

Security Metrics

Erland Jonsson

Department of Computer Science and Engineering Chalmers University of Technology

Contents

- Motivation
- What is Measurement?
- Measurement Theory and Scales
- Existing Security Metrics and Tools
- Attribute Based Metrics Based on Protective and Behavioural Attributes
- Conclusions

Motivation

Motivation

- Security is a major concern in computer-based systems, i.e. virtually all systems of today.
- It is good engineering practice to be able to verify/validate claimed performance. Obviously, this includes security performance.
- A number of standard bodies (e.g. ANSI 2008) require risk analysis
- Financial regulations (e.g. "Operational Risk" in Basel-III) also require precise risk management for technology

Why modelling?

Quotation 1:

 - "Modelling is fundamental to measurement; without an empirical model or describing observations, measurement is not possible" (A. Kaposi 1991)

Why metrics?

• Quotation 2:

- "...if you can measure what you are speaking about and express it in numbers you know something about it; but when you cannot measure it, when you cannot express it in numbers, your knowledge of it is of meagre and unsatisfactory kind" (Lord Kelvin ~1870)

Why metrics?

Quotation 3:

 - "The history of science has been, in good part, the story of quantification of initially qualitative concepts" (Bunge 1967)

What is Measurement?

Definition of measurement

Definition:

- Measurement¹ is the process of empirical, objective encoding of some property of a selected class of entities in a formal system of symbols (A. Kaposi based on Finkelstein)
- Cp Metrology is the field of knowledge concerned with measurement. Metrology can be split up into theoretical, methodology, technology and legal aspects.

General requirements on measurement operations

- Operations of measurement involve collecting and recording data from observation
- It means identifying the class of entities to which the measurement relates
- Measurements must be independent of the views and preferences of the measurerer
- Measurements must not be corrupted by an incidental, unrecorded circumstance, which might influence the outcome

Specific requirements on measurement operations

- Measurement must be able to characterize abstract entities as well as to describe properties of real-world objects
- The result of measurement may be captured in terms of any well-defined formal system, i.e. not necessarily involving numbers

Measurement Scales

Measurement scales

- Mesurement theory distinguishes five types of scales:
 - nominal scale
 - ordinal scale
 - interval scale
 - ratio scale
 - absolute scale
- Here they are given in an ascending order of "strength", in the sense that each is permitting less freedom of choice and imposing stricter conditions than the previous one

Measurement scales II

- The nominal scale can be used to denote membership of a class for purposes such as labelling or colour matching
- The ordinal scale is used when measurement expresses comparitive judgement
- The interval scale is used when measuring "distance" between pairs of items of a class according to the chosen attribute
- The ratio scale denotes the degree in relation to a standard, i.e. a ratio. It must preserve the origin.
- The absolute scale used for counting the number of elements in an entity set

Meaningfulness

- Meaningfulness means that the scale measurement should be appropriate to the type of property measured, such that once measurement has been performed – and data expressed on some scale - sensible conclusions can be drawn from it
- Example 1: Point A is twice as far as point B (meaningless, since distance is a ratio scale, but position is not)
- Example 2: Point A is twice as far from point X as point B (is meaningful)

Existing Security Metrics

What is Security?

- SECURITY ("prevention of unauthorized access and/or handling")
 - A system is considered Secure if it is can protect itself against intrusions
 - There is no mathematical or formal definition of the Security of a system.
 - Security is normally defined by its three aspects: confidentiality, integrity and availability ("CIA")
 - Security is not only technical. It is also a function of the environment, human behaviour, etc
 - In most languages the same word is used for security and safety (As a matter of curiosity.)

Problems with the security concept

- Security is not well-defined. There are different interpretations in different areas
- Security is multi-faceted. It consists of a number of diverse and sometimes even contradictory attributes. (For example: integrity and availability)
- Security as a concept denotes the absence of something (normally vulnerabilities) rather than the presence of something.
 (This raises some fundamental problems wrt verification and metrication.)

Why is measuring security hard?

- In order to measure something we must define what we measure. i.e. define the object system and its characteristics
- Security is a non-functional attribute others are dependability, reliability, safety, etc
- A non-functional attribute defines to which extent a functional attribute is valid (e.g. a service is delivered)
- As of today, there are no scientifically solid metrics of security. Instead, there are a number of informal and/or subjective assessments or rankings.

