
EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013/2014                 Lecture #4
UpdatedMarch 21, 2014

1

Parallel & Distributed

Real-Time Systems

Lecture #4

Professor Jan Jonsson

Department of Computer Science and Engineering

Chalmers University of Technology
Schedule = resources + operations on a time line

Scheduling

Attempts to meet application constraints should be 

done in a proactive way through scheduling.

1τ

2τ

t

Scheduling

Scheduling is used in many disciplines:
(a.k.a. ”operations research”)

• Production pipelines (“Ford’s automotive assembly line”)

Actors: workers + car parts

Goal: generate schedules that maximizes system throughput 

(cars per time unit) 

Technique: job- and flow-shop scheduling

• Real-time systems

Actors: processors, data structures, I/O hardware + tasks

Goal: generate schedules that meet timing constraints 

(deadlines, periods, jitter)

Technique: priority-based task scheduling

Scheduling

Scheduling is used in many disciplines:
(a.k.a. ”operations research”)

• Classroom scheduling

Actors: classrooms, teachers, projectors + courses

Goal: generate periodic schedules within 7-week blocks 

Technique: branch-and-bound algorithms

• Airline crew scheduling

Actors: aircraft, staff + routes

Goal: generate periodic schedules that minimizes the number of 

aircraft and staff used and fulfill union regulations for staff 

Technique: advanced branch-and-bound algorithms



EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013/2014                 Lecture #4
UpdatedMarch 21, 2014

2

Scheduling

• A scheduling algorithm generates a schedule for a given 
set of tasks and a certain type of run-time system.

• The scheduling algorithm is implemented by a scheduler
that decides in which order the tasks should be executed.

• Observe that the scheduler selects which task should be 
executed next, while the dispatcher starts the execution of 
the selected task.

scheduling

dispatching

preemption

task arrival task termination
execution

Scheduling

A schedule is said to be feasible if it fulfills all 

application constraints for a given set of tasks.

A set of tasks is said to be schedulable if there 

exists at least one scheduling algorithm that can 

generate a feasible schedule.

Scheduling

A scheduling algorithm is said to be optimal with respect 

to schedulability if it can always find a feasible schedule 

whenever any other scheduling algorithm can do so.

A scheduling algorithm is said to be optimal with respect 

to a performance metric if it can always find a schedule 

that maximizes/minimizes that metric value.

Scheduling constraints

Examples of scheduling constraints:

• No processor sharing:
– A processor can only execute one task at a time

– This is a realistic assumption for any processor type being 
used in practice

– Note: in case of multi-core processors, each core is viewed 
as a separate processor

• No dynamic task parallelism:
– A task can only execute on one processor at a time

– This is a realistic assumption for any programming model 
being used in practice



EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013/2014                 Lecture #4
UpdatedMarch 21, 2014

3

Scheduling constraints

Examples of scheduling constraints:

• Non-preemptive scheduling:
– Once started, a task cannot be preempted by another task

– This assumption is not so common in priority-based scheduling

• Greedy scheduling:
– Once started, a task cannot be preempted by a lower-priority task

– This assumption applies for all run-time systems used in practice

• No task migration:
– A task can only execute on one given processor, or cannot 

change processor once it has started its execution

– This is a realistic assumption for distributed systems, and is also 
enforced for some multi-core processor designs (e.g. AUTOSAR)

Scheduling constraints

Non-preemptive scheduling:

• Advantages:
– Mutual exclusion can be automatically guaranteed

– Results from WCET analysis correspond well with real 
WCET behavior

• Disadvantages:

– Negative effect on schedulability
• Scheduling decision takes effect only after a task has 

completed its execution

• Once a task starts executing, all other tasks on the same 
processor will be blocked until execution is complete

Scheduling constraints

Preemptive scheduling:

• Advantages:
– Schedulability is not negatively affected

• Scheduling decisions can take effect as soon as the system state 
changes (even in the middle of task execution)

• The capacities of task priorities can be used in full

• Disadvantages:
– Mutual exclusion has to be guaranteed by e.g. semaphores (or 

similar constructs)

– WCET analysis is more complicated since cache and pipeline 
contents will be affected by a task switch

– Program security may be compromised (through so-called 
covert channels) if full preemption is allowed

Scheduling constraints

Greedy scheduling:

• Example: ”traditional” static-priority scheduling (RM, DM)

– Once a task starts executing, lower-priority tasks cannot grab 

the processor until execution is complete

• Advantages:

– Scheduler relatively simple to implement

– Supported by all run-time systems used in practice

• Disadvantages:

– Schedulability is negatively affected:
• Lower-priority tasks can starve and hence miss their deadlines



EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013/2014                 Lecture #4
UpdatedMarch 21, 2014

4

Scheduling constraints

Fair scheduling:

• Example: p-fair scheduling (Baruah et al. 1995)

– Although a task has started executing, lower-priority tasks 
receive a guaranteed time quantum per time unit for execution

– All tasks hence make some kind of progress per time unit

• Advantages:
– Schedulability can be maximized on a multiprocessor system 

(assuming that task switch cost is negligible)

• Disadvantages:
– Not supported by run-time systems used in practice

– Poor schedulability when task switch cost is non-negligible

• Fairness implies significantly more task switches than greediness

Scheduling algorithms

How much an oracle is the scheduling algorithm?

