o e Bt
Ry

Erlang

Fault Tolerant

What is ERTS?

TRTS ta fre Friang Fastims Syibe

Maintainable

ERTS as source code:
See! [OTP]ertss
emulatar/
heam/
hipe/

etc/

ERTS as components:
The BEAM interpreter

Processes

. The Scheduler
HiPE
The Garbage Collector ;5

Where Did the Slave Node Go?

o=
€DUE

Sockets
o

. ERTS as memory areas:
p— sLaM

Saring

The Erlang Runtime
System: ERTS

and
the Erlang vM:
BEAM

R AN
! ‘!:i’-
’ ‘_ _f
T

']
@"}i! :3 _"

BB WV %
Es

. %

j;.

L . T e
" F -

AT ot

Ve g™ . '-";’L""ﬂ

e - ”
I] .
bt *e B
.
1- - ..
: ~ i : %
¢ .5 » .
1] .~
| ;
. X t . 8
. :
- - -
e
'I
.
.

Fault Tolerant

The right concurrency model.
Error & exception handling done right
Good libraries for the hard stuff

R AN
! ‘!:i’-
’ ‘_ _f
T

I.‘:ﬂ"'..i_t ,3 £

BRI %
Es

,_-
-
()

Y
\ A
-

Maintainable

Dynamically typed.
Symbolic and transparent data structures
An interactive shell

Scalable

The right concurrency model.
Good libraries for the hard stuff
Weird but efficient strings for I/0

The right concurrency
model

Lightweight processes
Message passing

Share nothing semantics
Don't stop the world GC

Monitors & Signals

Supervisor

Supervisar Supervisar

lllll

Error & exception handling done right

get_file(FN) ->
try file:open(FN) of

{ok, FileH} -> .
try read(FileH) of Su pe rVISor
{ok, File} -> File
catch
error:eof -> []
after
file:close(FileH)
end
end.
CI‘IIld CI’IiId
Supervisor Supervisor

Child Child Child Child

Dynamically &
Strongly
Typed

Symbolic and transparent data structure

Enables:

Hot code loading
Movable heaps & stacks
Transparency of data
Garbage Collection

Erlang type lattice: any(\

number() atom() reference()fun() port() pid() tuple() llst() binary()
1nteger() ﬂoat() nll() cons
v
none ()

All values are tagged, some are boxed.

Stack The String "Hello"

What is ERTS?

ERTS is the Erlang Runtime System.

SIMPLICITY |

ERTS as source code:

See: [OTP]/erts/
emulator/
beam/
hipe/
etc/

ERTS as components:
The BEAI\/I interpreter

Conceptually: 4 memory areas and a pointer:
A

The Scheduler
L ::";:: """"""""""""""""""

""""" HIPE
The Garbage CoIIector /0

e e

Processes

Conceptually: 4 memory areas and a pointer:

A Stack

A Heap

A Mailbox

A Process Control Block
A PID

. ERTS as memory areas:

Processes BEAM
CODE

ERT
CODE C-stack

P —ais

- .
P2 EE— — pzl(_)=-?Hello",
Scheduler B 1oL L ’
BEAM Queues a— 31T
Sockets = .
etc...

Binaries P99 —

PCB

Process
Control

Block Stack

Native
l Stack
Hea

MQ P
Message
Queue

See: [OTP]/erts/emulator/beam/er|_process.h

htop
stop
heap
hend
P
fcalls
reds
status
next
prev
prio
id
flags

Process
Control
Block

=Nl w GAJ 1111 IEN

ERTS Proce
CODE C-stack

Pl —
GC
Scheduler 5

BEAM ueues
P3 —

Sockets >
etc...

