Speed, Innovation and Simplicity
through Software Architecture

Jan Bosch

Professor of Software Engineering
Chalmers University of Technology
Gothenburg, Sweden.
www.janbosch.com

February 2014
Industrial Engineering and Management
Guest lecture

On Education ...

Whéryaustibidcedaecatioesisodxibeobs@lete
we makdry eyneqaiee course

Pet&erelOoBaiker
(erenenRrasigent e danvaisddaiversisy)

A€ - wa¥s "
Increasing SPEED trumps ANY other improvement R&D
can provide to the company — the goal is continuous

deployment of new functionality

Software engineering is at an inflection point — from
“integration-oriented” to “composition-oriented” software
engineering b

Software architecture is key to build delightful products
In the context of software ecosystems

g

Overview
* Vem arjag? Wie ben ik? Whoam iz

* Trends in Software: Need for Speed
* Innovation Experiment Systems

* Software Ecosystems

* Architecture & Scale

* Implications for ICT Professionals

* Conclusion

Software Center @ Chalmers

* Mission: Improve the ERICSSON g
software engineering \ -
capability of the Nordic @ —X
Software-Intensive Industry E

with an order of magnitude

* Theme: Fast, continuous
deployment of customer
value

 Dual success metrics

* Academic excellence GRUNDFOS »\
* Tangible industrial impact

AXIS a

COMMUNICATIONS

=\

MALME UNMIVERSITY

Overview

* Vem ar jag? Wie ben ik? Who am |7
= Trends in Software: Need for Speed
* Innovation Experiment Systems
* Software Ecosystems
* Architecture & Scale
* Implications for ICT Professionals
* Conclusion

1CEeS

i AR LR RS LIRS
PIETED FATITS T IR S LR
LR R TR R AT
A AR L ER RLRRARLVERARATIN

Products to Serv

Trend

Innovation Approaches

L /
O. “‘
-

Va

You should wake up every morning
terrified with your sheets drenched in
sweat, but not because you're afraid of
our competitors. Be afraid of our
customers, because those are the folks
who have the money. Our competitors
are never going to send us money.

- Jeff 'hBezos

Trend: Need for Speed

Emerging companies highlight importance
of user contribution and social connectedness

| QHICken' facebook.
Founded 1984 1995 2004
1M users ~6 years 30 months 10 months
50M users N/A ~80 months ~44 months

eed for Speed in R&D
: Company X: R&D is 10"/‘

' No efficiency improvement will ;
outperform cycle time reduction S

T— T L eem—

Need for Speed - Principles

Team

2 pizza’'s

*self-selected, directed and managed
*quantitative output metrics

Architecture

*simplicity — 3 APl rule

*backward compatibility — no versions!
*focus on compositionality

Release process

scontinuous, independent deployment

*all the way to customers — installed base
*measure usage to feed back into development

Overview

* Vem ar jag? Wie ben ik? Who am |7
* Trends in Software: Need for Speed
* Innovation Experiment Systems
* Software Ecosystems
* Architecture & Scale
* Implications for ICT Professionals
* Conclusion

What Do These Product Have in Common?

NOKIA

Imonitor business performance
‘easily manage
vendor & empl

to your business type

Example: Apple

The Myth The Reality

Inspired Create and winnow 10
Innovation pixel-perfect prototypes

Inspired design Build a better backstory
(intricate layers of business
design behind the products

Brilliantly Engineer the perfect

iInspired customer experience to

marketing create customer experience
and buzz

Reference: http://blogs.hbr.org/cs/2011/08/steve_jobs_and_the myth_of eur.html

R&D as an Experiment System

Learning: the company running the most experiments

against the lowest cost per experiment wins

Goal: increase the number of experiments (with customers) with an
order of magnitude to ultimately accelerate organic growth

Usage and other data

Installed Base
(products @

customers)

R&D iteration

Decide on new hypotheses (2-4 weeks) Rigee types of functionality

to test based on data, ideas, *Customer-requested
strategy and customer requests *Strategy driven
*Experiments

Decisions should be based on DATA, not opinions

We have an unprecedented opportunity
to run A/B tests with online users and
based on actual
user response. Microsoft needs to
from planning the exact
features to planning a set of possible
features, and

- Ray Ozzie

Stages and Techniques

Pre- Non-commercial Commercial
Development deployment deployment

Pre-Development: Concept Testing

* What

* Technique to test a concept before start of development.