The fundamental representation problem

When measuring security the following questions could be posed:

- What is my definition of security?
- Which aspects of security do I intend to measure? Or some composite?
- What is it that I am measuring? (That is, what kind of data do I gather?)
- How do I process these data? If at all?
- To which extent do the gathered and processed data represent the metric of security that I want to capture?

Security Metrication Basic Methodology

- Define the concept
- 2. Define suitable attributes for metrication
- 3. Select method for assessing the magnitude of these attributes
- 4. Select method for how to do this assessment in a practical way

Existing Security Metrics

Methods for "measuring" security I

- Evaluation/Certification (according to some standard):
 - classification of the system in classes based on design characteristics and security mechanisms.

 "The 'better' the design is, the more secure the system"
- Risk analysis:
 - estimation of the probability for specific intrusions and their consequences and costs. Trade-off towards the corresponding costs for protection.
- Penetration tests: Finding vulnerabilities by using "Tiger teams". (But you never find them all....)
- Vulnerability assessment:
 - includes methods for finding system vulnerabilities

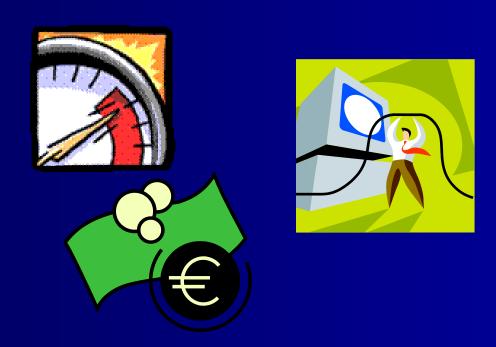
Methods for "measuring" security II

- Effort-based approach (based on "simulated" attacks):
 - a statistical metric of system security based on the effort it takes to make an intrusion.
 - "The harder to make an intrusion, the more secure the system"
- Weakest adversary:
 - which is the weakest adversary that can compromise the system?
- MTTC (Mean Time To Compromise):
 - calculates the statistical mean time to an intrusion

Methods for "measuring" security III – special cases

- Cryptographic strength:
 - a statistical metric of the strength of a crypto system based on *the computational effort* for a successful cryptanalysis (FIPS 140-2¹). "The harder to breach the crypto, the stronger it is"
- Privacy measures:
 - defines to which extent the system will leak personal information
- Fault trees, Worst Case Analyses,

1. Federal Information Processing Standard - used to accredit cryptographic modules

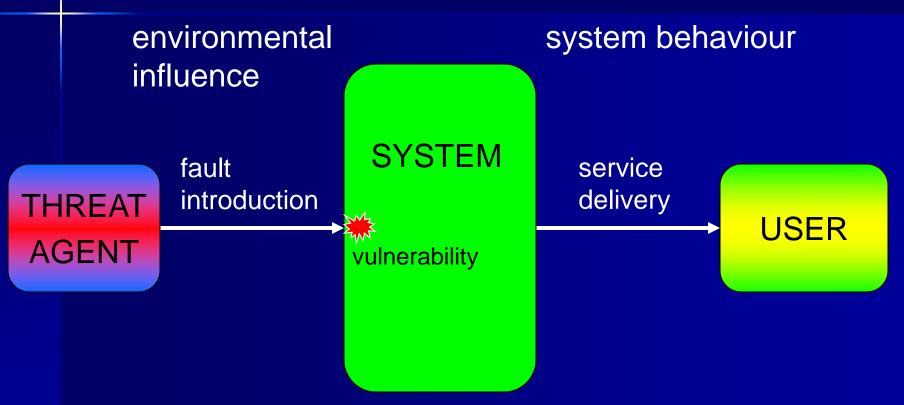

Methods for "measuring" security IV - tools

- ISO/IEC 27004: Information security management Measurement
 measures the effectiveness of Information Security Management
 System processes and controls
- OCTAVE (Operationally Critical Threat, Asset, and Vulnerability Evaluation):
 - is a suite of tools, techniques, and methods for risk-based information security strategic assessment and planning. [CERT]
- OSSTMM (Open-Source Security Testing Methodology Manual):
 - is a document of security testing methodology and a set of rules and guidelines for which, what, and when events are tested [ISECOM]
- CVSS (Common Vulnerability Scoring System):
 - CVSS is an industry standard for assessing the severity of computer system security vulnerabilities

