
CRDTs
Data Types for EC Systems

Distributed Systems
ARE

Parallel Systems

Problem?

Eventual Consistency
Eventual consistency is a consistency model used in
distributed computing that informally guarantees that, if no
new updates are made to a given data item, eventually all
accesses to that item will return the last updated value. "
"

--Wikipedia"

Distributed

Distributed System
A distributed system is one in which the failure of a
computer you didn't even know existed can render your
own computer unusable"
—Leslie Lamport"

Scale Up
$$$Big Iron
(still fails)

Scale Out
Commodity Servers
CDNs, App servers

Expertise

Fault
Tolerance

Low
Latency

Low Latency
 Amazon found every 100ms of latency cost

them 1% in sales.

Low Latency
Google found an extra 0.5 seconds in search
page generation time dropped traffic by 20%.

Trade Off

CAP

C A
http://aphyr.com/posts/288-the-

network-is-reliable

http://aphyr.com/posts/288-the-network-is-reliable

C A

C A

C A
PEL

EC
Causal
RYOW

Session
Monotonic Read

Pick Your Own
Replicated Data Consistency Explained Through

Baseball

http://research.microsoft.com/apps/pubs/
default.aspx?id=157411 (Doug Terry)

Who Pays?

Developers
But how?

Google F1
“We have a lot of experience with eventual consistency
systems at Google.”"
"

“We find developers spend a significant fraction of their time
building extremely complex and error-prone mechanisms to
cope with eventual consistency”

Google F1
“Designing applications to cope with concurrency anomalies in
their data is very error-prone, time-consuming, and ultimately not
worth the performance gains.”

Riak Overview

Riak Overview
Erlang implementation of Dynamo

{“key”: “value”}

Riak Overview
Consistent Hashing

Riak Overview
Dynamic Membership

Riak Overview
Replication factor

Replica Replica Replica

Availability
Any non-failing node can respond to any request"

"

--Gilbert & Lynch

Riak Overview
Two Writes: {Writer, Value, Time}

[{a, v1, a1}] [{b, v2, b1}] [{a, v1, a1}]

Riak Overview
Last Writer Wins
Allow Mult

Riak Overview
Last Writer Wins [{b, v1, t2}]

[{b, v1, t2}]

[{b, v1, t2}]

http://aphyr.com/posts/
299-the-trouble-with-

timestamps

http://aphyr.com/posts/299-the-trouble-with-timestamps

Riak Overview
Allow Mult [{a, v1, a1}, {b, v2, b1}]

[{a, v1, a1}, {b, v2, b1}]

[{a, v1, a1}, {b, v2, b1}]

User specified

Merge

Semantic
Resolution

Dynamo
The Shopping Cart

A B

HAIRDRYER

A B

HAIRDRYER

A B

PENCIL CASE

HAIRDRYER

A B

PENCIL CASEHAIRDRYER

A B

[HAIRDRYER], [PENCIL CASE]

Merge
Set Union of Values

Simples, right?

Deterministic

Merge

Deterministic

Merge
Idempotent

Deterministic

Merge
Idempotent
Associative

Deterministic

Merge
Idempotent
Associative

Commutative

Set Union?
“Anomaly”
Reappear

Removes?

Absence
How can you tell if X is missing from A but
present in B because A hasn’t yet seen the
addition, or if A has removed it already?

Complexity

Ad Hoc

CRDTs

CRDTs
Convergent Replicated Data Types

CRDTs
Commutative Replicated Data Types

CRDTs
Conflict Free Data Structures

Theory

This project is funded by the European Union,
7th Research Framework Programme, ICT call 10,

grant agreement n°609551.

Join Semi-lattice

 Join Semi-lattice
Partially ordered set; Bottom; least upper bound

⊥ ⨆𝐒 ⟩⟨ , ,

Associativity: (X⨆Y)⨆Z = X⨆(Y⨆Z)

 Join Semi-lattice

Commutativity: X⨆Y = Y⨆X
 Join Semi-lattice

Idempotent: X⨆X = X

 Join Semi-lattice

Objects grow over time; merge computes LUB

 Join Semi-lattice

Examples

 Join Semi-lattice

b a c

a, b a, c

a, b, c

Set; merge function: union.

b, c

3 5 7

5 7

7

Increasing natural; merge function: max.

F F T

F T

T

Booleans; merge function: or.

Deterministic

Merge
Idempotent
Associative

Commutative

LVars
https://www.cs.indiana.edu/~lkuper/papers/lvars-fhpc13.pdf

https://www.cs.indiana.edu/~lkuper/papers/lvars-fhpc13.pdf

Pick your semantic
Add wins

Remove wins
Keep both

Trade Off
More metadata == bigger objects

"

Replicated Data Types: Specification, Verification, Optimality	

"

Sebastian Burckhardt , Alexey Gotsman, Hongseok Yang, Marek Zawirski

Actors?
Version Vectors
Entry Per Actor

PN-Counter
Counters: O(Actors)

A= [{a, 1,0}]

B=[{b, 0, 1}] C=[{c, 2, 0}]

