
Speed, Innovation and Simplicity
through Software Architecture

Jan Bosch
Professor of Software Engineering
Chalmers University of Technology
Gothenburg, Sweden.
www.janbosch.com

February 2014

Industrial Engineering and Management

Guest lecture

“If you are not moving at the
speed of the marketplace you’re
already dead – you just haven’t

stopped breathing yet”

Jack Welch

When a subject becomes totally obsolete
we make it a required course

Peter F. Drucker

(the man who invented management)

If you think education is expensive,
try ignorance

Derek Bok
(former president of Harvard University)

On Education …

Three Key Take-Aways
• Increasing SPEED trumps ANY other improvement R&D

can provide to the company – the goal is continuous
deployment of new functionality

• Software engineering is at an inflection point – from
“integration-oriented” to “composition-oriented” software
engineering

• Software architecture is key to build delightful products
in the context of software ecosystems

Overview
• Vem är jag? Wie ben ik? Who am I?
• Trends in Software: Need for Speed
• Innovation Experiment Systems
• Software Ecosystems
• Architecture & Scale
• Implications for ICT Professionals
• Conclusion

Software Center @ Chalmers
• Mission: Improve the

software engineering
capability of the Nordic
Software-Intensive Industry
with an order of magnitude

• Theme: Fast, continuous
deployment of customer
value

• Dual success metrics

• Academic excellence

• Tangible industrial impact

Overview
• Vem är jag? Wie ben ik? Who am I?
• Trends in Software: Need for Speed
• Innovation Experiment Systems
• Software Ecosystems
• Architecture & Scale
• Implications for ICT Professionals
• Conclusion

Trend: Products to Services

Innovation Approaches

Customer
driven

innovation

Technology
driven

innovation

Strategy
driven

innovation

This requires continuous experimentation with customersThis requires continuous experimentation with customers

You should wake up every morning
terrified with your sheets drenched in

sweat, but not because you're afraid of
our competitors. Be afraid of our

customers, because those are the folks
who have the money. Our competitors

are never going to send us money.

 - Jeff Bezos

Emerging companies highlight importance
of user contribution and social connectedness

Emerging companies highlight importance
of user contribution and social connectedness

Value Creation ShiftsValue Creation Shifts

Level of User Contribution

Trend: Need for Speed

Need for Speed in R&D – An Example
• Company X: R&D is 10% of revenue, e.g. 100M$

for a 1B$ product
• New product development cycle: 12 months

• Alternative 1: improve efficiency of development
with 10%
• 10 M$ reduction in development cost

• Alternative 2: reduce development cycle with
10%
• 100M$ add to top line revenue (product starts

to sell 1.2 months earlier)
No efficiency improvement will
outperform cycle time reduction

Need for Speed - Principles
Team
•2 pizza’s
•self-selected, directed and managed
•quantitative output metrics

Architecture
•simplicity – 3 API rule
•backward compatibility – no versions!
•focus on compositionality

Release process
•continuous, independent deployment
•all the way to customers – installed base
•measure usage to feed back into development

Overview
• Vem är jag? Wie ben ik? Who am I?
• Trends in Software: Need for Speed
• Innovation Experiment Systems
• Software Ecosystems
• Architecture & Scale
• Implications for ICT Professionals
• Conclusion

What Do These Product Have in Common?

Example: Apple

The Myth The Reality

Inspired
innovation

Create and winnow 10
pixel-perfect prototypes

Inspired design Build a better backstory
(intricate layers of business
design behind the products

Brilliantly
inspired
marketing

Engineer the perfect
customer experience to
create customer experience
and buzz

Reference: http://blogs.hbr.org/cs/2011/08/steve_jobs_and_the_myth_of_eur.html

R&D as an Experiment System

Decisions should be based on DATA, not opinionsDecisions should be based on DATA, not opinions

Learning: the company running the most experiments
against the lowest cost per experiment wins

R&D iteration
(2-4 weeks)

Installed Base
(products @
customers) Three types of functionality

•Customer-requested
•Strategy driven
•Experiments

Usage and other data

Decide on new hypotheses
to test based on data, ideas,

strategy and customer requests

Goal: increase the number of experiments (with customers) with an
order of magnitude to ultimately accelerate organic growth

We have an unprecedented opportunity
to run A/B tests with online users and
innovate more quickly based on actual
user response. Microsoft needs to shift

the culture from planning the exact
features to planning a set of possible

features, and letting customers guide us.

