¢ for all 0<j<k
(if k = 0 then ¢ needs never hold)

SEFM: Linear Temporal Logic CHALMERS/GU 140918 22 /59

Safety and Liveness Properties

Safety Properties

» Always-formulas called safety properties:
“something bad never happens”

> Let mutex (“mutual exclusion”) be a variable that is true when
two processes do not access a critical resource at the same time

» [Imutex expresses that simultaneous access never happens

Liveness Properties

» Eventually-formulas called liveness properties:
“something good happens eventually”

> Let s be variable that is true when a process delivers a service

» (s expresses that service is eventually provided

SEFM: Linear Temporal Logic CHALMERS/GU 140918

23759

Complex Properties

What does this mean?Infinitely Often

o = 0O0¢

“During run o the formula ¢ becomes true infinitely often”

SEFM: Linear Temporal Logic CHALMERS/GU 140918 24 /59

Validity of Temporal Logic

Definition (Validity)
¢ is valid, write |= ¢, iff 0 = ¢ for all runs o0 = sps1 -+ .

Recall that each run sy s; - -+ essentially is an infinite sequence of
interpretations Zg 77 - - -

Representation of Runs
Can represent a set of runs as a sequence of propositional formulas:

> o P1,- - represents all runs sp sy - -+ such that s; = ¢; for i >0

SEFM: Linear Temporal Logic CHALMERS/GU 140918 25 /59

Semantics of Temporal Logic: Examples

O0¢
Valid?
No, there is a run where it is not valid:
(mp—d—¢ ...)

Valid in some run?
Yes, for example: (¢ ¢ ...)

Lo — ¢ (=00) < (0-¢) 09 > (true Ud)

All are valid! (proof is exercise)
» [is reflexive
» [and ¢ are dual connectives
» [and { can be expressed with only using U

SEFM: Linear Temporal Logic CHALMERS/GU 140918

26 / 59

Transition Systems: Formal Definition

Definition (Transition System)

A transition system T = (S, Ini,§,Z) is composed of a set of states S, a
set) # Ini C S of initial states, a transition relation § €S x S, and a
labeling Z of each state s € S with a propositional interpretation Zs.

Definition (Run of Transition System)

A run of T is a sequence of states 0 = sg 51 - - - such that
so € Ini and for all j is s; € S as well as (s;,sj4+1) € 0.

SEFM: Linear Temporal Logic CHALMERS/GU 140918 27 /59

Temporal Logic—Semantics (Cont’d)

Extension of validity of temporal formulas to transition systems:

Definition (Validity Relation)
Given a transition system 7 = (S, Ini,d,7), a temporal formula ¢ is

valid in T (write T = ¢) iff o |= ¢ for all runs o of T.

SEFM: Linear Temporal Logic CHALMERS/GU 140918 28 /59

Recapitulation: FormalisationFormalisation: Syntax,
SemanticsFormalisation: Syntax, Semantics,
ProvingFormal Verification: Model Checking

Translatio

TL of NegsfBn Biichi \ic

5@* Promela Automaton
(\\?-“ / PEYS I
Real * ® Transition . Transition
World Sm. SO¥ERELs | System
S@/))Q Intersection
Ol‘/c*s accepts
no run?

SEFM: Linear Tempora¥togic CHALMERS/GU SN__140918 29 /59

w-Languages

Given a finite alphabet (vocabulary) ¥

An w-word w € 2*“ is a n infinite sequence
W:ao...ank...

with a; € X,i € {0,...,n}N

LY C ¥* is called a n w-language

SEFM: Linear Temporal Logic CHALMERS/GU 140918 30 /59

Buchi Automaton

Definition (Biichi Automaton)

A (non-deterministic) Biichi automaton over an alphabet X consists of a
» finite, non-empty set of locations @
» a non-empty set of initial /start locations | C Q
> a set of accepting locations F = {Fy,...,Fr} C Q

» a transition relation 0 C Q@ X X x @

Example
> = {37 b}a Q = {q17 q2, q3}7 | = {q1}7 F= {q2}

4

SEFM: Linear Temporal Logic CHALMERS/GU 140918 31/59

Blichi Automaton—Executions and Accepted Words

Definition (Execution)

