
1

Parallel & Distributed

Real-Time Systems

Lecture #8

Risat Pathan

Department of Computer Science and Engineering

Chalmers University of Technology

2

Multiprocessor scheduling

How are tasks assigned to processors?

• Static assignment

– The processor(s) used for executing a task are determined

before system is put in mission (“off-line”)

– Approaches: partitioned scheduling, guided search,

non-guided search, ...

• Dynamic assignment

– The processor(s) used for executing a task are determined

during system operation “on-line”

– Approach: global scheduling

3

Multiprocessor scheduling

How are tasks allowed to migrate?

• Partitioned scheduling (no migration!)

– Each instance of a task must execute on the same processor

– Equivalent to multiple uniprocessor systems!

• Guided search & non-guided techniques

– Depending on migration constraints, a task may or may not

execute on more than one processor

• Global scheduling (full migration!)

– A task is allowed to execute on an arbitrary processor

(sometimes even after being preempted)

4

Multiprocessor scheduling

A fundamental limit: (Andersson, Baruah & Jonsson, 2001)

� One (older) approach to circumvent this limit is to use p-fair
(priorities + time quanta) scheduling and dynamic task priorities.

� Another (newer) approach to circumvent this limit is to split a
certain number of tasks into two or more parts, and then run
each part on a separate processor. The remaining tasks use
partitioned scheduling.

The utilization guarantee bound for multiprocessor
scheduling (strictly partitioned or strictly global)
using static task priorities cannot be higher than

50% of the processing capacity.

5

Global scheduling

General characteristics:

• All ready tasks are kept in a common (global) queue

• When selected for execution, a task can be dispatched to
an arbitrary processor, even after being preempted

• Task execution is assumed to be ”greedy”:
– If higher-priority tasks occupy all processors, a lower-priority

task cannot grab a processor until the execution of a higher-
priority task is complete.

6

Global scheduling

Advantages:

• Supported by most multiprocessor operating systems
– Windows 7, Mac OS X, Linux, ...

• Effective utilization of processing resources
– Unused processor time can easily be reclaimed, for example

when a task does not execute its full WCET.

Disadvantages:

� Weak theoretical framework
– Few results from the uniprocessor case can be used

� Suffers from several scheduling anomalies
– Sensitive to period adjustments

7

Global scheduling

Complexity of schedulability analysis for global
scheduling: (Leung & Whitehead, 1982)

The problem of deciding whether a task set (synchronous or
asynchronous) is schedulable on m processors with respect

to global scheduling is NP-complete in the strong sense.

Consequence:

There can only exist a pseudo-polynomial time algorithm for

(i) finding an optimal static priority assignment, or

(ii) feasibility testing

But not both at the same time!

8

Global scheduling

The ”root of all evil” in global scheduling: (Liu, 1969)

“Few of the results obtained for a single processor
generalize directly to the multiple processor case; bringing

in additional processors adds a new dimension to the
scheduling problem. The simple fact that a task can use

only one processor even when several processors are

free at the same time adds a surprising amount of difficulty
to the scheduling of multiple processors.”

All schedulers that fulfill the ‘no dynamic task parallelism’
constraint suffers from this. (Even p-fair scheduling!)

9

Weak theoretical framework

Underlying causes:

• Dhall’s effect:

– With RM, DM and EDF, some low-utilization task sets can be

unschedulable regardless of how many processors are used.

• Dependence on relative priority ordering:

– Changing the relative priority ordering among higher-priority

tasks may affect schedulability for a lower-priority task.

• Hard-to-find critical instant:

– A critical instant does not always occur when a task arrives at

the same time as all its higher-priority tasks.

10

(this page is intentionally blank)

11

Weak theoretical framework

Dhall’s effect: (Dhall & Liu, 1978)

 τ 4

 τ1 τ1

 τ 2 τ 2

 τ3 τ3

1 ε+2ε 1

 µ1

 µ2

 µ3

0

τ

4
misses its deadline

τ

1
= C

1
= 2ε ,T

1
= 1{ }

τ

2
= C

2
= 2ε ,T

2
= 1{ }

τ

3
= C

3
= 2ε ,T

3
= 1{ }

τ

4
= C

4
= 1,T

4
= 1+ ε{ }RM scheduling

12

Weak theoretical framework

Dhall’s effect:

� Applies for (greedy) RM, DM and EDF scheduling

� Least utilization of unschedulable task sets can be arbitrarily
close to 1 no matter how many processors are used.

2 1
1

1 1
globalU m

ε
ε

= + →
+

0ε →when

Conclusion in year 2000: new priority-assignment policies for
multiprocessors have to be developed!