* Active Customer: Respondents are exposed to graphical or
written product description. Answer a survey

* Passive customer: Cross-sell, upsell or market a non-
existing product (e.g. AdWords) to measure market interest

* To think about

* Measure the conversion funnel
* Consider A/B testing on your ad & pages

Quickbooks Online

* Cross-sell and upsell “ads” in the online
product

* Measure conversion of those ads

* Decide on development of feature/product
based on data

Pre-Development: Solution Jam

Goal: Get as early feedback on an idea or concept as
possible

Length: 1 day

How:

* Invite staff to jam

* Request “pain statements” beforehand

* Select 10-15 customers based on “pain statements”
* Staff self-organizes into small teams (3-6 typical)

 Teams develop mock-up solutions to selected “pain
statement”

* Customers provide feedback on the mock-ups

 Teams present at end of day

* Customers + PM&PD leaders select most promising
concepts

Watch out for

Example: Quickbooks

Top Down: Strategic Areas to Improve

~50% acceptance ~50% acceptance

v

Solution V' Code > 1..n > Feature > Product

Jam Jam iteration Alpha Release

Development: Feature Alpha

* What

* Release last stable release of product with one new
feature (under development) to selected customers

* Variations
* Operate the product on copy of customer data
* Allow user to turn feature on or off

* To think about
* NEVER risk customer data
* Measure everything — test alternative implementations

Example: Quickbooks

~50% acceptance ~50% acceptance

Development: Labs Site
* What

* Create destination for customers to try out new
potential products, extensions and mock-ups

* Alternatives

* Labs destination embedded in product or at
company level

* Combine with 3¢ party developer efforts

* To think about

* Brand impact of immature products
* Energizing the innovation muscle of the company

Intuit Labs

INTUIT

Innovatior

Evolution: A/B Testing

* What

* A/B testing is a method of comparing a baseline
control sample to a variety of single-variable test
samples for improving some metric

 Alternatives

* “Marketing” testing, e.g. colors, buttons and order of
options

* Alternative implementations of a feature

* To think about

* Run multiple experiments simultaneously
* Verify statistical relevance (free online tools exist)

Case: Open Infotainment Labs

Case: Open Infotainment Labs

* Feature development from a nominal lead-time of
1-3 years to 4-12 weeks?

* Working software was continuously validated in
“real” environments
* installed in both a driving simulator and real test cars
* users evaluated the system

* 4th sprint: A/B experiment

* Evaluating two layouts of the start screen
Implemented as two different launchers in Android

* Mounted in a vehicle
* 7 testdrivers in total (3 used A, 4 used B)

A/B Testing Examples

* 37signals tested the headline on its pricing page. It found that “30-Day Free
Trial on All Accounts” generated 30% more sign-ups than the original “Start a
Highrise Account.”

* Dustin found that “You should follow me on Twitter here” worked 173% better
than his control text, “I'm on Twitter.”

* A surprising conclusion from two separate A/B tests: putting human photos
on a website increases conversion rates by as much as double.

* Carelogger increased its conversion rate by 34% simply by changing the
color of the sign-up button from green to red.

* A software product company redesigned their product page to give it a
modern look and added trust building elements (such as seals, guarantees,
etc.). End result: they managed to increase total sales by 20%.

.f

4

We don'’t havé better algorithms.
We just have more data.

Peter Norvig
Chief Scientist, Google

Stairway to Heaven

R&D as an

Continuous Innovatlon
Continuous Deployment
Integration
Traditional Organlzatlon All
Development Agile

Stairway to Heaven

R&D as an

Continuous Innovatlon
Continuous Deployment
Integration
Traditional Organlzatlon All
Development Agile

Stairway to Heaven

R&D as an

Continuous Innovatlon
Continuous Deployment
Integration
Traditional Organlzatlon All
Development Agile

'@

Stairway to Heaven

‘ ‘ R&D as an

y A Continuous Innovation
Continuous Deployment System
R&D Integration
Traditional Organization All
Development Agile

