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CHAPTER

REAL-TIME
COMMUNICATION

6.1 INTRODUCTION

Effective communication between the various devices of a real-time system is
vital to its correct functioning. In embedded systems, data flows from the sen-
sors and control panels to the central cluster of processors, between processors in
the central cluster, and from processors to the actuators and output displays. The
communication overhead adds to the computer response time. Hard real-time sys-
tems must therefore use communication protocols that allow the communication
overhead to be bounded.

In soft real-time systems, such as multimedia or videoconferencing, where
\{oice and image data are being transmitted, the need to deliver messages in a
tI.Inf:ly fashion is equally obvious; excessive delays in message delivery can sig-
Nificantly degrade the quality of service provided. However, in such applications,
the occasional failure to meet message-delivery deadlines is not fatal.

 The goals of communication protocols in real-time systems are somewhat
different from those in traditional nonreal-time data-communication systems. In
traditional systems, the key performance measure is system throughput, that is,
how much data can be transferred over the network in one unit time from source
to.destination. In real-time systems, the key measure is the probability of deliv-
fring a message by a certain deadline. Note that a lost message has an infinite
delivery time, so that this measure captures both the speed with which messages

are delivered and the probability of losing messages. Message delay is caused by
the following overheads.
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Formatting and/or packetizing the message.

Queueing the message, as it waits for access to the communication medium
Sending the message from the source to the destination.

e Deformatting the message.

Real-time traffic can typically be categorized into multiple message clasgeg
with each class being characterized by its deadline, arrival pattern, and priority, In’
hard real-time systems, such as embedded applications, the deadline of the traffic
is related to the deadline of the task to which that communication belongs. I
multimedia-type applications, the deadline is related directly to the application.

Priority is based on the importance of that message class to the application.
If there is an overload of traffic, message priority can be used to determine which
messages are dropped to ensure that the more important traffic is delivered in g
timely fashion.

Most real-time sources generate traffic that fall into one of the following
two categories.

Constant rate: Fixed-size packets are generated at periodic intervals. Many
sensors produce such traffic. Constant rate traffic is the easiest to handle since
it is smooth and not bursty. The smoother the traffic, the smaller the number of
buffers that must be provided at each node.

Variable rate: This may take the form of fixed-size packets being gener-
ated at irregular intervals or of variable-size packets being generated at regular
intervals. Bursty traffic makes greater demands on buffer space. Voice and video
traffic typically exhibit variable rates. For example, voice sources can consist of
talkspurts (a burst of packets, followed by a period of silence). See Figure 6.1.
Video packets are an example of variable-sized packets being generated at regular
intervals.

As mentioned earlier, traffic characteristics may change as packets flow
through multiple hops in a network. At these intermediate nodes, the various trafﬁc
classes compete for bandwidth on the node’s output link, and thus interfere with
one another. Consider, for example, a high-priority bursty traffic class (Class 1)
competing with a lower-priority constant-rate traffic class (Class 2) at some node'”-
See Figure 6.2. Since Class 1 has priority at node n, it will cause Class 2 t© pile

talkspurt

talkspurt

silence

Time

FIGURE 6.1
Voice traffic.

iclassl

_v class 2 0
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Time

" FIGURE 6.2
~ (a) Two competing classes at a node; (b) Class 1 (high-priority, bursty); (c) Class 2 (lower-priority,

, constant).

f up at that node over the intervals [0, a] and [b, c]. As a result of this, the output
~ of Class 2 from this node will also become bursty.

] i‘ 6.1.1 Communications Media

While most of this chapter will be devoted to studying communications protocols,
it is useful to be aware of the underlying physical communications medium. Each

- medium has a distinct set of properties. Let us consider the three most important

- media.

] ELECTRICAL MEDIUM. This is the medium with which readers will be most

- familiar. Electrical media are manifested as a twisted pair of wires or as coaxial

~ cable. Coaxial cable has a copper conductor at its core, surrounded by some

R N

- insulation, surrounded by an outer conductor, and finally surrounded by a plastic
; coating. Twisted wires have bandwidths of several kHz, while broadband coaxial
- cable bandwidth can be as high as 450 MHz.