• Myopic scheduler:
– Scheduling algorithm only knows about currently ready tasks.

– Scheduling decisions are only taken whenever a new task 
instance arrives or a running task instance terminates.

• Clairvoyant scheduler:
– Scheduling algorithm ”knows the future”; that is, it knows in 

advance the arrival times of the tasks.

– On-line clairvoyant scheduling is difficult to realize in practice.

”Predictions are always hard to make. In particular about the future.”

(Yogi Berra)

Scheduling algorithms

When are schedules generated?

• Static scheduling:
– Schedule generated ”off-line” before the tasks becomes ready, 

sometimes even before the system is in mission.

– Schedule consists of a ”time table”, containing explicit start and 
completion times for each task instance, that controls the order 
of execution at run-time.

• Dynamic scheduling:
– Schedule generated ”on-line” as a side effect of tasks being 

executed, that is, when the system is in mission.

– Ready tasks are sorted in a queue and receive access to the 
processor and shared resources at run-time using conflict-
resolving mechanisms.

Static scheduling

Off-line schedule generation:

• Simulate dynamic scheduling
– Record a run-time behavior (linear time complexity)

• Apply a search heuristic (e.g., a branch-and-bound algorithm)

– Find a feasible schedule (if one exists) by considering all 
possible execution scenarios (NP-complete problem)

:

:

:

:

15 * i + 15 * i + 15 * i +15 * i + t0 5 10 15

1τ

2τ

3τ

4τ

Example:

Cyclic static schedule 

with a hyper-period 

(period LCM) of 15.



EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013/2014                 Lecture #4
UpdatedMarch 21, 2014

5

Dynamic scheduling

On-line schedule generation:

• Mechanisms for resolving conflicts
– Priorities possibly combined with time quanta

– Feasibility of schedule must be checked off-line by making 
predictions on how the conflicts are resolved at run-time

t0 5 10 15

1
τ

2τ

3τ

4τ

Example:

Schedule generated 

with rate-monotonic

priority assignment

Dynamic scheduling

Rate-monotonic scheduling (RM):

• Uses static priorities

– Priority is determined by task frequency (rate)

– Tasks with higher rates (i.e., shorter periods) are assigned 
higher priorities

• Theoretically well-established (for single-processor systems)

– Sufficient schedulability test can be performed in linear time
(under certain simplifying assumptions)

– Exact schedulability test is an NP-complete problem

– RM is optimal among all scheduling algorithms that uses static 
priorities under the assumption that Di = Ti for all tasks

(shown by C. L. Liu & J. W. Layland in 1973)

Dynamic scheduling

Deadline-monotonic scheduling (DM):

• Uses static priorities

– Priority is determined by task deadline

– Tasks with shorter (relative) deadlines are assigned higher 
priorities

– Note: RM is a special case of DM, with Di = Ti

• Theoretically well-established (for single-processor systems)

– Exact schedulability test is an NP-complete problem

– DM is optimal among all scheduling algorithms that uses static 

priorities under the assumption that Di ≤ Ti for all tasks

(shown by J. Y.-T. Leung & J. Whitehead in 1982)

Dynamic scheduling

Earliest-deadline-first scheduling (EDF):

• Uses dynamic priorities

– Priority is determined by how critical the process is at a given 
time instant

– The task whose absolute deadline is closest in time receives 
the highest priority

• Theoretically well-established (for single-processor systems)

– Exact schedulability test can be performed in linear time
(under certain simplifying assumptions)

– EDF is optimal among all scheduling algorithms that uses 
dynamic priorities under the assumption that Di = Ti for all tasks

(shown by C. L. Liu & J. W. Layland in 1973)



EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013/2014                 Lecture #4
UpdatedMarch 21, 2014

6

t

t0 5 10 15 20 25

0 7 14 21 28

RM

1τ

2τ

Dynamic scheduling

Example: RM versus EDF

Missed deadline

t

t

0 5 10 15 20 25

0 7 14 21 28

EDF

1τ

2τ

1 1 1
: ( 2, 5)C Tτ = =

2 1 1
: ( 4, 7)C Tτ = =

Handling shared resources

When tasks are no longer independent (i.e., they access shared 

software/hardware objects for which mutual exclusion is enforced) 

the scheduler must be extended with special mechanisms.

t

t

1τ 2τ
3

τ

  
R

1

  
R

1

 
µ

1

Handling shared resources

Priority inversion phenomenon:

t1

H blocked

t2

Blocking time for H not bounded
by execution of critical region

t

t

H

t

M

normal execution

critical region

priority (H) > priority (M) > priority (L) 

L

H and L share mutex resource R 

Handling shared resources

Resolving resource conflicts: 
(while also avoiding priority/deadline inversion)

• Off-line resource scheduling:

– Intelligent algorithms that are configured to generate schedules 
with no need for conflict resolution at run-time.