Attribute Based Metrics -

- A Conceptual Model for Security and Dependability

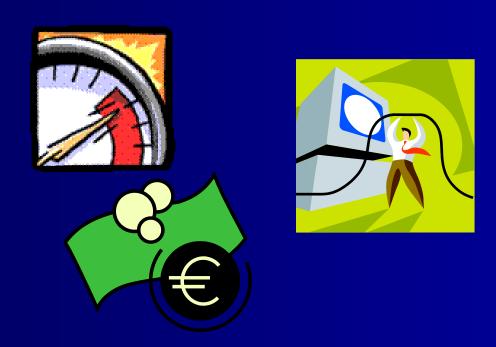
Black Box Approach



- Our approach is based upon system interaction with the environment, i.e. input and output
- Input: Environmental influence
 - Fault introduction: malicious, external
- Output: System behaviour:
 - delivery of service, denial of service
 - USERs and NON-USERs

A very simple system model

threat attack intrusion error


failure

A system model wrt security and dependability

PROTECTIVE ATTRIBUTES BEHAVIOURAL ATTRIBUTES system behaviour environmental influence delivery-ofservice **SYSTEM USER** fault availability, introduction **THREAT** reliability safety **AGENT** integrity vulnerability denial-of-NONservice **USER** confidentiality, exclusivity failure threat intrusion attack error

Attribute Based Metrics -

- Security and Dependability Metrication

The overall idea

- Security is a composite concept and cannot easily be measure as such
- The same goes for dependability
- However, we can combine the two and split them up into primitive attributes
- We can more easily define metrics for these primitive attributes

Two different Types of Metrics

- Protective metrics (INPUT)
 - embodies the notion of protection
 - most important characteristics of security (i.e. integrity)
 - Status today: not much available

- relates to system behaviour
- dependent on protective security
- Status today: many metrics exist, at least for the service delivery
- Concept (MTTF etc)

Protective Metrics

Protective metrics should quantify:

 the extent to which the system is able to protect itself against unwanted external influence, i.e. integrity

Two types of protective metrics (at least)

- System-related (e.g. based on Protective Mechanisms)
- Threat agent-related (e.g. based on Attacker Effort)

Protective Metrics (cont'd)

System-related metrics

- measures the strength of the protection mechanisms
- combined strength of security mechanisms
- However, no absolute guarantee of higher integrity with stronger mechanisms (as security is absence of vulnerabilities)

- Threat Agent-related metrics

- measures the effort expended by an attacker to make a breach into the system, i.e. to compromise integrity
- effort could include factors such as time, skill level, attacker reward
- the effort expended to make an intrusion reflects the security of the system
- Mean Time To Intrusion (MTTI)

Behavioural Metrics

Behavioural metrics:

Quantify system behaviour

Such measures already exist, e.g. for:

- Reliability: MTTF
- Availability: MTTF/(MTTF+MTTR)
- Safety: MTTCF

But less so for:

- Confidentiality
- Exclusivity

Causal Chain of Impairments

Threat → Attack → Intrusion → Error Failure

- Note that a failure may (or may not) originate from an attack.
- Or vice versa, there can be a failure without an attack
- There is an unknown delay (0 -> ∞) between the attack and the failure (latent errors)
- Thus: Insufficient integrity behaviour

may lead to

degraded

A few observations

- The end-user perspective: the user does not care why there is a failure, only that there must be none
- Safety is a subset of other behavioural attributes
- The causal chain between impairments
- Note that a failure may (or may not) originate from an attack
- Or vice versa, there can very well be a failure without an attack
- The time aspect implies an unknown delay between the attack and the failure (if any) – latent errors

Security metrics research – suggested areas

- NIST suggests the following security metrics research areas:
 - Formal models related to security metrics ("the absence of formal models has hampered progress")
 - Historical data collection and analysis
 - Al assessment techniques
 - Praticable concrete measurement methods
 - Intrinsically measurable components
 ("developing components that are inherently attuned to measurement")

Conclusions

- An overall security metric is highly desirable
- We have given a brief overview over the state of research and available methods
- We have suggested that security (and dependability) is best measured by measuring its non-functional attributes
 - Protective metrics
 - System-related metrics (protection mechanism-based)
 - Threat-related metrics (effort-based)
 - Behavioural metrics
- Integrity is the essence of traditional security