Devices can be connected to coaxial cables either by breaking the cable and

.' nserting a T-junction (illustrated in Figure 6.3) or by using a vampire tap. A

- Vampire tap is constructed by drilling through the outer layers of the cable to its

. Core and connecting the core to the device via a conductor.

. OPTICAL FIBERS. In a system with an optical medium, the electrical signals from
P the nodes are converted to light pulses by means of laser diodes. These diodes

- Can be operated at up to 10 Gbps (technological improvements keep increasing

cable

FIGURE 6.3

tap A T-junction.
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this bound). The optical pulses thus generated are thep laupched on the fihg,
medium. The receiver then converts them back to electrical signals by meapg of
photodiodes at the receiver. . . -

As a light pulse travels down a fiber, two things happen to it. FlrS‘[,-the pulse
amplitude decreases, that is, the signal is attenuated. Second, t.he pu}se w1§1th tends
to increase with the distance travelled, a phenomenon called dispersion. Dispersiop
is linked to the nature of the optical fiber as well as the range of frequencies thy
are transmitted (physical transmitters cannot transmit pure sine wave§), Thus, the
size of a network is linked to the power that is needed at the transmitter end ang
to the maximum frequency that can be supported. . o

Optical fiber has two main advantages over electrical media. First, the raw
bandwidth of a typical fiber can be as high as several huqdred GHz. Second,
optical signals are immune to the effects of electromagnetic mterfe.rence_

One disadvantage with optical fiber is that it is difficult to pagswely tap them
without a significant signal loss. Optical amplifiers to restore signal levels are
expensive, and so taps are impractical unless the system 1s very sma}l. There are
two network structures that work well with optical fiber, point-to-point networks
and the passive star. ‘ '

In point-to-point networks, there are no taps, but thgre are optical-to-electric
and electric-to-optical converters at each interface. See Figure 6.4. The first stage
of the interface converts optical signals into electrical ones. The node then checks

optical to
electrical

__________

FIGURE 6.4 ;
@ Optical point-to-point Networ f'ac .
(a) example structure; (b) intef

(b) detail.

@ interface 2 interface 3 interface 4
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passive star

FIGURE 6.5
Star-configured architecture.

to see if the message was addressed to it or to someone downstream on the
network. If the former, it accepts the message. If the latter, it retransmits the
message by using the second stage of the interface, which converts the electrical
signal from the node to light.

The passive star arrangement is as shown in Figure 6.5. Each interface
delivers its optical output to a glass cylinder, the passive star, which delivers at
its output the sum of all the signals at the input. This output energy is divided
among the fibers that go out of the cylinder. Thus, every interface receives the
input for all the interfaces in the system, and simply picks the ones addressed
to it. For this arrangement to work, the output from the passive star must have
sufficient energy to be detected by each of the interfaces even after being divided
among them. This requires sensitive receivers or powerful transmitters, or both.

The fiber bandwidth is, as we have explained above, of the order of hun-
drfids of GHz. This is well above the speed of the electronics at the interface. This
Mismatch requires us to either run the fiber at the speed of the interface electron-
168, which would waste most of the fiber bandwidth, or use wavelength-division
Multiplexing (WDM) to divide the fiber channel into several virtual channels, each
of Sl}fﬁciently low bandwidth to match the interface-electronics bandwidth. The
details of how this is done is out of the scope of this book. (Section 6.4 contains
sources about WDM.) All that we need to know here is that the single physical
Channe] is divided into multiple virtual channels, each with its own interface. Fig-
}{re 6.§ shovys hoyv .such a fiber is connected to the node interface receiver. Its
1ght signal is split into a number of channels, each of which carries a fraction
of Fhe input signal. Each such channel has an interface attached to it, with an
OPtical detector tuned to the wavelength of a virtual channel. The interface com-

j;;:, Ponent associated with each channel provides its node with an electrical signal
cOrresponding to the corresponding virtual channel. The transmission of messages
Ollows the same lines; the optical output from each channel is summed at the

ber input.
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interface 2

interface 3
—_

interface 4

interface 5

FIGURE 6.6
Interfacing to a WDM network.