Stairway to Heaven

R&D as an
Innovation
Continuous System
Deployment

y

Continuous
Integration

rganization
All Agile 10% waste

15% waste

Traditional
Development

20% waste

25% waste
30% waste

Rough estimation of waste and benefits

Financial Impact Potential

Ericsson

R&D budget July 2011 — June
2012: 4,864 M$

Software R&D (80%): 3891 M$

Value of removing 5% waste:
195 M$ (1280 MSEK)

AB Volvo

Revenue 2011: 310 BSEK

R&D budget 2011 (est. 5%):
16 BSEK

Software R&D (15%):
2.4 BSEK

Value of removing 5% waste:
120 MSEK

Overview

* Vem ar jag? Wie ben ik? Who am |7
* Trends in Software: Need for Speed
* Innovation Experiment Systems
“ Software Ecosystems
* Architecture & Scale
* Implications for ICT Professionals
* Conclusion

Towards Web 3.0

Atomisation. Globalisation and networking

technologies will enable firms to use the world as
their supply base for talent and materials. Processes,
firms, customers and supply chains will fragment as
companies expand overseas, as work flows to where it

Economist Intelligence Unit

Foresight

is best done and as information digitises. As a result,
effective collaboration will become more important.
The boundaries between different functions,
organisations and even industries will blur. Data
formats and technologies will standardise.

Economic, industry and
corporate trends

“My prediction would be that Web 3.0 will ultimately been seen as applications which

are pieced together. There are a number of characteristics: the applications are
relatively small, the data is in the cloud, the applications can run on any device,
PC or mobile phone, the applications are very fast and they're very customizable.
Furthermore, the applications are distributed virally: literally by social networks,
by email. You won't go to the store and purchase them... That's a very different

144
application model than we've ever seen in computing. —Eric Schmidt

http://en.wikipedia.org/wiki/Eric_Schmidt

Evolution of Development Approaches

\

platform

%

traditional

contemporary

the vision

Software Ecosystem?

* Here's a tr?/: A software ecosystem consists of a
software platform, a set of internal and external
developers and a community of domain experts
In service to a community of users that compose
relevant solution elements to satisfy their needs.

* Some more detail:

 Software platform: A hierarchical set of shared
software components providing functionality that is
required and common for the developers constructing
solutions on top of the platform.

* Evolution: Over time, the functionality in the ecosystem
commoditizes and flows from unique solutions to the
platform.

* Developers: Although internal and external developers
use the platform differently, the platform often allows
developers to build on top of each other’s results.

« Composition: Users are able to compose their own
solutions by selecting various elements into a
configuration that suits their needs optimally.

Why Software Ecosystems?

* Increase value of the core offering to existing
users

* |ncrease attractiveness for new users

* Increase “stickiness” of the application platform,
l.e. it Is harder to change the application platform

* Accelerate innovation through open innovation in
the ecosystem

* Collaborate with partners in the ecosystems to
share cost of innovation

* Platformize functionality developed by partners in
the ecosystem (once success has been proven)

* Decrease TCO for commoditizing functionality by
sharing the maintenance with ecosystem

Taxonomy of Software Ecosystems

Yahoo! Pipes,

¥ MS Excel, Microsoft PopFly,

end o Mathematica, Google's mashup none so far
programming} vHpL editor
. ’ SalesForce, eBay, f
application | MS Office i W roneso et
. Google AppEngine, _
Operatl ng MS andDWS, Yahoo deve|op er, Nnkla‘SB‘U, Pa[m,

system Linux, Apple OS X | Coghead, Android, iPhone

Bungee Labs

desktop

web

mobile

Overview

* Vem ar jag? Wie ben ik? Who am |7
* Trends in Software: Need for Speed
* Innovation Experiment Systems
* Software Ecosystems
* Architecture & Scale
* Implications for ICT Professionals
* Conclusion

Role of Software Architecture

* Simplify, Simplify, Simplify ey b
hajt ' LS
» Decoupling ‘;d '* _
* Components : T Reracliia

* Teams
* Organizations

* Lean and agile at scale

* End to end quality requirements

* Fight design erosion

Simplify, Simplify, Simplify

* Each architectural design
decision adds design rules and
constraints that cause
complexity

* Insist on simplicity
(3 APIs rule)

* How
* Push down in the stack
* Hide
* Automate
* Redesign

Decouple Teams and Organizations

* Interconnected teams
and organizations
asymptotically reduce
productivity to zero

* Decouple teams and
make sure no continuous
interaction is needed

* How
* Continuous deployment
* No versions

* No concurrent
development

Decoupling: No Versions!