Let B=(Q,/,F,0) be a Biichi automaton over alphabet ¥.
An execution of B is a pair (w, v), with

»W:ao"'ak"'ezw
>V:qo...qk...€Qw
where qo € I, and (gq;, a;, gi+1) € 6, forall i € N

Definition (Accepted Word)

A Blichi automaton B accepts a word w € ¥*, if there exists an
execution (w, v) of B where some accepting location f € F appears
infinitely often in v

SEFM: Linear Temporal Logic CHALMERS/GU 140918

32759

Biichi Automaton—Language

Let B=(Q,/,F,0) be a Biichi automaton, then
LY(B) ={w € X¥|lw € £ is an accepted word of B}
denotes the w-language recognised by B.

An w-language for which an accepting Biichi automaton exists
is called w-regular language.

SEFM: Linear Temporal Logic CHALMERS/GU 140918 33 /59

Example, w-Regular Expression

Which language is accepted by the following Biichi automaton?

Solution: (a + b)*(ab)“ [NB: (ab)¥ = a(ba)“] J
w-regular expressions like standard regular expression
ab athen b
a+baorb

a* arbitrarily, but finitely often a

new: a“ infinitely often a

SEFM: Linear Temporal Logic CHALMERS/GU 140918 34 /59

Decidability, Closure Properties

Many properties for regular finite automata hold also for Biichi automata

Theorem (Decidability)

It is decidable whether the accepted language £ (B) of a Biichi
automaton B is empty.

Theorem (Closure properties)

The set of w-regular languages is closed with respect to intersection,
union and complement:

> if L1, L5 are w-regular then £1 N Ly and £, U Ly are w-regular

» L is w-regular then ¥\ L is w-regular

But in contrast to regular finite automata

Non-deterministic Biichi automata are strictly more expressive than
deterministic ones

SEFM: Linear Temporal Logic CHALMERS/GU 140918

35 /59

Blichi Automata—More Examples

Language: a(a+ ba)*
a
OWO=
b
Language: (a*ba)“
b
=OWmO
a

SEFM: Linear Temporal Logic CHALMERS/GU 140918 36 /59

Recapitulation: FormalisationFormalisation: Syntax,
SemanticsFormalisation: Syntax, Semantics,
ProvingFormal Verification: Model Checking

Translatio

TL of NegsfBn Biichi \ic

5@* Promela Automaton
(\\?-“ / PEYS I
Real * ® Transition . Transition
World Sm. SO¥ERELs | System
S@/))Q Intersection
Ol‘/c*s accepts
no run?

SEFM: Linear Tempora¥togic CHALMERS/GU SN__140918 37 /59

Linear Temporal Logic and Biichi Automata

LTL and Buchi Automata are connected J

Recall
Definition (Validity Relation)

Given a transition system 7 = (S, Ini,d,Z), a temporal formula ¢ is

valid in 7 (write 7 |= ¢) iff o = ¢ for all runs o of T.

A run of the transition system is an infinite sequence of interpretations /

Intended Connection
Given an LTL formula ¢:

Construct a Biichi automaton accepting exactly those runs (infinite
sequences of interpretations) that satisfy ¢

SEFM: Linear Temporal Logic CHALMERS/GU 140918 38 /59

Encoding an LTL Formula as a Biichi Automaton

P set of propositional variables, e.g., P = {r,s}

Suitable alphabet ¥ for Biichi automaton?
A state transition of Blichi automaton must represent an interpretation

Choose ¥ to be the set of all interpretations over P, encoded as 27

Example

¥ ={0.{r}.{s}.{r.s}}

/@(I’) = F, /@(S) = F, I{r}(r) = T, /{,}(S) = F,. o

SEFM: Linear Temporal Logic CHALMERS/GU 140918 39 /59

Biichi Automaton for LTL Formula By Example

Example (Biichi automaton for formula r over P = {r,s})