The design of tunable lasers and re;eivers is currently the f(;lgu; (S)fer:(lilctlg
research. The challenge is to produce devices that can be tuned aft hlg ! ep el
enable a transmitter or receiver to hop through a w1de ranie of the frequency
spectrum; however, this area is outside the scope of this book.

WIRELESS. There has recently been mounting interest in wireless Cﬁmr?rlller(lilicjrioig
(using microwave radio) between computers. The adval}tagg of s1ilc aAS o
that it does not require wired contact between communicating no es.the -
ad hoc networks can be rapidly set up and.reconﬁgurgd. Howev.er,1 me}()ﬁa -
for interference is much greater than for eltl}er §lectr1ca1 or OpthE}ll transr.nitter
distance over which a radio link can be maintained depends on t eed i
power, receiver sensitivity, noise levels, type of error-coqtrol C%('hn% ;12 et,w e
attenuating barriers (e.g., walls, partitions, eq}n.pmenF, filing ca dme.: dst e i
transmitter and the receiver. At the time of writing, vylreless baq };Ntl ey litde
a few megabits/second (Mb/s). This is expected to increase Wllt 1;1; 1;5 o
work on real-time protocols specifically geared toward wire esi1 1electrical 3

done; the protocols described in this chapter are geared towards

optical media.

6.2 NETWORK TOPOLOGIES

The network topology for a computer or a di§tributed sy§ter.1; mu
chosen since it affects the system response time and reliability.

features are important.

st be carefully
The following

- ny two
Diameter: This is the maximum distance (number of hops) betwe;len dia?netef
nodes in the system, as a function of the number of nodes. Ideally, the
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should increase only slowly as a function of the number of nodes. In a completely
connected network, where each node has a dedicated link to every other node,
the diameter is one, regardless of the number of nodes; at the other extreme, in
a linear array (where the nodes are connected as a one-dimensional string), the
diameter is the number of nodes minus one.

Node degree: This is the number of edges adjacent to each node, and deter-
mines the number of I/O ports per node and the number of links in the system. The
greater this number is, the greater the cost. In some networks (such as the mesh
or the linear array) the node degree is independent of the number of nodes: this is

convenient since adding nodes to a network does not then require the architecture
of each node to change.,

Fault-tolerance: This measures the extent to which the network can with-
stand the failure of individual links and nodes while still remaining functional.
The node (link) connectivity is the minimum number of nodes (links) that must
fail before the network is disconnected. The node (link) diameter stability is the
minimum number of nodes (links) that must fail before the network diameter is

increased. There is no single measure that adequately captures the fault-tolerant
capability of a network.

Network topologies can be broadly classified into point-to-point and shared (or
broadcast) categories. In a point-to-point topology, nodes are connected by ded-
icated links. If a node wishes to send a message to a destination that is not its
neighbor, that message must be forwarded by intermediate nodes. In a shared (or
broadcast) topology, the nodes all have access to the communications channel
and only one node can transmit at any time over a channel.

Example 6.1. Figure 6.7 shows examples of point-to-point and shared networks. In
the point-to-point network, there is no edge connecting nodes 1 and 3. A message
going from node 1 to node 3 must thus pass through either node 2 or node 4. That
is, it must take two hops from input to output. In contrast, if the shared network is
used, a node can communicate with any other node in one hop.

Buses and rings are the most popular topologies. Figure 6.8 shows examples
of them. In a bus network, the ends are terminated by matching impedances
10 sharply attenuate reflections. The interfaces can either consist of taps or of
forwarding points.

A ring network is a set of network interfaces connected in a ring by point-to-
links. Bits arriving at the input end of an interface are copied into a buffer.

hey can then be processed (if necessary) and transmitted at the output end of
the interface.

