
Algorithms and Datastructures
TDA143

2014-02-19
Birgit Grohe

1

What is this Lecture about?

• What is an algorithm – definition and examples
• Algorithm analysis – efficiency and correctness
• Searching and Sorting
• Algorithms and problem solving
• A difficult standard problem: TSP
• Algorithm design principles
• Datastructures
• A datastructure for searching: Binary search tree
• Is it possible to make money with algorithms?

2

Why Algorithms?

With the help of algorithms, many problems can be
solved:
• Construct a fast search engine (google, yahoo etc)
• Sort huge lists of e.g. students
• Construct schedules for pilots and cabin crew
• Code and decode messages
• Data compression
• Find shortest paths in networks (e.g. västtrafik)
• …

3

What is an Algorithm?
Informal description:
A set of steps that defines how a task is performed.

Formal description

An algorithm is an ordered set of unambiguous,
executable steps that defines a terminating process.

 Brookshear: Computer Science, An overview

4

An Algorithm and its Representation

Algorithm: abstract idea for solving a problem
Representation: formulation of the abstract idea
by using e.g.

 English

algebraic

formula

programs

pseudocode

diagrams

and pictures

5

An Algorithm and its Representation

Examples:
• Convert a temperature reading given in

Celcius to Fahrenheit.
oMultiply the temperature reading in Celsius by 9/5

and add 32 to the product.
o F = 9/5*C + 32

• Shelling peas
• Folding a bird from a piece of paper

6

Pseudocode: Sequential Search
Algorithm

procedure SeqSearch(List, Value) {
while(entries left to be considered) {
 do TestEntry ← next entry from List
 if(Value = TestEntry) then return ´sucess´
 }
return ´search failed´
}

For sorted lists
of length n≥1

elements

7

Pseudocode: Primitives

• Assignment: e.g.
 TestEntry ← next entry from List
• Loop: e.g. while(condition) do(action)
• If-clauses: e.g. if(condition) then(action1)

else(action2)

8

Analysis of Algortihms

Given a problem and a (terminating) algorithm,
analysis includes:
• Correctness: does the algorithm solve the

problem?
• Efficiency: what is the running time of the

algorithm? In the worst case , in the average
case?

9

Big-O notation O()

• The running time of an algorithm is measured
in terms of unit operations, i.e. comparisons,
additions, multiplications, assignments. Not in
seconds!

• Usually, not the exact number of unit
operations is measured, but the asymptotic
complexity O() or Ɵ().

Formal definition
 is given later.

10

Running time of SequSearch

Listlength n≥2.
Number of unit operations
• in the average case: ca 3n/2
• In the worst case: 3n+1

 Maybe there is a

better/faster
algorithm?

11

The Binary Search Algorithm

procedure BinSearch(List, Value) {
if(List empty) {
 then return ´failed´}
 else {
 TestEntry ← middle entry of List
 if(Value = TestEntry) return ´sucess´
 if(Value>TestEntry) BinSearch(RightHalfofList, Value)
 if(value<TestEntry) BinSearch(LeftHalfofList, Value)
}

12

Running time of BinSearch

Listlength n≥2.

Number of unit operations in the worst case:
(1 + 4)(log2 𝑛) + 2
= 5 log2 𝑛 + 2

Compare to SequSearch: 3n+1

 13

Asymptotic complexity O()

A function g(n) is O(f(n))
if there is a constant c>0 such that

g(n) ≤ c f(n)
for all n≥𝑛0 ≥ 0.

What does the definition mean?

´Find a upper bound f(n) by ignoring the constants
and the function´s behaviour for small n.´

14

..is order of..

Algorithm Choice: Does it make any
Difference?

Example: Given a database with 30.000
student’s records sorted by their personal
numbers.
How long does it take to check the record for
10.000 students given her or his personal
number?
We assume that a unit operation takes 1 ms.

15

Insertion Sort
procedure InsertionSort(List){
N ← second entry in the list
while (N ≤ LengthOfList) do{
 Select the Nth entry in the List as the pivot entry
 Move pivot to a temporary location leaving a hole in the list
 while((exists entry above the hole) and
 (entry > pivot)) do{
 Move the entry above the hole down into the hole
 }
 Move the pivot entry into the hole in the List
 N ← N + 1 }
}

Given a list of
N≥2 entires

(e.g. strings or
numbers)

16

Running time of Insertion Sort

Worst case analysis:
1+
3(n-1) + 3(1+2+3+4+. . .+n−1) + 2(n-1)=
1 + 5(n-1) + 3n(n-1)/2 → O(𝑛2)

17

Maybe there is a
better/faster
algorithm?