A Biichi automaton B accepting exactly those runs ¢ satisfying r

Start{) {r}Ar s} @32

In the first state sp (of o) at least r must hold, the rest is arbitrary

Example (Biichi automaton for formula Or over P = {r,s})

start @:} {r}A{r,s}x,

Y, ={llleX rel}

In all states s (of o) at least r must hold

SEFM: Linear Temporal Logic CHALMERS/GU 140918

40 /59

Biichi Automaton for LTL Formula By Example

Example (Biichi automaton for formula ¢CJr over P = {r,s})

r}dr,sty,
start H@ trhirs} @:) {r}{r,s}¥,
Pu

SEFM: Linear Temporal Logic CHALMERS/GU 140918 41 /59

Recapitulation: FormalisationFormalisation: Syntax,
SemanticsFormalisation: Syntax, Semantics,
ProvingFormal Verification: Model Checking

Translatio

TL of NegsfBn Biichi \ic

5@* Promela Automaton
(\\?-“ / PEYS I
Real * ® Transition . Transition
World Sm. SO¥ERELs | System
S@/))Q Intersection
Ol‘/c*s accepts
no run?

SEFM: Linear Tempora¥togic CHALMERS/GU SN__140918 42 /59

Model Checking

Check whether a formula is valid in all runs of a transition system
Given a transition system 7 (e.g., derived from a PROMELA program)

Verification task: is the LTL formula ¢ satisfied in all runs of T, i.e.,

TE® ?

Temporal model checking with SPIN: Topic of next lecture

Today: Basic principle behind SPIN model checking J

SEFM: Linear Temporal Logic CHALMERS/GU 140918 43 /59

SPIN Model Checking—Overview

TE¢ 7

1. Represent transition system 7 as Biichi automaton B such that
BT accepts exactly those words corresponding to runs through T

2. Construct Biichi automaton B- for negation of formula ¢

3. If
LY(Br) N LY (Bog) =0

then 7 |= ¢ holds.

If
LBT) N LY (B-g) # 0

then each element of the set is a counterexample for ¢.

To check £¥(B7) N L¥(B-¢) construct intersection automaton and
search for cycle through accepting state

SEFM: Linear Temporal Logic CHALMERS/GU 140918 44 /59

Representing a Model as a Biichi Automaton

First Step: Represent transition system T as Biichi automaton By
accepting exactly those words representing a run of T

Example
active proctype P O { start —f °
do
:: atomic {
lwQ; wP = true
};
Pcs = true;
atomic {
5128: fffslze’ {wP, Pcs} {wQ, Qcs}
}
od }

Similar code for process Q.

Second atomic block just to keep automaton small.
SEFM: Linear Temporal Logic - CHALMERS/GU . 140918 45 /59

Biichi Automaton B_, for —¢

Second Step:
Construct Bilichi Automaton corresponding to negated LTL formula

T [= ¢ holds iff there is no accepting run o of T s.t. 0 = —¢
Simplify ~¢ = =[0-Pcs = {Pcs

Biichi Automaton 53-,

P = {wP,wQ, Pcs, Qcs}, ¥ =27

z CS
start H@ & @D >

c
> Pcs

Yps=1{lll €X,Pcsel}, X6 =X —Xps

SEFM: Linear Temporal Logic CHALMERS/GU 140918

46 /59

Checking for Emptiness of Intersection Automaton

Third Step: LY(Br)NLY(B-g) = #0 7?
Counterexample Construction of intersection automaton: Appendix

Intersection Automaton (skipping first step of 7 for simplicity)

{wP, Pcs}
(112)

0

{wQ, Qes}

SEFM: Linear Temporal Logic CHALMERS/GU 140918 47 /59

Literature for this Lecture

Ben-Ari Section 5.2.1
(only syntax of LTL)

Baier and Katoen Principles of Model Checking, May 2008, The MIT
Press, ISBN: 0-262-02649-X

SEFM: Linear Temporal Logic CHALMERS/GU 140918 48 /59

Appendix |:

Intersection Automaton

Construction

SEFM: Linear Temporal Logic = CHALMERS, /GU 140918 49 /59

Construction of Intersection Automaton

Given: two Biichi automata B; = (Q;,d;, i, Fi), i = 1,2
Wanted: a Biichi automaton