P2 —

eeeeeeeeeeee

=, Binaries P99 —

The Tag Scheme

HEADER (see below)

dadaaaaaaaaaaaaaaaaaaaaaaaattttoo

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPOL
PPPPPPPPPPPPPPPPPPPPPPPPPPPPPP1O

nnnnnnnnnnnnnnnnnnnnnnnnnnnn

ddaaaaaaaaaaaaaaaaaaaaaaaabnoeoo
VVVVVVVVVVVVVVVVVVVVVVVVVVE00100
VVVVVVVVVVVVVVVVVVVVVVVVVVO01x00
VVVVVVVVVVVVVVVVVVVVVVVVYVVE10000
VVVVVVVVVVVVVVVVVVVVVVVVVVO10100
VVVVVVVVVVVVVVVVVVVVVVVVVV011000
VVVVVVVVVVVVVVVVVVVVVVVVVVEO11100
VVVVVVVVVVVVVVVVVVVVVVVVVV100000
VVVVVVVVVVVVVVVVVVVVVVVVVV100100
VVVVVVVVVVVVVVVVVVVVVVVVYVV101000
VVVVVVVVVVVVVVVVVVVVVVVVVV101100
VVVVVVVVVVVVVVVVVVVVVVVVVV110000
VVVVVVVVVVVVVVVVVVVVVVVVVV110100
VVVVVVVVVVVVVVVVVVVVVVVVVV111000
VVVVVVVVVVVVVVVVVVVVVVVVVV111100

CONS

BOXED (pointer to header)

PID
PORT
ATOM
CATCH

NIL (i always zero...)

SMALL INT
ARITYVAL

BINARY AGGREGATE

Tuple

BIGNUM with sign bit

REF

FUN

FLONUM

EXPOR
REFC_BINARY
HEAP BINARY
SUB BINARY
Not used
EXTERNAL PID

EXTERNAL PORT | EXTERNAL THINGS

EXTERNAL REF
Not used

| BINARIES

THINGS

An example
The string "Hello", i.e. the list
[104, 101, 108, 108, 111]

htap
stop
hwap
hend
®

fealls

i

Mags
et
prey

PCB

Process
Control
Block

ADR BINARY VALUE + DESCRIPTION

hend -> L T T T T

stop -=

htop ->

0006E
11111111 11111111 11

128

(1)
NIL

+ list tag

+ list tag
104 bsl 4 +
+ list tag
101 bsl 4 +
+ list tag
108 bsl 4 +
+ list tag
108 bsl 4 +

111 bsl 4 +

small

small

small

small

cee== | =2

->

hend

stop ->

htop ->

ADR

132
128
124
120
116
112
108
104
100

96

100000000
|

00000000 COOCO0E0 10000001 |

BINARY

|
100000000

| 00000000
| 00000000
| 00000000
| 00000000
| 00000000
| 00000000
| 00000000
|11111111
| 00000000

ofeefe]elolele)
00000000
00000000
000000
00000000
0EOOOOO0O
ofeefelelolee)
00000000
11111111
00000000

00000000
00000110
00000000
00000110
00000000
00000110
00000000
00000110
11111111
00000110

|
01111001|

10001111 |
01110001 |
01011111|
01110001 |
11001111
01110001 |
11001111 |
11111011 |
11111111

VALUE

128

120
(H)
112
(e)
112
(L)

96
(L)
NIL
(o)

+ list tag

+ list tag
104 bsl 4 +
+ list tag
101 bsl 4 +
+ list tag
108 bsl 4 +
+ list tag
108 bsl 4 +

111 bsl 4 +

+ DESCRIPTION

small

small

. ERTS as memory areas:

Processes BEAM
CODE

ERT
CODE C-stack

P —ais

- .
P2 EE— — pzl(_)=-?Hello",
Scheduler B 1oL L ’
BEAM Queues a— 31T
Sockets = .
etc...

Binaries P99 —

llllll

ERTS as components:

The BEAM interpreter

The Scheduler
EE == = .

"""" HIPE
The Garbage CoIIector 1/0

RS

BEAM

- Garbage Collecting-

- Reduction Counting-

- Non-preemptive-

» Directly Threaded-

- Register-

- Virtual-
-Machine

Memory Management:

Garbage Collection

- On the Beam level the code is responsible for:
- checking for stack and heap overrun.
- allocating enough space

- "test_heap" will check that there is free heap space.

- If needed the instruction will call the GC.

- The GC might call lower levels of the memory subsystem
to allocate or free memory as needed.

