
DEFENSIVE
PROGRAMMING
Lecture for EDA 263
Magnus Almgren
Department of Computer Science and
Engineering
Chalmers University of Technology

Traditional Programming

• Common assumptions:
– inputs a program will receive,
– environment the program runs in,
– a “cooperative” user, etc.

When writing a program, programmers typically focus on what is
needed to solve whatever problem the program addresses.

(p.391, Stallings/Brown)

Defensive Programming

• Defensive programming / Secure Programming:
– must always validate assumptions (nothing is assumed),
– needs an awareness of the consequences of failures, and
– the techniques used by attackers.

• Range of similar vulnerabilities exploited over time (CERT)
– Injection Attacks (ex 12.2)

• Examples
– Databases: part of almost all real systems
– Web apps: often done quickly by junior programmers, but accessible

by anyone in the world (see OWASP list)

One should always take care when writing a program – code is
reused and it is impossible to foresee how and when a module
will be used in the future. Never trust user input!

http://www.cert.org/secure-coding/

http://www.cert.org/secure-coding/

Domains

• Handling Program Input
– Buffer Overflows
– Injections Attacks

• Writing Safe Program Code
• Interacting with OS and other programs
• Handling Program Output

Example: Command Injection

CGI Shell

Web server

Example: Command Injection

CGI Shell

Web server

Characters have
different meanings?

Same privileges as
web server

Example: Command Injection
Mitigation Technique

• Define what is known dangerous input
• Define what is valid input
• Problems:

– Definition of what is really dangerous
– Multiple encodings

• For web: space = %20, / = %2F, ; = %3B

• Not only for strings but also other types of
data: integer overflows

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01219077

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=01219077

Vulnerability Note VU#20276
phf CGI Script fails to guard against newline characters

• CGI script phf, exploited late 1990’s.
• Tried to sanitize input using a routine supplied in

the web server
– escape_shell_cmd()
– Removing a number of shell meta characters BUT …
– Buggy: forgot to remove newline character

• Attack:
embed a newline character in the string passed to
the CGI script phf, resulting in additional
commands to execute.

http://www.kb.cert.org/vuls/id/20276

http://www.kb.cert.org/vuls/id/20276

Example: Command Injection

CGI Shell

Web server

lpb; echo attack lpb; echo attack

Example: Command Injection

CGI Shell

Web server

lpb; echo attack lpb; echo attack

IDS Snort Rule: No ”;” allowed

Example: Command Injection

CGI Shell

Web server

lpb; echo attack

IDS Snort Rule: No ”;” allowed

lpb%3B echo attack

%3B ;

OWASP

• The Open Web Application Security Project
(OWASP) is … organization focused on
improving the security of application
software.

• OWASP Local Chapter in Gothenburg
– https://www.owasp.org/index.php/Gothenburg

https://www.owasp.org/index.php/Main_Page

https://www.owasp.org/index.php/Gothenburg
https://www.owasp.org/index.php/Main_Page

OWASP Top 10 2010

• A1-Injection
• A2-Cross Site Scripting

(XSS)
• A3-Broken Authentication

and Session Management
• A4-Insecure Direct Object

References
• A5-Cross Site Request

Forgery (CSRF)

• A6-Security
Misconfiguration

• A7-Insecure
Cryptographic Storage

• A8-Failure to Restrict URL
Access

• A9-Insufficient Transport
Layer Protection

• A10-Unvalidated
Redirects and Forwards
 https://www.owasp.org/index.php/Top_10_2010-Main

http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf

https://www.owasp.org/index.php/Top_10_2010-Main

OWASP Top 10 2010
Name Description

A1-Injection Injection flaws, such as SQL, OS, and LDAP injection, occur
when untrusted data is sent to an interpreter as part of a
command or query. The attacker’s hostile data can trick the
interpreter into executing unintended commands or
accessing unauthorized data.

