Parallel Haskell
with the Par Monad
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Parallelism is everywhere

 Hardware
— Many computers
— Multiple cores / hardware threads
— GPUs

* Software
— Many services
— Many clients of a service
— Many shards of a database



Parallel

multi-core programming
get the answer quicker
deterministic (usually)
declarative

image manipulation
machine learning
database join
spreadsheet calculation

Concurrent

multi-threaded programming
do things at the same time
nondeterministic

imperative (usually)

web server

GUI

chat server
telephone exchange



Different tradeoffs need different APlIs



Landscape

e Parallel
— par/pseq
— Strategies
— Par Monad
— Repa
— Accelerate

— DPH Haxl?
e Concurrent

— forklO

— MVar

— STM

— async

— Cloud Haskell



Parallel FP at Facebook

friendsOf x intersect friendsOf y

e Calculate the set of friends in common
between users x and y

* friendsOf is a remote database query
* Must perform two friendsOf calls in parallel

e Our solution: an Applicative/Monad with
implicit concurrency (or parallelism?)



What we're going to do today...

e Parallelise some simple programs with the Par monad

e Compile and run the code, measure its performance.
— Learn about measuring speedup

* Debug performance with the ThreadScope tool

* Look at plenty of examples.



History

* par/pseq (1996)
— Simple, elegant primitives
— Pure, deterministic parallelism for a lazy
programming language
e Evaluation Strategies (1998, revised 2010)

— Added parallelism over data structures

» (for example, evaluating the elements of a list in
parallel)

— Composability
— Modularity



Use lazy evaluation for parallelism?

e Strategies is based on lazy evaluation:
— computation builds a lazy data structure
— evaluate it in parallel

e Separates computation from parallelism

— modularity

* But
— dependencies are implicit
— understanding evaluation order can be tricky



The Par Monad

* Doesn’t rely on lazy evaluation
* Dependencies are explicit

* Modularity via higher-order skeletons (no
magic here, just standard Haskell abstraction
techniques)

* |t's a library written entirely in Haskell
— Pure API outside, unsafePerformlO + forklO inside
— Write your own scheduler!



The basic idea

* Think about your computation as a dataflow
graph.



Par expresses dynamic dataflow




The Par Monad

Par is a monad for

parallel computation
data Par a

instance Monad Par
Parallel computations
are pure (and hence

runPar :: Par a -> a deterministic)

fork :: pPar () -> Par ()

data Ivar a results are communicated
get :: Ivar a -> Par a
put :: NFData a => Ivar a -> a -> Par ()




How does this make a dataflow graph?

do v <- new
fork $ put v (f x)

get v do v <- new
fork $§ ...
e fork creates a new node get v
in the graph

* get creates a new edge

— from the node
containing the put

— to the node containing
the get




A bit more complex...

do vl <- new
V2 <- hew
fork $ put vl (f x)
fork $ put v2 (g x)

get vl
get vZ2
return (vl + v2)

* runPar evaluates the graph

* nodes with no dependencies
between them can execute
in parallel



A couple of things to bear in mind

* putis fully strict

put :: NFData a => Ivar a -> a -> Par ()

— all values communicated through [Vars are fully
evaluated

 The programmer can tell where the computation is
happening, and hence reason about the parallelism

— (there is a head-strict version put_ but we won’t be
using it)

e put twice on the same [Var is an error
— This is a requirement for Par to be deterministic



Running example: solving Sudoku

— code from the Haskell wiki (brute force search
with some intelligent pruning)

— can solve all 49,000 problems in 2 mins
— input: a line of text representing a problem

SN T 2.15.......... 637..cccune. 68...4.....23........ 7....
241..8............. 3..4.5..7..1.....3..... 51.6....2...5.3...7...
eennn24...10.000.....8.3.7..1..1..8..5.....2......2.4...6.5..7.3...........

import Sudoku

solve :: String -> Maybe Grid



Solving Sudoku problems

e Sequentially:
— divide the file into lines
— call the solver for each line
main :: I0 ()
main = do

[f] <- getArgs
grids <- fmap lines $ readfFile f

print (length (filter isJust (map solve grids)))

solve :: String -> Maybe Grid



Compile the program...