Client

Client

Client
INCR 1

DECR 1

INCR 2

A= [{a, 1,0}]

B=[{b, 0, 1}] C=[{c, 2, 0}]

A= [{a, 1,0}]

B=[{a, 1, 0},
{b, 0, 1}]

C=[{b, 0, 1},
{c, 2, 0}]

Client

Client

Client
INCR, INCR, DECR,…

DECR, INCR,…

INCR,DECR,…

A= [{a, 1, 3},
 {b, 2, 1}]

C=[{b, 2, 1},
 {c, 3, 1}]

B=[{a, 0, 1},
 {b, 4, 2},
 {c, 1, 0}]

A= [{a, 1, 3},
 {b, 2, 1}]

B=[{a, 0, 1},
 {b, 4, 2},
 {c, 1, 0}]

C=[{b, 2, 1},
 {c, 3, 1}]

AB=[{a, 1, 3},
 {b, 4, 2},
 {c, 1, 0}]

C=[{b, 2, 1},
 {c, 3, 1}]

AB=[{a, 1, 3},
 {b, 4, 2},
 {c, 1, 0}]

ABC=[{a, 1, 3},
 {b, 4, 2},
 {c, 3, 1}]

=
P=1+4+3	

N=3+2+1

8-6=2

Sets
Sets: Add, Remove, Membership.

Sets
Sets: Add wins O(Actors + Elements)

Maps
Maps: Recursive; Associative Array;

Nestable

Maps
Maps: Update wins; O(Actors + Elements)

Composition
Maps: LWW-Register, Booleans, Sets and

Maps

Use Case
• Mobile game progress

data"
• Game State"

• Non trivial merge

Desired Outcome
• Express updates as operations"
• Apply related updates together"
• Avoid “hand coded” resolution

riak_dt
git clone git@github.com:basho/riak_dt.git

Evolution
of a Set

[{a, 1}, {b, 3}, {c, 2}]

Causality
Version Vectors

[{a, 2}, {b, 3}, {c, 2}] [{a, 1}, {b, 3}, {c, 2}]>

Causality
Version Vectors

[{a, 2}, {b, 3}, {c, 2}] [{a, 1}, {b, 4}, {c, 2}]

[{a, 2}, {d, 1}, {c, 2}] [{a, 2}, {b, 4}, {c, 2}]

Causality
Version Vectors

Causality
Version Vectors

‘Dots’ are Events

[{a, 2}, {b, 3}, {c, 2}] {b, 1} {b, 2} {b, 3}

‘Dots’ are Events
Causality

Evolution of a Set

G-SET

Evolution of a Set

G-SET

Evolution of a Set

G-SET
2P-SET

Evolution of a Set

U-SET

Evolution of a Set

U-SET
OR-SET

Adds

a2

a3

Removes

Bob

Pete

a1 Shelly

a2

a3

Bob

Pete

a1 Shelly

a4 Anna

b2 Shelly

Evolution of a Set

U-SET
OR-SET

Evolution of a Set

U-SET
OR-SET

OR-SWOT

[{a, 1}]

{a, 1} Shelly

[{a, 1}] [{a, 1}

{a, 1} Shelly {a, 1} Shelly

[{a, 1}] [{a, 1}, {b, 3}]

{a, 1} Shelly

{b, 1}

{b, 2}

{b, 3}

Bob

Pete

Phil

{a, 1} Shelly

[{a, 1}, {b,3}] [{a, 1}, {b, 3}]

{a, 1} Shelly

{b, 1}

{b, 2}

{b, 3}

Bob

Pete

Phil

{a, 1} Shelly

{b, 1}

{b, 2}

{b, 3}

Bob

Pete

Phil

[{a, 2}, {b, 3}]

{b, 1}

{b, 3}

[{a, 1}, {b, 3}]

Bob

Pete

{a, 1} Shelly

{b, 1}

{b, 2}

{b, 3}

Bob

Pete

Phil

{a, 1} Shelly

{a, 2} Anna

[{a, 2}, {b, 3}]

{b, 1}

{b, 3}

[{a, 2}, {b, 3}]

Bob

Pete

{a, 1} Shelly

{b, 1}

{a, 2}

{b, 3}

Bob

Pete

Anna

{a, 1} Shelly

{a, 2} Anna

Quickchecking Our Work

• OR-Set (Inefficient, Simple)"

• ORSWOT (Complex)"

• EQC Statem (OR-Set IS the Model)

Quickchecking Our Work

• Single Key"

• 2-20 “Replicas”"

• Riak as a list of 3-tuples"

• [{actor(), orset(), orswot()}]

Quickchecking Our Work
• Generate Commands"

• Add, Remove, Merge"

• Test for equivalence"

• Per replica per command (post condition)"

• Merge all replicas

Riak 2.0 Beta
http://docs.basho.com/riak/

2.0.0beta2/downloads/

http://docs.basho.com/riak/2.0.0beta2/downloads/

And Then?
• Ad Hoc Composability"

• More compact CRDTs"

• Delta-Mutators (Baquero et al)"

• Actor Garbage Collection

Questions?
russelldb@basho.com

mailto:russelldb@basho.com?subject=