Point

Example 6.2. Node 1 wishes to send a message to node 5 through nodes 2, 3, and
4. It transmits its message, with a header to specify the destination, to node 2. The
node-2 interface receives the message and checks the message destination. Realizing
that it is for node 3, it transmits the message, unaltered, to the node-3 interface. This
in turn forwards it to node 4, which forwards it to node 5. Node 5 reads in the
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ey >

A

node 1 node n

(a)

node 1 node 2

<—> interface ||

interface J<—>| node 3

l<—>{ interface :

~@@—P Network path
(b)

node 4

FIGURE 6.7
(a) Shared network and (b) point-to-point network.

FIGURE 6.8
(a) A single-bus system and (b) a ring system.

message and passes it along to the next node. Ultimately, the mess
to node 1, which removes it from the ring.

Other popular topologies are illustrated in Figures 6.9 and 6.10. T
cube (see Figure 6.10) is defined as follows. There are 2" nodes in an

age comes back

he hype!”
n-dimet

. (a) (b)
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FIGURE 6.9
Mesh networks: (a) rectangular mesh; (b) hexagonal mesh.

sional hypercube. Label the nodes in binary from 0 to 2" — 1, and connect by a
line those nodes whose labels differ in exactly one bit position. An n-dimensional
hypercube is built by taking two (n — 1)-dimensional hypercubes and connecting
like nodes.

. Another popular topology is the multistage network. This is built out of
stchboxes, typically 2 x 2 switchboxes. Four possible configurations of an in-
dividual switch are shown in Figure 6.11. An 8-input, 8-output network built out
of such switches is shown in Figure 6.12.

'Many strpctures can support either a point-to-point or a shared topology.
Conmdq the single-bus system in Figure 6.8, which uses forwarding interfaces.
If each interface, upon receiving a message at one end, copies it out on the other
regardless of its destination, the network behaves as a broadcast topology. On the

PIGURE 6.10
“Ypercube networks: (a) two—dimensional£ (b) three-dimensional; (c¢) four-dimensional.
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S > —|. >
e
oo L — Y
FIGURE 6.11

Four configurations of a 2 x 2 switch.

FIGURE 6.12
Multistage network.

other hand, if the interface checks the destination and only forwards the message if
the path to the destination lies through it, the network behaves as a point-to-point
topology. . .

It is sometimes important to distinguish between the physical anq virtual
topologies. The physical topology is the structure determined by Fhe physical con-
nections. On this base, we can sometimes build many different virtual topologies.
This is illustrated in Example 6.3.

Example 6.3. We have an optical network using a passive star as its physigal topol(i
ogy and using wavelength-division multiplexing. Each nodg has three recelveré ap-
three transmitters. We want this to support a three-dimensional hypercube as a Vit
tual network. This is done by assigning wavelengths to the receivers and' tra_nsmlt_teﬁ
so that each node has a unique wavelength on which it commgnicates with its nelgfor
bor in the hypercube. The wavelength allocations are shown in Table 6.1: T.h‘usgj a
example, node 000 has its transmitters tuned to wavelengths Ay, Ay, and A3; an
receivers tuned to A4, A7, and Ais.

6.2.1 Sending Messages

. . . . . : Chiﬂ(),
Three common ways of sending messages are: packet switching, circuit switchills

and wormhole routing.

ts, which ar

PACKET SWITCHING. The message is broken down into packe | speclfy

messages of a standard or variable length. Packets have headers, whic

their source, destination, and any other information that may be requ.ired-
are then sent to their destination by the routing and flow-control algorithm.
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TABLE 6.1

wavelength allocations for embedding a hypercube in a passive star
From To Wavelength From To Wavelength
000 001 Al 100 000 A3

000 010 A 100 101 A4

000 100 2 100 110 s

001 000 I 101 001 M6

001 011 )\.5 101 100 )\,17

001 101 A6 101 111 A18

010 000 A7 110 010 Alg

010 011 Ag 110 100 220

010 110 Ao 110 111 A1

011 001 Alo 111 011 A2

011 010 A1 111 101 A3

011 111 A2 111 110 A4

Example 6.4. The network is a two-dimensional hypercube shown in Figure 6.10.
Node 00 is sending a packet to node 11. There are two possible paths: 00 — 01 —
11, and 00 — 10 — 11. Suppose the first of these is chosen. Node 00 sends the
packet to node 01, which notes its destination from the packet header, and forwards
the packet to that node.