Scheduling:

Non-preemptive, Reduction counting

- Each function call is counted as a reduction

- Beam does a test at function entry: if (reds < 0) yield
- A reduction should be a small work item

- Loops are actually recursions, burning reductions

A process can also yield in a receive.

Dispatch: Directly Threaded Code

The dispatcher finds the next
instruction to execute.

I Ox1000 #define Arg(N) (Eterm *) I[(N)+1]
) #define Goto(Rel) goto *((void *)Rel)

beam_emu.c **:

External beam format: Loaded code*: OpCase(move_xx). {
0x1000: 0X3000 ==Jp 0x3000: X(Arg(1) = X(Arg(O)):
{move{x,0}{x,1}}. —3p.d 0x1004: 0x0 o
{move,{y,0},{x,0}}. 0x1008: 0X1 } S
{move,{x,1},{y,0}}. 0x100c: 0x3200\‘ OpCase(move.yx): {
Ox1010: Ox1 0x3200: x(Arg(1)) = y(Arg(0));
0x1014: 0x1 .
0x1018: 0x3100 }
[:'n e e OX101 c: Ox1 \ OpCase(move_xy): {
Ox1020: 0x1 0x3100: y(Arg(1)) = x(Arg(0));
| +=3;
Goto(*I);

}

A Stack Machine - it is not

BEAM 1s a register machine

Advantage of a stack machine
- Easier to compile to

- Easier to implement - Two types of registers: X and Y-registers.

S i - X0 is the accumulator and mapped to a
See my blog: http://stenmans.org/happi_blog/?p=194) .
for an example of a stack machine. p hys| Cal reg| Ste r] also ca | |ed RO_

: - - Y registers are actually stack slots.
Advantage of a register machine & y

«More efficient (?)

There are a number of special purpose registers:
htop, stop, |, fcalls and floating point registers.

BEAM is Virtually Unreal

The Beam is a virtual machine: it is implemented
in software instead of in hardware.

There 1s no official specification of the Beam,
it is currently only defined by
the implementation in Erlang/OTP.

BEAM

- Garbage Collecting-

- Reduction Counting-

- Non-preemptive-

» Directly Threaded-

- Register-

- Virtual-
-Machine

(R TR Beam Instructions

BEAM

+ Garbage Collecting-

+ Reduction Counting-

+ Non-preemptive-

+ Directly Threaded- =

+ Reglster- -

- Virtual- .
-Machine

An wided Exanple

o[, ey

BEAM i5 @ register machine,
It hes two sets of registers: ¥ou can look at heam code by giving
¥ ang y the 'S* flag to the compiler:
% registers are caller save
and arguments.
¥ registers are callee save
and actually the stack

cltest, ['S']}

See: [OTP]lertsfemidatarbeamshaam emiic

The Scheduler

e Process State

Reduction count problems Load Balancing

Reductions BIFs uses an arbitrary amount of

= Lukizs: "It is quice shorr and nat hard ta undarstand o you know reductions

Que Handling e schedule() - e
Timing wheels

erl_process.c schedule()

= are cakiulaced wihen a
] recuciions,

Processes will normally are rowards lower schedulers ir

rocess_main(l
B - 1. Update reduction counters thare is no ovarioad,
Errie

Possible Problems

f—

8 yat
all

Cneck triggered tmers

balance_reds = 4,000,000 check balance
4. Fasslbly migrate processes sports

duller wark (lead, free, trace, etc}

= 0000 check O, update tima
poets Far 2000 reds

7. Execute 112

A return does not use any reductions.

NIFs uses an arbitrary amount of
reductions.

Showkl

It & scheguler 5 overicaded procesesses are evicied o
ather schedulers.