- Ray Ozzie

Stages and Techniques

Pre-
Development

Non-commercial
deployment

Commercial
deployment

Optimization Ethnographic
studies

Independently
deployed extensions

Random selection of
versions (A/B testing)

New
features

Solution jams Feature alpha
In-product surveys

Instrumentation/
collecting metrics

New
Products

Advertising
Mock-ups
BASES testing

Product alpha
Labs website
In-product
advertising

Surveys
Performance metrics

Pre-Development: Concept Testing
• What

• Technique to test a concept before start of development.

• Active Customer: Respondents are exposed to graphical or
written product description. Answer a survey

• Passive customer: Cross-sell, upsell or market a non-
existing product (e.g. AdWords) to measure market interest

• To think about
• Measure the conversion funnel

• Consider A/B testing on your ad & pages

Quickbooks Online
• Cross-sell and upsell “ads” in the online

product

• Measure conversion of those ads

• Decide on development of feature/product
based on data

Pre-Development: Solution Jam
• Goal: Get as early feedback on an idea or concept as

possible
• Length: 1 day
• How:

• Invite staff to jam
• Request “pain statements” beforehand
• Select 10-15 customers based on “pain statements”
• Staff self-organizes into small teams (3-6 typical)
• Teams develop mock-up solutions to selected “pain

statement”
• Customers provide feedback on the mock-ups
• Teams present at end of day

• Customers + PM&PD leaders select most promising
concepts

• Watch out for
• Opinions instead of data

Example: Quickbooks

Top Down: Strategic Areas to Improve

Code
Jam

Solution
Jam

1..n
iteration

Feature
Alpha

Product
Release

~50% acceptance ~50% acceptance

Development: Feature Alpha
• What

• Release last stable release of product with one new
feature (under development) to selected customers

• Variations
• Operate the product on copy of customer data

• Allow user to turn feature on or off

• To think about
• NEVER risk customer data

• Measure everything – test alternative implementations

Example: Quickbooks

Top Down: Strategic Areas to Improve

Code
Jam

Solution
Jam

1..n
iteration

Feature
Alpha

Product
Release

~50% acceptance ~50% acceptance

Development: Labs Site
• What

• Create destination for customers to try out new
potential products, extensions and mock-ups

• Alternatives
• Labs destination embedded in product or at

company level
• Combine with 3rd party developer efforts

• To think about
• Brand impact of immature products
• Energizing the innovation muscle of the company

Intuit Labs

Evolution: A/B Testing
• What

• A/B testing is a method of comparing a baseline
control sample to a variety of single-variable test
samples for improving some metric

• Alternatives
• “Marketing” testing, e.g. colors, buttons and order of

options
• Alternative implementations of a feature

• To think about
• Run multiple experiments simultaneously
• Verify statistical relevance (free online tools exist)

Case: Open Infotainment Labs

Case: Open Infotainment Labs
• Feature development from a nominal lead-time of

1-3 years to 4-12 weeks?

• Working software was continuously validated in
“real” environments
• installed in both a driving simulator and real test cars

• users evaluated the system

• 4th sprint: A/B experiment
• Evaluating two layouts of the start screen

• Implemented as two different launchers in Android

• Mounted in a vehicle

• 7 test drivers in total (3 used A, 4 used B)

A/B Testing Examples
• 37signals tested the headline on its pricing page. It found that “30-Day Free

Trial on All Accounts” generated 30% more sign-ups than the original “Start a

Highrise Account.”

• Dustin found that “You should follow me on Twitter here” worked 173% better

than his control text, “I’m on Twitter.”

• A surprising conclusion from two separate A/B tests: putting human photos

on a website increases conversion rates by as much as double.

• CareLogger increased its conversion rate by 34% simply by changing the

color of the sign-up button from green to red.

• A software product company redesigned their product page to give it a

modern look and added trust building elements (such as seals, guarantees,

etc.). End result: they managed to increase total sales by 20%.

We don’t have better algorithms.
We just have more data.