$ ghc -02 sudoku-parl.hs
[1 of 2] Compiling Sudoku ( Sudoku.hs, Sudoku.o )

[2 of 2] Compiling Main ( sudoku-parl.hs, sudoku-parl.o )
Linking sudoku-parl ...
$




Run the program...

$ ./sudoku-parl sudokul?7.1000.txt +RTS -s
./sudoku-parl sudokul7.1000.txt +RTS -s
1000
2,392,198,136 bytes allocated in the heap
38,689,840 bytes copied during GC
213,496 bytes maximum residency (14 sample(s))
94,480 bytes maximum slop
2 MB total memory in use (0 MB lost due to fragmentation)

elapsed)
elapsed)
elapsed)
elapsed)
elapsed)




Now to parallelise it

* | have two cores on this laptop, so why not
divide the work in two and do half on each
core?



Sudoku solver, version 2

 Divide the work in two:

import Control.Monad.Par

main :: I0 ()
main = do
[f] <- getArgs
grids <- fmap lines $ readFile f

let (as,bs) = splitAt (length grids div  2) grids

print $ length $ filter isJust $ runPar $ do
1l <- new
12 <- hew
fork $ put i1 (map solve as)
fork $ put 12 (map solve bs)
as' <- get il
bs' <- get i2
return (as' ++ bs')




Compile it for parallel execution

$ ghc -02 sudoku-par2.hs -threaded
[1 of 2] Compiling Sudoku ( Sudoku.hs, Sudoku.o )

[2 of 2] Compiling Main ( sudoku-par2.hs, sudoku-par2.o )
Linking sudoku-par2 ...
$




Run it on one processor first

> ./sudoku-par2 sudokul7.1000.txt +RTS -s

./sudoku-par2 sudokul?.

1000
2,400,398,952 bytes
48,900,472 bytes
3,280,616 bytes
379,624 bytes

1000.txt +RTS -s

allocated in the heap

copied during GC

maximum residency (7 sample(s))
maximum slop

11 MB total memory in use (0 MB lost due to fragmentation)

A little slower (was 3.02
before). Splitting and
reconstructing the list has
some overhead.

elapsed)
elapsed)
elapsed)
elapsed)
elapsed)




Runiton 2

Processors

-N2 says “use 2 OS threads”
Only available when the

> ./sudoku-par2 sudokul7.1000.txt +RTS -s -N2 program was compiled with

./sudoku-par2 sudokul?.

1000
2,400,207,256 bytes
49,191,144 bytes
2,669,416 bytes
339,904 bytes

1000.txt +RTS -s -N2 -threaded

allocated in the heap

copied during GC

maximum residency (7 sample(s))
maximum slop

9 MB total memory in use (0 MB lost due to fragmentation)

elapsed)
elapsed)

elapsed) R
elapsed)
elapsed) ‘ Speedup, yay!

e




Calculating Speedup

* Calculating speedup with 2 processors:
— Elapsed time (1 proc) / Elapsed Time (2 procs)
— NB. not CPU time (2 procs) / Elapsed (2 procs)!

— NB. compare against sequential program, not
parallel program running on 1 proc

* Speedup for sudoku-par2: 3.02/1.99 = 1.52

— not great...



Why not 2?

* there are two reasons for lack of parallel
speedup:
— less than 100% utilisation (some processors idle
for part of the time)

— extra overhead in the parallel version

* Each of these has many possible causes...



A menu of ways to get poor speedup

e |ess than 100% utilisation
— Not enough parallelism in the algorithm
— Uneven work loads

* Extra overhead due to parallelism
— Algorithmic overheads

— Larger memory requirements leads to GC
overhead

e Other overheads in the runtime



So how do we find out what went wrong?

 We need profiling tools.
 GHC has ThreadScope
* Use ThreadScope like this:

$ ghc -02 sudoku-par2.hs -threaded -eventlog
[1 of 2] Compiling Sudoku ( Sudoku.hs, Sudoku.o )
[2 of 2] Compiling Main ( sudoku-par2.hs, sudoku-par2.o )

Linking sudoku-par2 ...
$ ./sudoku-par2 +RTS -N2 -1
$ threadscope sudoku-par2.eventlog
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Uneven workloads...