CIRCUIT SWITCHING. A circuit is set up between the source and the destination
for such time as is required to send the message. The entire circuit is then meant
exclusively for this message; any other messages that require all, or part, of this
path must wait for the transmission to be completed. In other words, circuit-
switching involves setting up a dedicated path from source to destination for the
duration of the message transfer.

Example 6.5. In the multistage network shown in Figure 6.13, if we wish to send

a message from S to D, the switches are set as shown by the heavy line and the
circuit is held until the message has been delivered.

W.ORMHOLE ROUTING. Wormhole routing is a way of pipelining packet trans-
Mission in a multihop network. Each packet is broken down into a train of flits,

=

FIGURE 6.13
Setting up a circuit.
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each about one or two bytes long. The sender transmits one flit per unit time,
and the flits are forwarded from node to node until they reach their destination
Over time, a train of flits, in contiguous nodes, forms and makes its way to itg

destination.

Example 6.6. The network is a three-dimensional hypercube, as shown in Fig.
ure 6.10. A message is to be sent from node 000 to node 111. Node OQO breaks up
its packet into flits, and sends them to node 001 at th.e rate of one flit per cycle.
Node 001 forwards the flits it receives to node 011, which forwards them to 111. If
the packet consists of six flits, the activity is as follows.

Time 000 —001 001 —011 011 —111

0 Flit 0 - -

1 Flit 1 Flit 0 -

2 Flit 2 Flit 1 Flit 0
3 Flit 3 Flit 2 Flit 1
4 Flit 4 Flit 3 Flit 2
5 Flit 5 Flit 4 Flit 3
6 - Flit 5 Flit 4
7 - - Flit 5

The final flit is received at the destination at time 7.

Only the header flit in a train has the destinaFion informatiop; each no@e
simply forwards the next flit to the same node that it serllt the previous flit to 11?
the train. It is therefore impossible to interleave one train of flits Wlth another;
successive flits in the same train must be in either the same or adJacgnt nodes.
Wormhole routing requires less buffer space in the forwarding nodes, since nodes

ith flits rather than packets. .
deel ‘}/‘[{ﬂ\iif gse not careful,p multiple trains of flits can cause deadlo.ck. Figure 61£
shows an example. Train « is prevented from turning at node m since that wou

FIGURE 6.14
Deadlock in wormhole routing.
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\

FIGURE 6.15
y < 0 Blocking graph of deadlock in wormhole routing.

cause it to be interspersed with train 8. Similarly, 8 is prevented from turning at
node p due to train y; y is prevented from turning at node ¢ due to train §; §
is prevented from turning at n due to «. The situation is illustrated graphically
in Figure 6.15, where an arrow from node « to node 8 indicates that train « is
stopping &. The graph is cyclic, indicating a deadlock.

6.2.2 Network Architecture Issues!

HIGH-LEVEL ARCHITECTURAL ISSUES. At the highest level, a distributed sys-
tem comprises a set of nodes communicating through an interconnection network.
Each node may itself be a multiprocessor comprising application, system, and
network processors; a shared memory segment; and I/O interfaces. Although the
application processor may be an off-the-shelf product, the system and network
processors usually have to be custom-designed because they provide the special-
ized support necessary for real-time applications. The memory subsystem may
also be specially designed to provide fast and reliable communication between
the processors at a node. For example, the memory subsystem may support a
mailbox facility to support efficient interprocessor communication within a node
of a distributed system.

The nodes of the system must be interconnected by a suitable network.
In the past, for small systems, the network was a custom-designed broadcast
bus with redundancy to meet the fault-tolerance requirements. More recently,
however, architects have turned to either a high-speed token ring or a point-to-
point network with a carefully-chosen topology. For example, the Spring system
at the University of Massachusetts uses a high-speed optical interconnect called
Scramnet, whereas the HARTS project at The University of Michigan uses a point-
fo-point interconnection network called the C-wrapped hexagonal mesh topology.