13

Weak theoretical framework

Impact of relative priority ordering:

 µ1

 µ2

0 4 8 12 16

RM scheduling
(priority order follows task index)

τ
4

= C
1

= 2,T
1

= 4{ }

τ

2
= C

2
= 1,T

2
= 3{ }

τ

3
= C

3
= 2,T

3
= 3{ }

τ

1
= C

1
= 1,T

1
= 3{ }

 τ1

 τ 2

 τ 4

 τ3

τ3,1

τ3,2
τ3,3

τ3,4
τ1,1

τ 2,1

τ1,2

τ 2,2

τ1,3

τ 2,3

τ1,4

τ 2,4

τ 4,1
τ 4,2

τ 4,3
τ 4,3

14

Weak theoretical framework

Impact of relative priority ordering:

 µ1

 µ2

0 4 8 12 16

 τ1

 τ 2

 τ 4

 τ3

τ1,1

τ3,1

τ1,2

τ3,2

τ1,3

τ3,3

τ1,4

τ 3,4

τ 2,1

τ 2,2
τ 2,3

τ 2,4

τ 4,3

τ 4,3
τ 4,1

τ 4,2

RM scheduling
(priorities of and swapped)

τ

2
τ

3

τ

4
= C

1
= 2,T

1
= 4{ }

τ

2
= C

2
= 1,T

2
= 3{ }

τ

3
= C

3
= 2,T

3
= 3{ }

τ

1
= C

1
= 1,T

1
= 3{ }

 first and second instances of τ

4
miss their deadlines

15

Weak theoretical framework

Impact of relative priority ordering: (Andersson & Jonsson, 2000)

� The response time of a task depends on the relative
priority ordering of the higher-priority tasks.

� This property does not exist for a uniprocessor system.

� This means that the OPA algorithm, which can be used on
a uniprocessor for finding an optimal priority assignment,
may not have that capability on a multiprocessor system.

Conclusion in year 2000: new methods for constructing optimal
priority-assignment policies for multiprocessors may have to
be developed!

16

Weak theoretical framework

Hard-to-find critical instant:

 µ1

 µ2

0 4 8 12 16

 τ1

 τ 2

 τ3

response time of τ

3
is maximized for second instance

τ 2,1

τ 2,2
τ 2,3

τ 2,4
τ 2,5

τ1,1

τ1,2
τ1,3

τ1,7
τ1,8

τ1,4
τ1,5

τ1,6
τ3,1

τ3,1

τ3,2
τ 3,3

τ3,4

τ3,4

τ3,2
τ 3,3

τ

1
= C

1
= 1,T

1
= 2{ }

τ

2
= C

2
= 2,T

2
= 3{ }

τ

3
= C

3
= 2,T

3
= 4{ }

RM scheduling

17

Weak theoretical framework

Hard-to-find critical instant: (Andersson & Jonsson, 2000)

� A critical instant does not always occur when a task
arrives at the same time as all its higher-priority tasks.

� Finding the critical instant is a very (NP-?) hard problem

� Note: recall that the existence of a critical instant is a
fundamental assumption in many efficient uniprocessor
feasibility tests.

Conclusion in year 2000: new methods for constructing efficient
feasibility tests for multiprocessors have to be developed!

18

Weak theoretical framework

Underlying causes:

• Dhall’s effect:

– With RM, DM and EDF, some low-utilization task sets can be

unschedulable regardless of how many processors are used.

• Dependence on relative priority ordering:

– Changing the relative priority ordering among higher-priority

tasks may affect schedulability for a lower-priority task.

• Hard-to-find critical instant:

– A critical instant does not always occur when a task arrives at

the same time as all its higher-priority tasks.

Conclusions in year 2000: new methods for priority assignments
and schedulability tests for multiprocessors were needed!

19

Weak theoretical framework

Dhall’s effect: (Dhall & Liu, 1978)

 τ 4

τ1

τ1

τ 2

τ 2

τ3

τ3

1 ε+2ε 1

 µ1

 µ2

 µ3

0

τ

4
misses its deadline

τ

1
= C

1
= 2ε ,T

1
= 1{ }

τ

2
= C

2
= 2ε ,T

2
= 1{ }

τ

3
= C

3
= 2ε ,T

3
= 1{ }

τ

4
= C

4
= 1,T

4
= 1+ ε{ }RM scheduling

20

New priority-assignment scheme

How to avoid Dhall’s effect:

Insight #1: RM, DM & EDF only account for task deadlines!

Actual computation demands are not accounted for.

Insight #2: Dhall’s effect can easily be avoided by letting tasks

with high utilization receive higher priority:

 τ 2
τ 2

τ1
τ1

τ3

τ3

1 1 ε+2ε

 µ1

 µ2

 µ3

0

 τ 4 τ 4

21

New priority-assignment scheme

RM-US{m/(3m-2)}

• RM-US{m/(3m-2)} assigns (static) priorities to tasks
according to the following rule:

If then has the highest priority
(ties broken arbitrarily)

/(3 2)iU m m> − iτ

If then has RM priority/(3 2)iU m m≤ − iτ

� Clearly, tasks with higher utilization, ,
get higher priority.

/i i iU C T=

Scientific breakthrough: (Andersson, Baruah & Jonsson, 2001)

22

New feasibility test

Guarantee bound analysis for RM-US{m/(3m-2)}:

• A sufficient condition for RM-US{m/(3m-2)} scheduling on
m identical processors is

2

1 3 2

n
i

i i

C m
U

T m=

= ≤
−∑

� Question: does RM-US{m/(3m-2)} avoid Dhall’s effect?