* So one of the tasks took longer than the other,
leading to less than 100% utilisation

let (as,bs) = splitAt (length grids div 2) grids

* One of these lists contains more work than the
other, even though they have the same length
— sudoku solving is not a constant-time task: it is a

searching problem, so it depends on how quickly the
search finds the solution



Partitioning

let (as,bs) = splitAt (length grids div 2) grids

* Dividing up the work into a small, fixed

number of chunks is often
— leads to underutilisation if t

— limits the amount of paralle

nad.

ne chunks are uneven

ism (2 here)



Partitioning

 The Par monad has a scheduler built-in
— it spreads the work across the available processors

 We just need to create enough work by calling fork
more often, with smaller work items.

— the Par monad scheduler can then make better use of our
Processors.

Large work items

Small work items

Adding a processor




parMap

* Let’s use the Par monad to define the parMap
pattern. First expand our vocabulary a bit:

spawn :: Par a -> Par (Ivar a)
spawn p = do r <- new

fork $ p >>= put r
return r

* now define parMap:

parMap :: NFData b => (a -> b) -> [a] -> Par [b]
parMap f as = do

1bs <- mapM (spawn . return . f) as
mapM get 1ibs




What is the dataflow graph?

get get




Parallel sudoku solver version 3

main :: I0 ()
main = do

[f] <- getArgs
grids <- fmap lines $ readFile f
print $ length $ filter isJust $ runPar $ parMap solve grids

* Much simpler than splitting into two lists
* How does it perform?



sudoku-par3 on 2 cores

./sudoku-par3 sudokul7.1000.txt +RTS -N2 -s
1000
2,400,973,624 bytes allocated in the heap
50,751,248 bytes copied during GC
2,654,008 bytes maximum residency (6 sample(s))
368,256 bytes maximum slop
9 MB total memory 1in use (0 MB lost due to fragmentation)

elapsed)
elapsed)
elapsed)
elapsed)
elapsed)

* Speedup: 3.02/1.68 =1.79
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Why only 1.79?

* That bit at the start of the profile doesn’t look
right, let’s zoom in...
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Why only 1.79?

* |t looks like these garbage collections aren’t very
narallel (one thread is doing all the work)

* Probably: lots of data is being created on one
core

e Suspect this is the parMap forcing the list of lines
from the file (lines is lazy)

* Note in a strict language you would have to split

the file into lines first

— in Haskell we get to overlap that with the parallel
computation




Granularity

* Granularity = size of the tasks

— Too small, and the overhead of fork/get/put will
outweigh the benefits of parallelism

— Too large, and we risk underutilisation (see
sudoku-par2.hs)

— The range of “just right” is often quite wide

* Let’s test that. How do we change the
granularity?



parMap with variable granularity

parMapChunk :: NFData b => Int -> (a -> b) -> [a] -> Par [b]
parMapChunk n f xs = do

Xss <- parMap (map f) (chunk n xs)

return (concat Xxss)

chunk :: Int -> [a] -> [[a]]
chunk _ [] = []
chunk n xs = as : chunk n bs

where (as,bs) = splitAt n xs

* split the list into chunks of size n
* Each node processes n elements
e (this isn’t in the library, but it should be)



Final version of sudoku: chunking

* sudoku-par4.hs

main :: IO ()
main = do
[f,n] <- getArgs

grids <- fmap lines $ readFile f
print $ length $ filter isjust §$
runPar $ parMapChunk (read n) solve grids




Results with sudoku17.16000.txt

No chunks (sudoku-par3):

Total time 43.71s (43.73s elapsed)
chunk 100, -N1:

Total time 44.43s ( 44.44s elapsed)

No chunks, -N8:

Total time 67.73s ( 8.38s elapsed)
(5.21x)
chunk 10, -N8:

Total time 61.62s ( 7.74s elapsed)
(5.64x)
chunk 100, -N8:

Total time 60.81s ( 7.73s elapsed)
(5.65x)

chunk 1000, -N8:

Total time 61.74s ( 7.88s elapsed)
(5.54x)




Granularity: conclusion

e Use parListChunk if your tasks are too small

* |f your tasks are too large, look for ways to
add more parallelism

* Around 1000 tasks is typically good for <16
cores



Enough about sudoku!