A2-Cross Site Scripting
(XSS)

XSS flaws occur whenever an application takes untrusted data
and sends it to a web browser without proper validation and
escaping. XSS allows attackers to execute scripts in the
victim’s browser which can hijack user sessions, deface web
sites, or redirect the user to malicious sites

A3-Broken
Authentication and
Session Management

Application functions related to authentication and session
management are often not implemented correctly, allowing
attackers to compromise passwords, keys, session tokens, or
exploit other implementation flaws to assume other users’
identities.

Cortesy of John Smith, IBM Cooperation, GB

 What is it?
◦ User-supplied data is sent to an interpreter as part

of a command, query or data.

 What are the implications?
◦ SQL Injection – Access/modify data in DB
◦ SSI Injection – Execute commands on server and

access sensitive data
◦ LDAP Injection – Bypass authentication
◦ …

User input is embedded as-is in predefined SQL
statements:

SELECT * from tUsers where
userid=‘’ or 1=1 -- ' AND

query = "SELECT * from tUsers where
userid='" + + "' AND
password='" + + "'";

 Hacker supplies input that modifies the original SQL statement, for
example: iUserID = ' or 1=1 --

SELECT * from tUsers where
userid=‘jsmith' AND password=‘demo1234'

' AND password='bar'

John Smith demo1234 jsmith 1824
Name Password Username UserID

iUserID
iPassword

jsmith

demo1234

User input is embedded as-is in predefined SQL
statements:

SELECT * from tUsers where
userid=' ' AND password='bar'

query = "SELECT * from tUsers where
userid='" + + "' AND
password='" + + "'";

 Hacker supplies input that modifies the original SQL statement, for
example: iUserID = ' or 1=1 --

SELECT * from tUsers where
userid=‘jsmith' AND password=‘demo1234'

' AND password='bar' Admin $#kaoeFor admin 1

Name Password Username UserID

John Smith demo1234 jsmith 1824
Name Password Username UserID

iUserID
iPassword

jsmith

demo1234

 Common theme with web application
vulnerabilities:
◦ Unvalidated user input is the attack vector

 Good security practice:
◦ Assume all user input is evil !

OWASP Top 10 2010
Name Description

A1-Injection Injection flaws, such as SQL, OS, and LDAP injection, occur
when untrusted data is sent to an interpreter as part of a
command or query. The attacker’s hostile data can trick the
interpreter into executing unintended commands or
accessing unauthorized data.

A2-Cross Site Scripting
(XSS)

XSS flaws occur whenever an application takes untrusted data
and sends it to a web browser without proper validation and
escaping. XSS allows attackers to execute scripts in the
victim’s browser which can hijack user sessions, deface web
sites, or redirect the user to malicious sites

A3-Broken
Authentication and
Session Management

Application functions related to authentication and session
management are often not implemented correctly, allowing
attackers to compromise passwords, keys, session tokens, or
exploit other implementation flaws to assume other users’
identities.

Google Gruyere
Web Application Exploits and Defenses
• Want to beat the hackers at their own game?

– Learn how hackers find security vulnerabilities!
– Learn how hackers exploit web applications!
– Learn how to stop them!

• http://google-gruyere.appspot.com/.../
• Example

– XSS attack: same origin policy
– Injected code stored at site – run when user visits site

(or tricking user to click on URL in email)
– Here is an image of a cute

<a href="http://google-gruyere.appspot.com/.../
<script>alert(1)</script>“ >cat

http://google-gruyere.appspot.com/

http://google-gruyere.appspot.com/400034139697/
http://google-gruyere.appspot.com/

	Defensive Programming
	Traditional Programming
	Defensive Programming
	Domains
	Example: Command Injection
	Example: Command Injection
	Example: Command Injection�Mitigation Technique
	Vulnerability Note VU#20276�phf CGI Script fails to guard against newline characters
	Example: Command Injection
	Example: Command Injection
	Example: Command Injection
	OWASP
	OWASP Top 10 2010
	OWASP Top 10 2010
	Slide Number 15
	Injection Flaws
	SQL Injection
	SQL Injection
	Summary
	OWASP Top 10 2010
	Google Gruyere�Web Application Exploits and Defenses
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29

