CRDIs

Data Typesior EC Systems

Distributed Systems
ARE

Parallel Systems

Problem?

Eventual Consistency

Eventual consistency Is a consistency model used In
distributed computing that informally guarantees that, if no
new updates are made to a given data item, eventually all
accesses to that item will return the last upaated value.

--Wikipedia

Distributed

Distributed System

A distributed system is one in which the failure of a
computer you didn't even know existed can render your
own computer unusable

—Leslie Lamport

Scale Up

$$$Big Iron
(still fails)

Scale

Commodity Servers
CDNSs, App servers
Expertise

Fault
JTolerance

L atency

Low Latency

Amazon found every 100ms of latency cost
them 1% In sales.

Low Latency

Google found an extra 0.5 seconds in search
page generation time dropped traffic by 20%.

Trade Off

http://aphyvr.com/posts/288-the-
network-is-reliable

CA

http://aphyr.com/posts/288-the-network-is-reliable

EC

Causal
RYOW
Session

Monotonic Read

Pick Your Own

Replicated Data Consistency Explained Through
Baseball

http://research.microsoft.com/apps/pubs/
default.aspx?id=157411 (Doug Terry)

Who Pays?

Developers

BUt how?

Google F1

“We have a lot of experience with eventual consistency
systems at Google.”

“We find developers spend a significant fraction of their time
building extremely complex and error-prone mechanisms to
cope with eventual consistency”

Google F1

“‘Designing applications to cope with concurrency anomalies In
their data is very error-prone, time-consuming, and ultimately not
worth the performance gains.”

Riak Overview

Riak Overview

Erlang implementation of Dynamo

{"key". “value”}

sriak

Riak Overview

Consistent Hasning

Riak Overview

Dynamic Membership

Riak Overview

Replication factor

T]

7

/

/

Availability

Any non-failing node can respond to any request

--Gilbert & Lynch

Riak Overview

Two Writes:ZWriter, Value, Time}

e [

Riak Overview

Last Writer Wins
Allow Mult

RiakiOverview

Last Writer Wins b, v1, £2)]

[{b, v1, t2}]

[{b, v1, t2}]

nhttp://aphvr.com/posts/
299-the-trouble-with-

timestamps

http://aphyr.com/posts/299-the-trouble-with-timestamps

RiakiOverview

Allow Mult

[{a, v1, a1}, {b, v2, b1}]

[{a, v1, a1}, {b, v2, b1}]

[{a, v1, a1}, {b, v2, b1}]

User specified

Vierge

Semantic
Resolution

if {resuLtlhasCOnfiicts()) {
TODO: What should we dq???_

Dynamo
e Shopping Cart

~~ ~ >
T >

A B
L L

HAIRDRYER

sriak

[

HAIRDRYER ' '
— | \\ﬁ\
& &
A B

HAIRDRYER =" é© ZQ\/

%

\/
& &
A B
N N

PENCIL CASE

[

N\

HAIRDRYER -

\/

%

|

AN

PENCIL CASE
\/

[(N
S ——
|

% \\ﬁ\\
5 5
A B

'HAIRDRYER], [PENCIL CASE]
sriak

Vierge

Set Union of Values
Simples, right?

Vierge

Deterministic

Vierge

Deterministic
jldempotent

Vierge

Deterministic
jdempotent
Associative

Vierge

Deterministic
ldempotent
Associative
Commutative

Removes?

Set Union?
sAnomaly”
Reappear

Absence

How can you tell if X is missing from A but
present In B because A hasn't yet seen the
addition, or if A has removed it already?

Complexity

CRDTSs

Conyergent Replicated Data Types

CRDTSs

CommutativelReplicated Data Types

CRDTSs

Conftlict FreelData Structures

l

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A comprehensive study of
Convergent and Commutative Replicated Data Types

Marc Shapiro, INRIA & LIP6, Paris, France
Nuno Preguica, CI11, Universidade Nova de Lisboa, Portugal
Carlos Baquero, Universidade do Minho, Portugal

Marek Zawirski, INRIA & UPMC, Paris, France

|

m
|

ZIINRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

An Optimized Conflict-free Replicated Set

Annette Bieniusa, INRIA & UPMC, Paris, France
Marek Zawirski, INRIA & UPMC, Paris, France
Nuno Preguica, CITI, Universidade Nova de Lisboa, Portugal
Marc Shapiro, INRIA & LIP6, Paris, France
Carlos Baquero, HASLab, INESC TEC & Universidade do Minho, Portugal
Valter Balegas, CITI, Universidade Nova de Lisboa, Portugal

Sérgio Duarte CITI, Universidade Nova de Lisboa, Portugal

SN D = e — _

Dotted Version Vectors: Logical Clocks for Optimistic Replication

Nuno Preguica
CITI/DI
FCT, Universidade Nova de Lisboa
Monte da Caparica, Portugal
nmp @di.fct.unl.pt

Carlos Baquero, Paulo Sérgio Almeida,
Victor Fonte, Ricardo Gongalves

CCTC/DI
Universidade do Minho
Braga, Portugal

{cbm,psa,vff} @di.uminho.pt, rtg @Isd.di.uminho.pt

Abstract

In cloud computing environments, a large number
of users access data stored in highly available storage
systems. To provide good performance to geographi-
cally disperse users and allow operation even in the
presence of failures or network partitions, these sys-
tems often rely on optimistic replication solutions that
guarantee only eventual consistency. In this scenario,

F

sriak

The mentioned systems follow a design where the
data store is always writable. A consequence is that
replicas of the same data item are allowed to diverge,
and this divergence should later be repaired. Accurate
tracking of concurrent data updates can be achieved
by a careful use of well established causality tracking
mechanisms [5], [6], [7], [8]. In particular, for data
storage systems, version vectors [6] enables the system
to compare any pair of replica versions and detect if

AN SYMCFREE /X

This project is funded by the European Union,
/th Research Framework Programme, ICT call 10,
grant agreement n°609551.