* We've been dealing with flat parallelism so far

 What about other common patterns, such as
divide and conquer?



Examples

* Divide and conquer parallelism:

parfib :: Int -> Int -> Par Int
parfib n

| n <= 2 return 1

| otherwise do

X <- spawn $ parfib (n-1)
y <- spawn $ parfib (n-2)
x’ <- get x

y’ <- gety

return (x’ + y’)




Note...

e We have to thread the Par monad to all the sites
we might want to spawn or fork.

* Why? Couldn’t we just call a new runPar each
time?

runPar :: Par a -> a

e Each runPar:

— Waits for all its subtasks to finish before returning
(necessary for determinism)

— Fires up a new gang of N threads and creates
scheduling data structures: it’s expensive

— So we do want to thread the Par monad around



Granularity in divide-and-conquer

* |f you try to run this, performance will be terrible:

parfib :: Int -> Par Int
parfib n
| n <= 2 = return 1
| otherwise = do
X <- spawn $ parfib (n-1)

y <- spawn $ parfib (n-2)

x’ <- get x

y <- gety
return (x’ + y’)

* For a start, it's 50x slower than the sequential
version

— overhead of the Par monad



As we saw before, when our tasks are too small we
need to increase the granularity
Here there’s no obvious place to do chunking

Instead we want to set a depth threshold for task
creation

threshold



parfib takes an extra parameter, the threshold
below the threshold, we use the sequential fib
a threshold of e.g. 25 is enough to give almost
perfect speedup

parfib :: Int -> Int -> Par Int
parfib n t
| n <= 2 return 1
| n <=t fib n
| otherwise = do
X <- spawn $ parfib (n-1)

y <- spawn $ parfib (n-2)
’ <- get X

y' <- gety

return (x’ + y’)

fib :: Int -> Int
fib n = ...




Skeletons

* Parallelism often fits a well-known pattern

 We've seen two common patterns so far:
— parallel map
— divide-and-conquer

 The idea of a skeleton is to abstract the
pattern as a reusable higher-order function

e parMap is already a skeleton



Divide and conquer as a skeleton

divCong :: NFData sol
=> (prob -> Bool) -- indivisible?
-> (prob -> (prob,prob)) -- split into subproblems
-> (sol -> sol -> sol) -- join solutions
-> (prob -> sol) -- solve a subproblem
-> (prob -> sol)

divConq indiv split join f prob
= runPar $ go prob
where
go prob
| indiv prob = return (f prob)
| otherwise = do
let (a,b) = split prob
i <- spawn $ go a
j <- spawn $ go b
a <- get 1
b <- get j
return (join a b)




* Using the skeleton
 Our “prob” is (Int,[Integer])
* j.e.pairthe threshold counter with the list

parsort :: Int -> [Integer] -> [Integer]
parsort thresh xs
= divCong indiv divide merge (sort . snd) (thresh,xs)
where
indiv (n,Xxs) = n

divide (n,xs) , (n-1, bs))
where (as,bs '

* Nice compact definition of parallel sorting

 Important: the details of the parallelism are
hidden in divConq (we could have used
Strategies)



Rule of thumb

* Try to separate the application code from the
parallel coordination by using higher-order
skeletons

* Good abstraction facilities lead to modularity



Dataflow problems

* Par really shines when the problem is easily
expressed as a dataflow graph, particularly an
irregular or dynamic graph (e.g. shape
depends on the program input)

* |dentify the nodes and edges of the graph

— each node is created by fork

— each edge is an IVar



Dataflow problems

* Par really shines when the problem is easily
expressed as a dataflow graph, particularly an
irregular or dynamic graph (e.g. shape
depends on the program input)

* |dentify the nodes and edges of the graph

— each node is created by fork

— each edge is an IVar



Example

* Consider typechecking a functional program
* Aset of bindings of the formx =e
* To typecheck a binding:

— input: the types of the variables mentioned in e
— output: the type of x

* So this is a dataflow graph
— a node represents the typechecking of a binding
— the types of identifiers flow down the edges

— It’s a dynamic dataflow graph: we don’t know the
shape beforehand



Example

f =
g:
h =
j =




Implementation outline

* We need a type environment:

type TypeEnv = Map Var (Ivar Type)

* To infer a type for a binding:
— get the types of all its free variables
— infer the type
— put the result in the result IVar

* Do this for all the bindings in parallel, and Par will
automatically take advantage of any parallelism

e (details in the book)



Results

let id = \x.x 1in
Tet x = \f.f id 1id 1in
let =\f . f x x in
Tet =\f . f x x in
let =\f . f x x in

Tet = let f = x in \z . z in
lTet \f.f id id in
lTet \f . fyyin
lTet \f . fyyin
lTet \f . fyyin

let x = Tet f =y in \z . z in
\f. Tet g =\a. axyin f

e -N1:1.12s
e -N2:0.60s (1.87x speedup)

e available parallelism depends on the input: these
bindings only have two branches



Pipeline parallelism

What if we want to pass not

a single value, but a stream,

and process elements of the
stream in parallel?




IList and Stream

data IList a = Null
| Cons { hd :: a
, tl :: Stream a }

type Stream a = IVar (IList a)

e Stream is a “lazy list” in the Par monad
 We need a way to:
— Generate a new Stream

— Process a stream (map, filter)
— Consume a Stream (fold)

* Plugging these together gives us parallel pipeline
processing.

e Stream code is in Stream.hs



Generate a Stream

 One way: generate a stream from a (lazy) list:

fromList :: NFData a => [a] -> Par (Stream a)

fromList xs =
do var <- new
fork $ loop xs var
return var

where
loop [] var = put var Null
Toop (x:xs) var = '
do tail <- new '

put var (Cons x tail)
lToop xs tail




Filter a Stream

NFData a => (a -> Bool) -> Stream a
-> Par (Stream a)

streamFilter p instr = do
outstr <- new
fork $ Toop instr outstr
return outstr

where
lToop instr outstr = do
v <- get instr
case v of
Null -> put outstr Null
cons x instr'
| p x -> do
tail <- new
put_ outstr (Cons x tail)
Toop instr' tail
| otherwise -> do
lToop instr' outstr

streamFilter




Consume a stream

* Analogue of foldl:

streamFold :: (a -> b -> a) -> a -> Stream b -> Par a
streamFold fn acc instrm =

do 1lst <- get instrm

case ilst of
Null -> return acc
cons h t -> streamFold fn (fn acc h) t

* This version is not strict — maybe it should be?



Pipeline example

* Euler problem 35: “Find all the circular primes
below 1,000,000”. A circular prime is one in
which all rotations of its digits are also prime.

main :: IO ()
main = print $ runPar $ do

sl <- streamFromList (takewhile (<1000000) primes)
s2 <- streamFilter circular sl
streamFold (\a _ -> a + 1) 0 s2

* Achieves 1.85 speedup vs. the sequential version
on 2 cores (does not scale further)

* Another example (streaming RSA encoding/
decoding) is in the sample code.



Limiting stream size

 What happens if the stream producer runs
much faster than the stream consumer?

* Typically systems use some form of
“backpressure” to solve this

 We can address this problem in the stream
type:

data IList a = Null
| Cons { hd :: a
, t1 :: Stream a } Computaﬁon

| Fork (Par ()) that creates

(IList a) more of the

stream

type Stream a = IVar (IList a)



Resources

pmgﬁé?g‘t http://community.haskell.org/~simonmar/pcph/

Concurrent
Programming
in Haskell

O'REILLY*

* These slides:

http://community.haskell.org/~simonmar/Chalmers2014.pdf

 Code samples

https://github.com/simonmar/parconc-examples

http://hackage.haskell.org/package/parconc-examples

cabal unpack parconc-examples




ThreadScope that works

$ git clone https: ithub.com/Mikolaj/ThreadScope.git

$ cd ThreadScope
$ cabal install