17 reduction counting <sned Lip, SCAFVAiEn

might oogur

Lise: +5hu to wake up slesping schedulars

The Garbage Cc

One Scheduler Per Core

Cores Schedulers Running Ready Q

. B.... N Process State

[Reductions

schedule 1
runnable > r Un nln g GCing
Tr e o "

Timing wheels

|

The Process State Machine

Possible Problems

Priority Inversion

Should | be worried? No
Do | need to know about this? No
What can | do? Don't mess with priorities

running

Reductions reduced by:
- Function call
! . Bif call
- GC

Yield when:

0 Reductions left
bif trap
busy port Yield and sleep when

receive with no match

v

>

suspended exiting —» free

>
. N
schedule ru n n l n g

Reductions reduced by:

runnable GCing

M i wal [alow] Port Tas + Function call
i b . Bif call
yield \ . GC
Yield when:
0 Reductions left
bif trap
busy port Yield and sleep when

receive with no match

l receive
msg

waiting

Timing Wheel

timeout

The Process State Machine

runnable

Max High Normal [&low] Port Tasks

First: First: First: &P1
Last: Last: Last: &P3

x".-
Pl next: &P2
Pgﬂnext: &P3

4—-.--.."-'-' =
P3 next: NULL

Normal [&lowl]

First: &P1
Last: ~&P3

Pl next: &P2

P2 next: &P3

P3 next: NULL

>

suspended exiting —» free

>
. N
schedule ru n n l n g

Reductions reduced by:

runnable GCing

M i wal [alow] Port Tas + Function call
i b . Bif call
yield \ . GC
Yield when:
0 Reductions left
bif trap
busy port Yield and sleep when

receive with no match

l receive
msg

waiting

Timing Wheel

timeout

The Process State Machine

walting

Timing Wheel

.......

.....

Timing Wheel

Large Array (65536)
© 1 ... o

I R NG

ErlTimer: slot: 6
count: 1
prev: NULL

tiw:

prev:
next: NULL

. B.... N Process State

[Reductions

schedule 1
runnable > r Un nln g GCing
Tr e o "

Timing wheels

|

The Process State Machine

Possible Problems

Priority Inversion

Should | be worried? No
Do | need to know about this? No
What can | do? Don't mess with priorities

erl_process.c schedule()

Lukas: "It is quite short and not hard to understand if you know C".

560 lines

beam_emu.c SChEdU|€()

rocess_main :
P - () Update reduction counters

. Check triggered timers

If check balance reds > 4,000,000 check balance
Possibly migrate processes+ports

. Execute scheduller work (load, free, trace, etc)

. If function_calls > 4000 check 10, update time
Execute 1 to N ports for 2000 reds

(More or less stolen from Lukas presentation)

Execute process
till yield.
call schedule()

NouswN -

Load Balancing

Load balancing operations are calculated when a
scheduler has done 4,000,000 reductions.

Processes will normally migrate towards lower schedulers if
there is no overload.

If a scheduler is overloaded procesesses are evicted to
other schedulers.

If reduction counting is messed up, starvation
might occur.

Use: +sfwi to wake up sleeping schedulers.

Reduction count problems

BIFs uses an arbltrary amount of
red U C t 10 n S Should | be worried?

Do | need to know about this?
Whatcamldo Ficche B

A return does not use any reductions.

Should | be worried?
Do | need to know about this? e
What can | do? P

NIFs uses an arbitrary amount of
FEdUCtlonS . Should | be worried? Yes.

Do | need to know about this? Yes.

What can | do?
Don't use NIFs ;)
Make sure your NIFs are yielding and using reductions.
Wait for "dirtv schedulers”.

B0l Wil Ww rl t

n arbitrary am

Should | be worried?
Do | need to know about this?
What can | do? =y

es NotT use any

Reduction count problems

BIFs uses an arbltrary amount of
redUCtlonS Slouldlbewor ied?

eed to know abo tth
Whatcanldo

A return does not use any reductions.

Should | be worried?
Do | need to know about this? e
What can | do? et

NIFs uses an arbitrary amount of
I“Ed UC t l ons. Should | be worried? Yes,

Do | need to know about this? Yes.

What can | do?
Don't use NIFs ;)
Make sure your NIFs are yielding and using reductions.
Wait for "dirty schedulers”.

2S not use

Should | be worried? No
DO | need to know abOUt thIS? Probably not
What Can | dO? Use tail recursion,

don't have insanely long callchains.

I e W Wl w eI wd & R e L RIS
Do | need to know about this?

What can | do?

A return does not use any reductions

Should | be worried?
Do | need to know about this? Freswe
What can | do?

NIFs uses an arbitrary amount of
I"ed u C t lO n S . Should | be worried? Yes.