] Syntactically and semantically equivalent
No offering or shared component may until a deliberate sunset is planned
depend on the implementation

Provided interface
Configuration (SOA style, maximal

interface decoupling) Frequent (4 week) releases of
production quality component

.

required interface

A 4

Automated test suites
for each interface

Respect Independent Deployment:
still usable in context where this interface can not be bound

Decouple Components and Teams

a Sequential feature development (90%)
9 Concurrent development, independent deployment enforced (8%)

e Exploratory development (2%)

Independent deployment!!!

offering

platform

iteradaon i , iteration i+1 , iteraticr (+2

Strive For Continuous Deployment

Software engineer checks in code => system
compiles, links, tests and deploys the new code

The automated QA infrastructure, NOT the
engineer, is responsible for making sure the
system does not go down

If that's too much, aim for Independent
Deployment

If that’s too much, aim for Release Trains

Lean and Agile at Scale

* Achieving lean & agile in large, legacy
systems with large R&D organization
considered an oxymoron

* Google, Amazon and Intuit are
examples that it can be done

* How
* Small teams
* Short cycles
* Direct customer connection
* Clear success metrics

End to End Quality Requirements

Functionality
Usability
Performance

Reliability

Software Quality - Efficiency

Scalability
Extensibility
Security

Maintainability

Evolve Architecture; Fight Erosion

Overview

* Vem ar jag? Wie ben ik? Who am |7
* Trends in Software: Need for Speed
* Innovation Experiment Systems

* Software Ecosystems

* Architecture & Scale

« Conclusion

Implications for ICT Engineers

m—

Multi-disciplinary
Learn continuously
Self-starting

Love customers
Understand business
Drive to metrics
Build networks

Move fast
Entrepreneurial

Shadow Beliefs

* Humans are better than machines in identifying known and new
reliability issues — we are building business critical systems, after all!

My experience: data always trumps opinion; test and validation systems

pre-deployment and extensive data-collection post-deployment inform
decision making

* Software-intensive systems (large, complex, tough requirements) are
different and approaches from other domains do not apply

My experience: system failure is devastating in several industries and
avoided in Internet systems while adopting agile and continuous

* We should avoid or delay adoption of new, more efficient engineering

My experience: getting first to market with new functionality that closely
aligns to customer needs is a significant competitive advantage that

Guidelines

1. Modularize the system in critical and (less or) not critical parts

2. Adopt agile and continuous deployment approaches for the not (so)
critical part first

3. Deeply engage with customers to develop optimal solutions to their
real pain points

4. Invest in testing infrastructure that continuously and thoroughly tests
systems with no human involvement

5. Instrument systems for pre- and post-deployment data collection,
concerning at least reliability and usage metrics

6. Architect your systems for maximum decoupling and modularization
between different components to allow for independent deployment

/. Replace commoditizing functionality with Open Source or COTS
components; focus R&D on truly differentiating parts

Overview

* Vem ar jag? Wie ben ik? Who am |7
* Trends in Software: Need for Speed
* Innovation Experiment Systems

* Software Ecosystems

* Architecture & Scale

* Implications for ICT Professionals

S N RS . D NSNS

‘-
Q Speed

Increasing SPEED trumps ANY other improvement R&D
can provide to the company — the goal is continuous
deployment of new functionality

*If you're not a front-line engineer, there is only ONE
measure that justifies your existence: how have you helped)
teams move faster?

*Don’t optimize efficiency, optimize speed

B
.

Thae
Software engineering is at an inflection point — from
“integration-oriented” to “composition-oriented” software
engineering

Design for automated compositionality, not manual
Integration

Minimize dependencies

Focus on small teams of engineers, give them direction
and get out of their way

o

Software Architecture 2.0

* Software architecture IS is central in allowing for
Independent, continuous deployment to customers

* Architecture happens (in parallel)

* Ala Thoreau: Simplify, Simplify, Simplify e |

* Decouple components, decouple teams and decouple
organizations

Lean and agile at scale

Not My Job?!

N ™

Thank you!

Q&A