Peter Norvig
Chief Scientist, Google

Stairway to Heaven

product
management

product
management R&DR&D verification &

validation
verification &

validation customercustomer

Stairway to Heaven

product
management

product
management R&DR&D

verification &
validation

verification &
validation

customercustomer

Stairway to Heaven

product
management

product
management R&DR&D

verification &
validation

verification &
validation

customercustomer

Stairway to Heaven

product
management

product
management

R&DR&D

verification &
validation

verification &
validation

customercustomer

Stairway to Heaven

30% waste
25% waste

20% waste

15% waste

10% waste

Rough estimation of waste and benefits

Financial Impact Potential

Ericsson

• R&D budget July 2011 – June
2012: 4,864 M$

• Software R&D (80%): 3891 M$
• Value of removing 5% waste:

195 M$ (1280 MSEK)

AB Volvo

• Revenue 2011: 310 BSEK
• R&D budget 2011 (est. 5%):

16 BSEK
• Software R&D (15%):

2.4 BSEK
• Value of removing 5% waste:

120 MSEK

Overview
• Vem är jag? Wie ben ik? Who am I?
• Trends in Software: Need for Speed
• Innovation Experiment Systems
• Software Ecosystems
• Architecture & Scale
• Implications for ICT Professionals
• Conclusion

Towards Web 3.0

“My prediction would be that Web 3.0 will ultimately been seen as applications which
are pieced together. There are a number of characteristics: the applications are
relatively small, the data is in the cloud, the applications can run on any device,

PC or mobile phone, the applications are very fast and they're very customizable.
Furthermore, the applications are distributed virally: literally by social networks,
by email. You won't go to the store and purchase them... That's a very different

application model than we've ever seen in computing.”—Eric Schmidt

http://en.wikipedia.org/wiki/Eric_Schmidt

Evolution of Development Approaches

platform

application

traditional

componentized
platform

offering

contemporary

ecosystem
platform

each customer his/her offering

the vision

3rd party asset

prosumer asset

Software Ecosystem?
• Here’s a try: A software ecosystem consists of a

software platform, a set of internal and external
developers and a community of domain experts
in service to a community of users that compose
relevant solution elements to satisfy their needs.

• Some more detail:
• Software platform: A hierarchical set of shared

software components providing functionality that is
required and common for the developers constructing
solutions on top of the platform.

• Evolution: Over time, the functionality in the ecosystem
commoditizes and flows from unique solutions to the
platform.

• Developers: Although internal and external developers
use the platform differently, the platform often allows
developers to build on top of each other’s results.

• Composition: Users are able to compose their own
solutions by selecting various elements into a
configuration that suits their needs optimally.

Why Software Ecosystems?

• Increase value of the core offering to existing
users

• Increase attractiveness for new users
• Increase “stickiness” of the application platform,

i.e. it is harder to change the application platform
• Accelerate innovation through open innovation in

the ecosystem
• Collaborate with partners in the ecosystems to

share cost of innovation
• Platformize functionality developed by partners in

the ecosystem (once success has been proven)
• Decrease TCO for commoditizing functionality by

sharing the maintenance with ecosystem
partners

44

Taxonomy of Software Ecosystems

45

Overview
• Vem är jag? Wie ben ik? Who am I?
• Trends in Software: Need for Speed
• Innovation Experiment Systems
• Software Ecosystems
• Architecture & Scale
• Implications for ICT Professionals
• Conclusion

Role of Software Architecture

• Simplify, Simplify, Simplify

• Decoupling
• Components
• Teams
• Organizations

• Lean and agile at scale

• End to end quality requirements

• Fight design erosion

Simplify, Simplify, Simplify
• Each architectural design

decision adds design rules and
constraints that cause
complexity

• Insist on simplicity
(3 APIs rule)

• How
• Push down in the stack
• Hide
• Automate
• Redesign

Decouple Teams and Organizations

• Interconnected teams
and organizations
asymptotically reduce
productivity to zero

• Decouple teams and
make sure no continuous
interaction is needed

• How
• Continuous deployment
• No versions
• No concurrent

development

Decoupling: No Versions!