Examples: branch-and-bound (B&B) algorithms

• On-line resource access protocols:

– Blocking protocols using dynamic adjustments of task priorities.
Examples: Priority Inheritance Protocol, Deadline Inheritance Protocol, 

Priority Ceiling Protocol, Immediate Ceiling Priority Protocol, Stack 
Resource Policy

– Non-blocking protocols using retry loops.
Examples: lock-free and wait-free object sharing



EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013/2014                 Lecture #4
UpdatedMarch 21, 2014

7

Handling shared resources

Priority Inheritance Protocol: (Sha, Rajkumar & Lehoczky, 1990)

• Basic idea: When a task    blocks one or more higher-
priority tasks, it temporarily assumes (inherits) the highest 
priority of the blocked tasks.

i
τ

� Advantage:
– Prevents medium-priority tasks from preempting    and 

prolonging the blocking duration experienced by 
higher-priority tasks.

� Disadvantage:
– May deadlock: priority inheritance can cause deadlock

– Chained blocking: the highest-priority task may be blocked 
once by every other task executing on the same processor.

i
τ

Priority Ceiling Protocol: (Sha, Rajkumar & Lehoczky, 1990)

• Basic idea: Each resource is assigned a priority ceiling
equal to the priority of the highest-priority task that can lock 
it. Then, a task    is allowed to enter a critical region only if 
its priority is higher than all priority ceilings of the resources 
currently locked by tasks other than   .
When the task    blocks one or more higher-priority tasks, it 
temporarily inherits the highest priority of the blocked tasks.

� Advantage:
– No deadlock: priority ceilings prevent deadlocks

– No chained blocking: a task can be blocked at most the 
duration of one critical region.

i
τ

i
τ

i
τ

Handling shared resources

Handling shared resources

Priority Ceiling Protocol:

R3 t

t

H

t

M

normal execution

critical region

priority (H) > priority (M) > priority (L) 

L

H sequentially accesses resources R1 and R2

M accesses resource R3

L accesses resource R3 and nests R2

R3 R2 R2 R3

R3

R1 R2

L inherits the priority of M 

M blocks on R3

ceiling blocking

H blocked because its priority
is not higher than ceiling for R2

L inherits the priority of H   

Distributed PCP: (Rajkumar, Sha & Lehoczky, 1988)

• All critical regions associated with the same global resource 
are bound to a specified synchronization processor.

• A task ”migrates” to the synchronization processor to 
execute the critical region (using remote-procedure calls)

– Advantage: deadlock-free algorithm

– Disadvantage: large overhead for message-passing protocol

• All critical regions associated with the same global resource 
are executed at a priority equal to the semaphore’s priority 
ceiling
– short blocking times

Handling shared resources



EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013/2014                 Lecture #4
UpdatedMarch 21, 2014

8

Lock-Free and Wait-Free Object Sharing:

Handling shared resources

If several tasks attempt to access a lock-free object concurrently, 

and if a subset of these tasks stop taking steps, then one of the 

remaining tasks completes its access in a finite number of steps.

If several tasks attempt to access a wait-free object concurrently, 

and if a subset of these tasks stop taking steps, then each of the 

remaining tasks complete their access in a finite number of steps.

Handling shared resources

Lock-Free Object Sharing: (Anderson et al., 1996)

• Basic idea: The lock-free object sharing scheme is implemented 
using ”retry loops”. Object accesses are implemented using test-
and-set or compare-and-swap instructions typically found in 
modern RISC processors.

• Advantage:
– Resource accesses are non-blocking

– Deadlock-free

– Avoids priority inversion

– Requires no kernel-level support

• Disadvantage:
– Potentially unbounded retry loops

Handling shared resources

Wait-Free Object Sharing: (Anderson et al., 1997)

• Basic idea: The wait-free object sharing scheme is implemented 
using a ”helping” strategy where one task ”helps” one or more 
other tasks to complete an operation. 

Before beginning an operation, a task must announce its 
intentions in an ”announce variable”. 

While attempting to perform its own operations, a task must also 
help any previously-announced operation (on its processor) to 
complete execution.

• Advantage:
– Non-blocking, deadlock-free, and priority-inversion-free

– Requires no kernel-level support

– Precludes waiting dependencies among tasks

Handling shared resources

Non-existence of optimal on-line shared-resource 
scheduler: (Mok, 1983)

Complexity of shared-resource feasibility test: (Mok, 1983)

When there are mutual exclusion constraints in a system, 

it is impossible to find an optimal on-line scheduling 

algorithm (unless it is clairvoyant). 

The problem of deciding feasibility for a set of periodic tasks 
which use semaphores to enforce mutual exclusion is NP-hard.



EDA421/DIT171 - Parallel and Distributed Real-Time Systems, Chalmers/GU, 2013/2014                 Lecture #4
UpdatedMarch 21, 2014

9

End of lecture #4