Bir2 = (Qin2, 9112, hn2, Fin2)

accepting a word w iff w is accepted by B; and B>

Maybe just the product automaton as for regular automata? J

SEFM: Linear Temporal Logic CHALMERS/GU 140918 50 / 59

First Attempt: Product Automata for Intersection

Y = {a, b}, a(a+ ba)” N (a*ba)” = 07 No, e.g., a(ba)¥

a(a+ ba)“ : (a*ba)v :
b

a
OBONE=0®0
b a
Product Automaton: accepting location 11 never reached
@) —{(s)
a

SEFM: Linear Temporal Logic CHALMERS/GU 140918 51 /59

Explicit Construction of Intersection Automaton

a(a+ ba)“ : (a*ba)“ :
=] 1 b
O8O3 B-0W0
b a

(i) Product Automaton(ii) Reachable States(iii) Clone(iv) Initial
States Restricted to First Copy(v) Final States Restricted to First
Atomaton of First Copy(vi) Ensure Acceptance in Both Copies

1 — 2(vii) Ensure Acceptance in Both Copies 2 — 1(viii)
Transitions of Product Automaton

140918 52 /59

Explicit Construction of Intersection Automaton

a(a+ ba)“ : (a*ba)“ :
a s b
O8O3 B-0W0
b a

(i) Product Automaton(ii) Reachable States(iii) Clone(iv) Initial
States Restricted to First Copy(v) Final States Restricted to First
Atomaton of First Copy(vi) Ensure Acceptance in Both Copies

1 — 2(vii) Ensure Acceptance in Both Copies 2 — 1(viii)
Transitions of Product Automaton

a
a
b

a

01 -1

012
SEFM\ L¥héar Femporal Logic CHALMERSYGU-%~ 140918 52 /5

Explicit Construction of Intersection Automaton

a(a+ ba)“ : (a*ba)“ :
a s b
O8O3 B-0W0
b a

(i) Product Automaton(ii) Reachable States(iii) Clone(iv) Initial
States Restricted to First Copy(v) Final States Restricted to First
Atomaton of First Copy(vi) Ensure Acceptance in Both Copies

1 — 2(vii) Ensure Acceptance in Both Copies 2 — 1(viii)
Transitions of Product Automaton

012
CHALMERSYGU-%~ | 140918 52 /5

Explicit Construction of Intersection Automaton

a(a+ ba)“ : (a*ba)“
a s b
O8O3 B-0W0
b a

(i) Product Automaton(ii) Reachable States(iii) Clone(iv) Initial
States Restricted to First Copy(v) Final States Restricted to First
Atomaton of First Copy(vi) Ensure Acceptance in Both Copies

1 — 2(vii) Ensure Acceptance in Both Copies 2 — 1(viii)
Transitions of Product Automaton

DQOA

1
SEFM\L dar Fepnporal Logic CHALMER\SWJ-L) 140918 52 /5

Explicit Construction of Intersection Automaton

a(a+ ba)“ : (a*ba)“
a s b
O8O3 B-0W0
b a

(i) Product Automaton(ii) Reachable States(iii) Clone(iv) Initial
States Restricted to First Copy(v) Final States Restricted to First
Atomaton of First Copy(vi) Ensure Acceptance in Both Copies

1 — 2(vii) Ensure Acceptance in Both Copies 2 — 1(viii)
Transitions of Product Automaton

SEFM: Linear 'I;efnporal Loglc CHALMERS/GU 140918 52 /5

Explicit Construction of Intersection Automaton

a(a+ ba)“ : (a*ba)“
a s b
O8O3 B-0W0
b a

(i) Product Automaton(ii) Reachable States(iii) Clone(iv) Initial
States Restricted to First Copy(v) Final States Restricted to First
Atomaton of First Copy(vi) Ensure Acceptance in Both Copies

1 — 2(vii) Ensure Acceptance in Both Copies 2 — 1(viii)
Transitions of Product Automaton