Algorithms and Problem Solving

Understand the problem

Devise a plan for solving the
problem (get an idea)

Carry out the plan (design
algorithm and program)

Evaluate

George Polya’s 4
problem solving

phases

18

Algorithms and Problem Solving

Some problems are unsolvable
(’undecidable’), and some problems
are ’difficult’ (NP-complete) !

And many are already solved - so called
’Standard Problems’.

Warning

19

Problem Solving: An Example

Person A should guess the age of
person B’s three children. B tells A
that the product of the children’s ages is 36.
B requests another clue. B tells A the sum of the
children’s ages. Again, A replies that another
clue is needed and finally B tells A that the
oldest child plays piano.

Getting a
foot in the

door

20

Problem Solving: Pianoexample

(1,1,36)
(1,2,18)
(1,3,12)
(1,4,9)
(1,6,6)
(2,2,9)
(2,3,6)
(3,3,4)

Product of
three

numbers
= 36

Not unique! We need
more clues.

21

Problem Solving: Pianoexample

(1,1,36) Σ = 38
(1,2,18) Σ = 21
(1,3,12) Σ = 16
(1,4,9) Σ = 14
(1,6,6) Σ = 13
(2,2,9) Σ = 13
(2,3,6) Σ = 11
(3,3,4) Σ = 10

Still not unique! We need
more clues.

Was it relevant that
one of the childen

played piano? Or violin,
or chess?

22

Getting a Foot in the Door

How to start solving a problem/finding an
algorithm?
• Top down approach, i.e. stepwise refinement
• Bottom up approach, i.e. solve small parts and

combine
• Approach the problem backwards
• Find related problems with known solutions

Which method(s) did we
use when solving the

pianoproblem?
23

The Travelling Salesperson Problem
(TSP)

Given n cities and distances between them. Find the
shortest round tour, i.e. visit each city exactly once and
return to the starting city.

A B

C D

E

100

2

1
2

2

1 2
2 1

3

24

TSP (continued)

The TSP is a typical example for a ’difficult’ problem.
Difficult means that no one has found an efficient, i.e.
(polynomial), algorithm despite of extensive research.

The theory of NP-complete (’difficult’) problems is an
important research field in algorithms.

All algorithms for solving the TSP more or less enumerate
all tours and pick the best, there are O(n!) tours.
Large problems can only be solved approximatively.

25 www.tsp.gatech.edu

Algorithm Design Principles
• Greedy
• Divide & Conquer
• Dynamic Programming
• Complete search: enumerate all possible solutions

explicitly or implicitly
• Heuristics
• . . .

[Philosophical aspect in algorithms: Are new algorithms
discovered or created? What about patents for
algorithms?]

26

Merge Sort
Idea: Divide an unsorted list into halves, sort each half
recursively. Then combine the two smaller sorted list into
one list again (’merge’).

procedure MergeSort(List){
if LengthOfList ≥ 2
 then divide list into two halves
 MergeSort (RightHalf)
 MergeSort (LeftHalf)
 Merge (RightHalf, LeftHalf) O(n log n)

27

Divide &
Conquer

Datastructures

Goal: Provide convenient ways of accessing data
storage.

Other issues in datastructures:
• abstraction
• static versus dynamic structures
• pointers

Most programming languages provide a number of
basic datastructures such as arrays, lists, etc.

28

Datastructures and Algorithms
Implementing (and analysing) an algorithm requires
datastructures.

Algorithm + suitable ds → fast program
Algorithm + unsuitable ds → slow program

Tight relation of datastructures and algorithms:
Some algorithms are inspired by the existence of special
datastructures OR datastructures are invented to support
solving a specific algorithmic problem.

Development of datastructures and algorithms driven by
efficiency.

29

Datastructures

• arrays
• lists
• stacks
• queues
• trees
• graphs

• sets
• dictionaries
• combined

datastructures
• . . .