Irrespective of the exact topology, the network architecture should support
Scalability, ease of implementation, and reliability. It should also have support

for efficient one-to-one, as well as one-to-many, communications. For instance,

1 g
Section 6.2.2 i based on K. G. Shin and P. Ramanathan, “Real-Time Computing: A New Discipline

9 COmputer Science and Engineering,” Proceedings of the IEEE, Vol. 82, No. 1, 1994. © IEEE.
Sed with permission.
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the C-wrapped hexagonal mesh topology used in HARTS has a 6(1) algorithy,
for computing all the shortest paths between any two nodes in the system. The
information about all the shortest paths can also be easily encoded using just
three integers and included as part of each message so that the intermediate
nodes need not do much compuiation. The routing algorithm can fully exploj
advanced switching techniques like wormhole routing, in which packets do noy
always have to be buffered at intermediate nodes before being forwarded to the
next node in the route. Broadcasting can also be done fairly efficiently and ip
a fault-tolerant manner using the multiple disjoint paths between any two nodes
in the system. Such capabilities are very important because reliable and timely
exchange of information is crucial to the distributed execution of any real-time
application.

LOW-LEVEL ARCHITECTURAL ISSUES. Low-level architectural issues involve
packet processing, routing, and error/flow control. In a distributed real-time sys-
tem, there are additional issues related to the support for meeting deadlines, time
management, and housekeeping. Since the support of these low-level issues im-
pedes the execution of application tasks, nodes in a distributed real-time system
usually have a custom-designed processor for handling these chores. In the de-
scription below, this special processor is referred to as the network processor (NP).

The main function of the NP is to execute operations necessary to deliver
a message from a source task to its intended recipieni(s). In particular, when an
application task wants to transmit a message, it provides the NP with information
about the intended recipient(s) and the location of the message data, and then
relies on the NP to ensure that the information reaches the recipients in a reliable
and timely fashion.

The NP must establish connections between the source and destination nodes.
It must also handle end-to-end error detection and message retransmission. As far
as routing is concerned, the NP may select primary and alternative routes, al.lo-
cate bandwidths necessary to guarantee timely delivery, packetize the information
into data blocks and segments, and reassemble packets at the destination nOde: In
point-to-point interconnections, the NP must support and choose an appropriate
switching method such as wormhole routing, store-and-forward, or circuit switch-
ing. In token rings, the NP must select suitable protocol parameters to guarantee
the deadlines of all messages. The NP must also perform framing, synchronization,
and packet sequencing.

The NP must implement buffer management policies that maximi;e the
utilization of buffer space, but guarantee the availability of buffers to the highest
priority messages. Similarly, if noncritical messages hold other resources that are
needed by more critical ones, NP must provide a means for preemption of such
resources for use by the critical messages.

The NP may also have to monitor the state of the network in terms of the
traffic load and link failures. The traffic load affects the ability of the NP to S€I
real-time messages to other processors, while link failures affect system reliability:
It may also keep track of the processing load of its host (or hosts), and use the
information for load balancing/sharing and task migration operations.
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/O ARCHITECTURE. Little work has been done on network architectures for
the I/O subsystem. Clearly, a real-time computer can process data no faster than
it acquires it from sensors and operators. The nature of I/O devices in a real-time
environment, consisting as it does of sensors and actuators, is quite different from
the magnetic disks and tapes that are the I/O devices commonly encountered in
general—purpose systems.

To improve I/0, multiple I/O devices need to be distributed and managed by
relatively simple and reliable controllers. Moreover, to improve both accessibility
(reliability) and performance, there must be multiple access paths (called mulri-
accessibility or multi-ownership) to these /O devices.

One possible way to provide multi-accessibility, used in HARTS, is to cluster
the /O devices together and assign a controller to manage access to the devices
in each cluster. The controller has a set of full-duplex links to certain nodes
of the distributed system. In order to limit the number of links in each controller
while providing multi-accessibility, a controller is connected to three nodes in the
system as shown in the Fig. 6.16. Since each controller can be accessed by three
nodes, different management protocols are proposed for handling the I/O requests.
In a static scheme, one node is assigned the primary responsibility of managing
the controller with the proviso that the other nodes can take over control if the
primary node becomes faulty. In a dynamic scheme, all three nodes connected to
a controller manage the controller using a more complicated protocol.