Om

ﬂ 1 L
SEFM\ L¥héar Fepnporal Loglc D CHALMER\SWJ-L/ 140918 52 /5

Explicit Construction of Intersection Automaton

a(a+ ba)“ : (a*ba)“
=] 1 b
O8O3 B-0W0
b a

(i) Product Automaton(ii) Reachable States(iii) Clone(iv) Initial
States Restricted to First Copy(v) Final States Restricted to First
Atomaton of First Copy(vi) Ensure Acceptance in Both Copies

1 — 2(vii) Ensure Acceptance in Both Copies 2 — 1(viii)

Transitions of Product Automaton

1
SEFM\L dar Fenporal Loglc CHALMER\SWJ—L Ji 140918 52 /59

Appendix |l

Construction of a Buchi
Automaton B¢
for an

LTL-Formula ¢

SEFM: Linear Temporal Logic = CHALMERS, /GU 140918 53 /59

The General Case: Generalised Biichi Automata

A generalised Biichi automaton is defined as:

B& =(Q,9,1,F)
Q, 6, | as for standard Biichi automata

F={F,...,Fn}, where F; = {qi1,.-..,qim;} C Q

Definition (Acceptance for generalised Biichi automata)

A generalised Biichi automaton accepts an w-word w € ¥“ iff for every
i€ {1,...,n} at least one gjx € F; is visited infinitely often.

SEFM: Linear Temporal Logic CHALMERS/GU 140918 54 /59

Normal vs. Generalised Biichi Automata: Example

Bnormal \ish {1, 2}' Beeneral \yith F — {{1}, {2}}

Which w-word is accepted by which automaton?

w-word ‘ Bnormal ‘ Bgeneral
(ab)” X
(aab)“

SEFM: Linear Temporal Logic CHALMERS/GU 140918

55 /59

Fischer-Ladner Closure

Fischer-Ladner closure of an LTL-formula ¢
FL(¢) = {¢|p is subformula or negated subformula of ¢}

(——p is identified with ¢)

Example
FL(ris) = {r,—r,s,—s,rUs,—(rUs)} J

SEFM: Linear Temporal Logic CHALMERS/GU 140918 56 / 59

Bs-Construction: Locations

Assumption:

U only temporal logic operator in LTL-formula (can express [J, { with i)

Locations of By are Q C 2FL(9) where each g € Q satisfies:
Consistent, Total » ¢ € FL(¢): exactly one of ¥ and =) in ¢
> 1 UYs € (FL(¢)\q) then 92 & q

Downward Closed » i1 Ay € q: Y1 € gand Yn € g
» ...other propositional connectives similar

> Y1Uys € gthen Yy € qoryn €gq

FL(rits) ={r,—r,s,—s,rUs,—(rUs)}
€Q

{rUs,—r,s}
{rUs,—r,—s} X
{=(ris),r,s} X
{=(ris),r,—s}

SEFM: Linear Temporal Logic CHALMERS/GU 140918

57 /59

Bs-Construction: Transitions

{rus7 -r, 5}7 {rus7 r, _‘5}7 {rUs, r, S}a {—\(rZ/{s), r, _'5}7 {_‘(rus)7 -r, _‘S}
a1 q2 a3 qs qs
Transitions (g, a, q') € d4:

a=qgnN7pP

‘P set of propositional variables
outgoing edges of g; labeled {s},
of g, labeled {r}, etc.

1. If 1Urpa € gand Yo € q
then Y1 UY» € ¢

2. If 1 Uy € (FL(4)\q) and
Y1 € q then Y1 Uy & ¢

Initial locations

gelyiftpcq

i Accepting locations
SEFM#Eimear Temporal Legic v 2 CHALMERS/GU - -~ 140918 58 /59

Remarks on Generalized Buchi Automata

» Construction always gives exponential number of states in |¢|

» Satisfiability checking of LTL is PSPACE-complete

» There exist (more complex) constructions that minimize number of
required states

» One of these is used in SPIN, which moreover computes the states
lazily

SEFM: Linear Temporal Logic CHALMERS/GU 140918 59 /59

	Formal Modeling
	Propositional Logic
	Temporal Logic
	Büchi Automata
	Büchi Automaton of a Temporal Formula
	Spin Model Checking
	Automata Intersection
	Appendix
	Intersection Automaton
	LTL to Büchi