30

Stacks
Example: Printing in reverse order, bookeeping in
backtracking procedures (e.g. for TSP), processing
tasks in LIFO (last in first out) manner.
• Possible operations: add or remove a task
• Implementation:

o Pointer top points to the item on the top of the pile
o Function push adds an item to the stack (top-pointer

is adjusted)
o Function pop removes the top item (top-pointer is

adjusted)

31

Implemented as
static or dynamic

arrays

Queues

Example: Queue at apoteket, tasks performed in
FIFO (first in first out) manner.
• Possible operations: remove a task from the front

or add a task at the tail/rear.
• Implementation:

o as a double linked list
o as a static/dynamic array using head- and tail pointer
o Active queues, even small ones, consume a lot of

memory → cyclic queues.

32

Trees

33

root node

leaf

leaf leaf

internal
node subtree

Parents,
children,
siblings

Trees

Most common: Binary search trees
• Fast add and remove into a structure that

sorts itself (balanced search trees).
• Max two children per node
• For each node it holds that all nodes in the left

subtree have value less or equal than, and all
nodes in the right subtree have value greater
than the node’s value.

34

Binary Search revisited
procedure BinSearch(Tree, Value){
if(root pointer = NIL)
 then return ’Search failed’
 else{
 (TestEntry ← value root node)
 if (Value = TestEntry) return ’Search successful’
 if (Value > TestEntry){
 then BinSearch(RightSubtree, Value)
 else BinSearch(LeftSubtree, Value)}
 }
}

35

LEDA: Library of Efficient Data Types
and Algorithms

LEDA program package developed by the
researchers K. Mehlhorn and S. Näher (1988)
Goals: Provide efficient implementations of basic
and advanced datastructures to

o save users from reinventing datastructures possibly
loosing efficiency

o speed up transfer of research into practice

Now commercial product sold by ‘Algorithmic
Solutions GmbH’

36 www.algorithmic-solutions.com

Jeppesen: A Company built
on Algorithms

• Jeppesen, Boeing, Gothenburg
• Software for Airline Scheduling problems (crew pairing,

rostering and fleet assignment)
• One of their oldest products, a crew pairing solver,

contains a ~20-year old algorithm designed by staff
from the Computing Science department at Chalmers.

• The software is used by many major European airlines
and railway companies, e.g. LH, SAS, British Airways,
Spanair, Air France, northwest airlines, iberia, KLM,
Finnair, Deutsche Bahn, SJ . . .

37 www.jeppesen.com

Summary
• Algorithms is an important part of Problem Solving.
• Datastructures are necessary tools for efficient

implementation of algorithms.
• There exist a large number of standard problems with

already known solutions.
• Many problems are difficult to solve (e.g. TSP) ← Theory of

NP-completeness. Some problems are not solvable at all.
• Use algorithm design principles for constructing algorithms!
• Algorithms is both of theoretical AND practical interest.
• Ethical issues in algorithms: does the inventor of an

algorithm or the programmer have any responsibility for
what the algorithm/program is used for?

38

Literature

• J.G.Brookshear, Computer Science: An
overview (chapter 5 and 8)

• Cormen, Leiserson, Rivest, Stein: Introduction
to Algorithms

• Brassard, Bratley: Fundamentals of
Algorithmics

• G. Polya: How to Solve it
• Mehlhorn och Näher: LEDA

39

	Algorithms and Datastructures�TDA143
	What is this Lecture about?
	Why Algorithms?
	What is an Algorithm?
	An Algorithm and its Representation
	An Algorithm and its Representation
	Pseudocode: Sequential Search Algorithm
	Pseudocode: Primitives
	Analysis of Algortihms
	Big-O notation O()
	Running time of SequSearch
	The Binary Search Algorithm
	Running time of BinSearch
	Asymptotic complexity O()
	Algorithm Choice: Does it make any Difference?
	Insertion Sort
	Running time of Insertion Sort
	Algorithms and Problem Solving
	Algorithms and Problem Solving
	Problem Solving: An Example
	Problem Solving: Pianoexample
	Problem Solving: Pianoexample
	Getting a Foot in the Door
	The Travelling Salesperson Problem (TSP)
	TSP (continued)
	Algorithm Design Principles
	Merge Sort
	Datastructures
	Datastructures and Algorithms
	Datastructures
	Stacks
	Queues
	Trees
	Trees
	Binary Search revisited
	LEDA: Library of Efficient Data Types and Algorithms
	Jeppesen: A Company built�on Algorithms
	Summary
	Literature