Scientific breakthrough:

23

New feasibility test

Guarantee bound analysis for RM-US{m/(3m-2)}:

• We observe that, regardless of the number of processors,
the task set will always meet its deadlines as long as no
more than one third of the processing capacity is used:

U

RM −US m/(3m−2){ } = lim
m→∞

m
2

3m − 2
=

m

3

� RM-US{m/(3m-2)} thus avoids Dhall’s effect since we can
always add more processors if deadlines were missed.

� Note that this remedy was not possible with “pure” RM.

Scientific breakthrough:

24

New feasibility test

Response-time analysis for multiprocessors:

• Uses the same principle as the uniprocessor case, where
the response time for a task consists of:

The task’s uninterrupted execution time (WCET)

Interference from higher-priority tasks

iC

iτ

iI

iii ICR +=

Scientific breakthrough: (Andersson & Jonsson, 2000)

25

New feasibility test

Response-time analysis for multiprocessors:

• The worst-case interference term is

()

1 i
i j j

j hp i j

R
I C C

m T∀ ∈

  
= ⋅ +      

∑

where is the set of tasks with higher priority than .iτ)(ihp

Scientific breakthrough:

Note: The extra execution-time term introduced in this
analysis is nowadays referred to as “carry-in” work.

26

New feasibility test

Response-time analysis for multiprocessors:

• As before, an iterative approach can be used for finding
the worst-case response time:

ii DRi ≤∀ :
� We now have a sufficient condition

for static-priority scheduling on
multiprocessors:

1

()

1
n

n i
i i j j

j hp i j

R
R C C C

m T

+

∀ ∈

  
= + ⋅ +      

∑

Scientific breakthrough:

27

New optimality procedure

Conditions for OPA compatibility:

Scientific breakthrough: (Davis & Burns, 2009)

Condition 1: The schedulability of a task � may, according to test S, depend
on any independent properties of tasks with priorities higher than �, but
not on any properties of those tasks that depend on their relative priority
ordering.

Condition 2: The schedulability of a task � may, according to test S, depend
on any independent properties of tasks with priorities lower than �, but
not on any properties of those tasks that depend on their relative priority
ordering.

Condition 3: When the priorities of any two tasks of adjacent priority are
swapped, the task being assigned the higher priority cannot become
unschedulable according to test S, if it was previously schedulable at
the lower priority.

28

New optimality procedure

Conditions for OPA compatibility:

Scientific breakthrough:

� Task properties are referred to as independent if they have no
dependency on the priority assigned to the task.
(e.g. WCET, period, deadline)

� Task properties are referred to as dependent if they have a
dependency on the priority assigned to the task.
(e.g. worst-case response time)

� Feasibility tests which satisfy these conditions can be used
together with the OPA algorithm to derive an optimal priority
assignment on a multiprocessor system.

� The multiprocessor response-time analysis shown earlier
satisfies these conditions.

29

Scheduling anomalies

State-of-the-art :

• Uniprocessor systems:
– Anomalies only found for non-preemptive scheduling (Mok, 2000)

• Multiprocessor systems:
– Richard’s anomalies for non-preemptive scheduling

– Execution-time-based anomalies for preemptive scheduling

– Period-based anomalies for preemptive scheduling

Scheduling anomaly: A seemingly positive change in

the system (reducing load or adding resources) causes

a non-intuitive decrease in performance.

30

Scheduling anomalies

Richard’s anomalies: (Graham, 1969)

Assumptions:

– Non-preemptive scheduling

– Precedence constraints

– Restricted migration (individual task instances cannot migrate)

– Fixed execution times

Task completion times may increase as a result of:

– Changing the task priorities

– Increasing the number of processors

– Reducing task execution times

– Weakening the precedence constraints

31

Scheduling anomalies

Execution-time-based anomalies: (Ha & Liu, 1994)

Assumptions:

– Preemptive scheduling

– Independent tasks

– Restricted migration (individual task instances cannot migrate)

– Fixed execution times

Task completion times may increase as a result of:

– Reducing task execution times

32

Scheduling anomalies

Period-based anomalies: (Andersson & Jonsson, 2000)

Assumptions:

– Preemptive scheduling

– Independent tasks

– Full migration

– Fixed execution times

A task’s completion time may increase as a result of:
– Increasing the period of a higher-priority task

– Increasing the period of the task itself

Note: increasing the periods is commonly used
to reduce the load in feedback-control systems!

33

Global scheduling

State-of-the-art in global scheduling:

• Static priorities:
– The SM-US{2/(3+√5)} priority-assignment policy has a guarantee

bound of 38.2%. (Andersson, 2008)

• Dynamic priorities:
– The EDF-US{m/(2m-1)} priority-assignment policy has a

guarantee bound of 50%. (Srinivasan & Baruah, 2002)

• Task splitting:
– The SPA2 task-splitting algorithm has a guarantee bound of

69.3% (c.f. the RM bound for uniprocessors). (Guan, et al., 2010)

• Optimal multiprocessor scheduling:
– P-fair scheduling using dynamic priorities can achieve 100%

resource utilization on a multiprocessor. (Baruah et al., 1995)

34

End of lecture #8