<$111111111
bbb bbb R

‘ e = = == FIRST WORKSHOP ON THE
PRINCIPLES AND PRACTICE OF EVENTUAL CONSISTENCY

April 13, 2014, Amsterdam, The Netherlands
‘ ‘ ‘ ‘ ‘ Co- Iocated W|th EuroSys 2014

4

Join Semi-lattice

Join Semi-lattice

Partially ordered set; Bottom; (cast upper bounc

¢S, L, L)

sriak

Join Semi-lattice

Associativity: (XuY)uzZ = Xu(Yuz)

Join Semi-lattice

Commutativity: XuY =YuX

Join Semi-lattice

ldempotent: XuX =X

Join Semi-lattice

Objects grow over time; merge computes | '

sriak

Join Semi-lattice

Examples

 merge function: union.

Increasing natural; merge function: max.

Booleans; merge function: or.

Vierge

Deterministic
jldempotent
Associative
Commutative

Lvars

httpsy/Aiwvavawvics indianatedu/~likupen/papens/ivans=thpcl 3ipdf

https://www.cs.indiana.edu/~lkuper/papers/lvars-fhpc13.pdf

Pick your semantic

Add wins

Remove wins
Keep both

Trade Off

ViIore metadata == bigger objects

Actors?

Version Vectors
ENtRy’Per Actor

=Counter

counters: O(Actor.s)

B=[{b, O, 1}]

INC
*

DECR |

B=[{b, O, 1}]

B=[{a, 1, 0},

{b, 0, 1}]

B=[{a, O, 1},

{b, 4, 2},

< “l/l/0\ INCR, INC
: | \ - Clien
\ DECRINCR.... -

’

INCR,DECR, ...

B=[{a, 0, 1},
{b, 4, 2},
{c, 1, O}]

N=3+2+]
8-6=2

ABC=[{a, 1, 3},

{b, 4, 2},
{c, 3, 1}]

Sets: Adc

ove, Membership.

ets: Add wi

P(Actors + Elements)

v
aps: Recapilv! le; Associative Array;

stable

Maps: Updat%; O(Actors + Elements)

\

\ps: LWW-I%Ster, Booleans, Sets and

Use Case

, - {"gold": 500,
Mobile game progress rwood": 1250
aata "stone": 100,
. Game State "buildings": [
"house",
- Non trivial merge "forge"
"farm"
1}

Desired Outcome

- Express updates as operations
- Apply related updates together

- Avoid “hand coded” resolution

JSON Equivalent

Build Tower :: {"gold_counter":
- subtract 250 gold {"decrement": 250},
- subtract 500 wood "wood_counter":
- subtract 100 stone {"decrement": 500},
- add "tower" to buildings "stone_couner":

{"decrement": 100},
"puildings_set":
{"add": "tower"}}

riak dt

giticione git@github:com:basho/riak dt.git

Evelution

Ofia Set

Causality

Version Vectors

[{a, 1}, {b, 3}, {c, 2}]

Causality

Version Vectors

[{a, 2}, {b, 3}, {c, 2}] > [{a, 1}, {b, 3}, {c, 2}]

Causality

Version Vectors

[{a, 2}, {b, 3}, {c, 2}]

[{a, 1}, {b, 4}, {c, 2}]

[{a, 2}, {q, 1}, {c, 2}] [{a, 2}, {b, 4}, {c, 2}]

Causality

Version Vectors

are events

Causality

‘Jots are Events

Evolution of a Set

G-SET

Evolution of a Set

G-SET

Evolution of a Set

G-SET
2P-SET

Evolution of a Set

U-SET

Evolution of a Set

U-SET
OR-SET

Evolution of a Set

U-SET
OR-SET

Evolution of a Set

U-SET
OR-SET
OR-SWOT

[{a, 1}]

[{a, 1}]

TN

[{a, 1}]

[{a, 1}, {b, 3}]

[{a, 1}, {b,3]]

[{a, 1}, {b, 3}]

&

[{a, 2}, {b, 3}]

[{a, 1}, {b, 3}]

[{a, 2}, {b, 3}] [{a, 2}, {b, 3}]

>

Quickchecking Our Work

e OR-Set (Inefficient, Simple)
e ORSWOT (Complex)
e EQC Statem (OR-Set IS the Model)

sriak

Quickchecking Our Work

e Single Key
o 2-20 “Replicas”
e Riak as a list of 3-tuples

e [{actor(), orset(), orswot()}]

sriak

Quickchecking Our Work

e Generate Commands
e Add, Remove, Merge
e Test for equivalence
e Per replica per command (post condition)

e Merge all replicas

Riak 2.0 Beta

nttp://docs:bashno.com/riak/
2.0.0betaz2/downloads/

http://docs.basho.com/riak/2.0.0beta2/downloads/

And Then?

e Ad Hoc Composability
e More compact CRDTs
e Delta-Mutators (Baquero et al)

e Actor Garbage Collection

sriak

Questions?

russelldb@basho.com

mailto:russelldb@basho.com?subject=