Shared Component,
e.g. Engine, etc.
V1.01

Provided interface
(SOA style, maximal
decoupling)

required interface

Configuration
 interface

Syntactically and semantically equivalent
until a deliberate sunset is plannedNo offering or shared component may

depend on the implementation

Automated test suites
for each interface

Shared Component,
e.g. Engine, etc.
V1.02

Frequent (4 week) releases of
production quality component

Respect Independent Deployment:
still usable in context where this interface can not be bound

Decouple Components and Teams
Sequential feature development (90%)

Concurrent development, independent deployment enforced (8%)

Exploratory development (2%)

platform

engine

offering

iteration i iteration i+1 iteration i+2

Fx

Fy

Fz

1

1

2

Fy

2

Fx

Fz

Independent deployment!!!

3

Fx

Fy

Fz

3

stubs

Strive For Continuous Deployment
• Software engineer checks in code => system

compiles, links, tests and deploys the new code

• The automated QA infrastructure, NOT the
engineer, is responsible for making sure the
system does not go down

• If that’s too much, aim for Independent
Deployment

• If that’s too much, aim for Release Trains

Lean and Agile at Scale
• Achieving lean & agile in large, legacy

systems with large R&D organization

considered an oxymoron

• Google, Amazon and Intuit are

examples that it can be done

• How
• Small teams
• Short cycles
• Direct customer connection
• Clear success metrics

End to End Quality Requirements

Evolve Architecture; Fight Erosion

Overview
• Vem är jag? Wie ben ik? Who am I?
• Trends in Software: Need for Speed
• Innovation Experiment Systems
• Software Ecosystems
• Architecture & Scale
• Implications for ICT Professionals
• Conclusion

Implications for ICT Engineers

TI Multi-disciplinary
Learn continuously
Self-starting
Love customers
Understand business
Drive to metrics
Build networks
Move fast
Entrepreneurial

Shadow Beliefs
• Humans are better than machines in identifying known and new

reliability issues – we are building business critical systems, after all!

My experience: data always trumps opinion; test and validation systems
pre-deployment and extensive data-collection post-deployment inform
decision making

• Software-intensive systems (large, complex, tough requirements) are
different and approaches from other domains do not apply

My experience: system failure is devastating in several industries and
avoided in Internet systems while adopting agile and continuous
deployment

• We should avoid or delay adoption of new, more efficient engineering
approaches

My experience: getting first to market with new functionality that closely
aligns to customer needs is a significant competitive advantage that
drives growth and results in market leadership

Guidelines
1. Modularize the system in critical and (less or) not critical parts

2. Adopt agile and continuous deployment approaches for the not (so)
critical part first

3. Deeply engage with customers to develop optimal solutions to their
real pain points

4. Invest in testing infrastructure that continuously and thoroughly tests
systems with no human involvement

5. Instrument systems for pre- and post-deployment data collection,
concerning at least reliability and usage metrics

6. Architect your systems for maximum decoupling and modularization
between different components to allow for independent deployment

7. Replace commoditizing functionality with Open Source or COTS
components; focus R&D on truly differentiating parts

Overview
• Vem är jag? Wie ben ik? Who am I?
• Trends in Software: Need for Speed
• Innovation Experiment Systems
• Software Ecosystems
• Architecture & Scale
• Implications for ICT Professionals
• Conclusion

Speed
Increasing SPEED trumps ANY other improvement R&D
can provide to the company – the goal is continuous
deployment of new functionality

•If you’re not a front-line engineer, there is only ONE
measure that justifies your existence: how have you helped
teams move faster?
•Don’t optimize efficiency, optimize speed

Inflection Point
• Software engineering is at an inflection point – from

“integration-oriented” to “composition-oriented” software
engineering

• Design for automated compositionality, not manual
integration

• Minimize dependencies

• Focus on small teams of engineers, give them direction
and get out of their way

Software Architecture 2.0
• Software architecture is is central in allowing for

independent, continuous deployment to customers

• Architecture happens (in parallel)

• A la Thoreau: Simplify, Simplify, Simplify

• Decouple components, decouple teams and decouple
organizations

• Lean and agile at scale

Not My Job?!

Strong LEADERSHIP needed from YOUStrong LEADERSHIP needed from YOU

Q&A

Thank you!