An alternative approach for connecting the I/O controllers to the nodes of the
system is to connect an I/O controller to just one node. However, the placement of
the I/O controllers must be done in such a way that a node is at most one hop away
from a node with an I/O controller connected to it. To achieve fault-tolerance,

FIGURE 6.16
I/O controller placement.
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TABLE 6.2
List of protocols

Protocol Deadline guarantees? Network
VTCSMA Neo Broadcast
Window No Broadcast
Timed token Yes Ring

IEEE 802.5 Yes Ring
Stop-and-go Yes Point-to-point
Polled bus No Bus
Hierarchical round-robin Yes Point-to-point
Deadline-based No Point-to-point

schemes for the placement of 1/O controllers have also been proposed in which
a node is at most one hop away from j nodes with I/O controllers, where j is a
design parameter.

Although the above solutions have made some headway in dealing with the
1/O architectural issue, there is a lot of work that needs to be done in designing
communication networks that can perform the levels of I/O needed for real-time
systems.

6.3 PROTOCOLS

In the following sections, we describe protocols suitable for real-time systems. In
Table 6.2, we provide a directory of these protocols. Some of these offer deadline
guarantees; that is, they guarantee that messages will be delivered before their
assigned deadlines. Others do not, but are “best-effort” algorithms, suitable only
for soft real-time systems.

6.3.1 Contention-Based Protocols

These are distributed protocols that assume a broadcast medium. Nodes monitor
the channel and transmit only when they detect that it is idle. If multiple nodes
start transmitting at about the same time, there is a collision of packets and the
transmissions have to be aborted and then retried.

Example 6.7. Consider the bus network shown in Figure 6.17 Let 7; denote the

propagation delay between nodes i and j. Node m is transmitting from #, t0 f2- -

Nodes 7 and ¢ see the end of this transmission, which is followed by silence on the
bus, at times t + T, and 1 + Ty, respectively. Suppose node n has some packet
awaiting transmission. It starts transmitting at time # + Tun + €, where € is some
positive number. This transmission does not reach ¢ until 1, =t + fun T € + Tng-
Suppose a packet arrives at node ¢ at time #, where 7y, € (f2+Tpn, 22+ Tinn +e€ -fjfnq)'
Since g has not heard the node-n tranmission yet, it transmits the packet starting @
f, +¢. The two messages collide; and upon detecting the collision, nodes 7 and ¢
cease transmission, and each back off for a random time before trying again.
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FIGURE 6.17
Bus network.

VIRTUAL-TIME CARRIER-SENSED MULTIPLE ACCESS (VTCSMA). The VTC-
SMA protocol has been designed for single-channel broadcast networks and for
the bus and ring topologies.

In carrier-sensed multiple access (CSMA) protocols, all the nodes can mon-
itor the communication channel. Suppose a node has something to transmit. If it
observes that the channel is busy, it will refrain from interfering with the ongo-
ing transmission. When it senses that the channel is free, the node will transmit
its message. Since there is no coordination between the nodes, this can result in
a collision resulting from multiple nodes attempting to transmit simultaneously.
When a collision occurs, the transmitting nodes, which monitor the channel con-
tinually, abort their transmission and retransmit after waiting for a time. There are
various types of CSMA, each with its own formula for computing the retransmis-
sion epoch. CSMA is an efficient communication scheme when the end-to-end
transmission delay is much less than the average time to transmit a packet and
when the load is not very high.

CSMA is a truly distributed algorithm, with each node deciding when it
will transmit. It may seem a hopeless task to implement a priority algorithm,
where one node with a lower-priority packet is supposed to defer to another with
a higher-priority packet, using CSMA. This is not so, however. While there is no
explicit coordination between the nodes, the nodes do see a consistent time if their
clocks are synchronized, and they observe the same channel (slight differences
can exist due to transmission delays). This common information can be exploited
to obtain quite effective priority communications algorithms, including a priority
based on deadlines.

Suppose that a node has a set of packets to transmit. How is it to determine
when to transmit them on the channel? The information it has is

e the state of the channel,

e the priorities of the packets waiting in its transmission buffer to be trans-
mitted over the network, and

e the time according to the synchronized clock.
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The node does not have any idea of the priorities of any packets that may be
awaiting transmission at the other nodes. Simply using the state of the channe]
and the priorities of its packets is not sufficient; the time information must algg
be used. The key to the VTCSMA algorithm that we present below is that if the
priority of the packet can be computed as a function of the current time, as we[]
as of some other parameters, it may be possible to use the time information to
implicitly arrive at some global ordering of priorities. For example, we can strive
to serve packets according to their deadlines, arrival times, and laxities. The way
this is done will become apparent when we describe the algorithm.

The VTCSMA algorithm uses two clocks at each node. One is the real clock
(RC), which tells the “real time,” and is synchronized with the clocks at the other
nodes. The second is the virtual clock (VC), which behaves as follows. When the
channel is busy, the VC freezes; when the channel becomes free, the VC is reset
(according to a formula that we will present) and then runs at the rate 7 > 1. That
is, the VC runs faster than the RC when the channel is free, and not at all when
it is busy.

Example 6.8. Figure 6.18 illustrates the operation of the VC for n = 2. The abscissa
denotes the real time and the ordinate the virtual time. From real time 0 to 71, the
channel is busy, and so the virtual time remains frozen at t1’. At real time 71, the
channel becomes idle, and the VC is set equal to the RC and starts running at a
rate of 2. At real time 2, the channel becomes busy again, and so the virtual time
freezes at 12'. At real time £3, when the channel is idle, it is initialized and starts
running again at rate 2. And so on.
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Operation of the virtual clock.
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Since the real clocks are assumed to be synchronized and the virtual times
are regularly reset with respect to the real times, the virtual times told at the
yarious nodes are the same, plus or minus some small skew. This is the common
information that is used to impose a global priority on the packets to be transmitted.
Each node computes a virtual time to start transmission VSX(M), for every packet
M awaiting transmission at that node. When the virtual time is greater than or
equal to VSX(M), packet M becomes eligible for transmission. We leave to the
reader the easy task of figuring out which packet is transmitted by a node that has
multiple packets eligible for transmission at any one time. If a collision occurs,
the VSX of that packet is modified suitably. The formula used for computing
ySX depends on the type of VTCSMA that is used, and is described below.

Figure 6.19 is a flowchart that specifies the algorithm. How is the VC ini-
tialized when the channel becomes free, and the VSX(M) modified when there is
a collision involving packet M? There are many ways of doing this, and each ap-
proach results in a different variation of VTCSMA. First, we need some notation.

T Propagation time from one end of the network to the other.

Ay Arrival time of message (or packet) M.

Ty Time required to transmit message M.

Dy Deadline by which message M must be delivered to its destination.

Lu Latest time by which the message must be sent to be able to meet the
deadline. Thatis, Lyy = Dy — Ty — T

Awp () Maximum amount of time that message M can be delayed at time ¢

before missing its deadline. That is, Ay@®)=Dy —Tuy—1—1.

We will list four variations of VTCSMA, with suffixes A, T, L, and D, respec-
tively. When packet M arrives, we have:

Ay for VTCSMA-A
Ty for VICSMA-T
Ly for VTCSMA-L
Dy for VTICSMA-D

VSX(M) = (6.1)

When a collision occurs, each node involved in the collision either retransmits M
immediately, with probability p, or (with probability 1 — p), the node modifies
VSX(M) to be a random number drawn from the following interval [:

(current VC, Ly) for VTCSMA-A
O, Ty) for VTCSMA-T
(current RC, Ly ) for VTCSMA-L
(current RC, Dy) for VICSMA-D

(6.2)

When the channel switches state from busy to idle, the VC is initialized as follows:

no change for VICSMA-A
VC=10 for VICSMA-T (6.3)
RC for VTCSMA-L and VTCSMA-D