Do | need to know about this? Yes.

What can | do?
Don't use NIFs ;)
Make sure your NIFs are yielding and using reductions.
Wait for "dirty schedulers".

llllll

ERTS as components:

The BEAM interpreter

The Scheduler
EE == = .

"""" HIPE
The Garbage CoIIector 1/0

RS

S’ B N Wl

Copying Generational Garbage Collector

e TR Cuc

ek

e
e

aatimal e

2]

el

BTN

Address Value Tag Desc
1060 1032 01 CONS
1048 1032 01 CONS
1044) 1032 01 CONS
1040 2 000000 TUPLE
1036] 1024 01 CONS
1032 104 1111 H
1028 1016 01 CONS
1024 101 1111 e
10200 1012 01 CONS
1016, 108 1111 |
1012 1000 01 CONS
1008 108 1111 |
1004 5 111011
1000 111 1111

stop
htop

Address

Value

Tag

Desc

3060

3056

30562

3048

3044

3040

3036

3032

3028

3024

3020

3016

3012

3008

3004

3000

Root set: 1060

Address Value Tag Desc
1060 1032 01 CONS
1048 1032 01 CONS
1044) 1032 01/ CONS
1040 2 000000 TUPLE
1036/ 1024 01/ CONS
1032 104 1111 H
1028/ 1016 01/ CONS
1024 101 1111 e
1020/ 1012 01/ CONS
1016 108 1111 I
1012| 1000 01/ CONS
1008 108 1111 I
1004 -5 111011 [
1000 111 1111 o

stop

htop

Address

Value

Tag

Desc

3060

3056

3052

3048

3044
3040

3036

3032

3028

3024

3020

3016

3012

3008

3004
3000

n_htop

n_hp

Rootset:lgedf

Address| Value Tag Desc
1060/ 3000 01 CONS
1048 1032 01 CONS
1044, 1032 01 CONS
1040 2 000000 TUPLE
1036/ 3000 00, CONS
1032 0 0 MOVED
1028 1016 01 CONS
1024 101 1111. e
1020, 1012 01 CONS
1016 108 1111 I
1012) 1000 01 CONS
1008 108 1111 |
1004 -5 111011
1000 111 111,

stop

htop

Address

Value

Tag

Desc

3060

3056

3052

3048

3044

3040

3036

3032

3028

3024

3020

3016

3012

3008

3004
3000

1024
104

01
1111

CONS

n_htop

Root set: p@(

While n_hp < n_htop: forward

Address Value Tag Desc Address Value Tag Desc
1060 3000 01 CONS 3060
stop 3056
htop 3052
1048 1032 01 CONS 3048
1044 1032 01 CONS 3044
1040 2. 000000 TUPLE 3040
1036 3000 00 3036
1032 0 0 MOVED 3032
1028 3000 00 3028
1024 0 0 MOVED 3024
1020 1012 01 CONS 3020
1016 108 1111 I \ 3016 n_htop
1012 1000 01 CONS S 3012, 1016 01 CONS
1008 108 1111 | ‘* 3008 101 1111 e
1004 -5 111011] 3004/ 3008 01 CONS || n_hp
1000 111 1111 o] 30000 104 1111 H

Root set: M

While n_hp < n_htop: forward

stop

htop

Address, Value Tag Desc
1060/ 3000 01 CONS
1048 1032 01 CONS
1044, 1032 01 CONS
1040 2 000000 TUPLE
1036/ 3000 00
1032 0 0 MOVED
1028/ 3008 00
1024 0 0 MOVED
1020/ 3016 01
1016 0 0 MOVED
1012| 3024 01
1008 0 0 MOVED
1004| 3032 0
1000 0 0 MOVED

Address Value Tag Desc

3060

3056

3052

3048

3044

3040

3036 5 111011 [
3032 111 1111 o
3028/ 2032 01 CONS
3024 108 1111 |
3020 3024 01 CONS
3016 108 1111 |
3012 3016 01 CONS
3008 101 1111 e
3004 3008 01 CONS
3000 104 1111 H

n_htop

n_hp

Root set: 1}}6‘({
While n_hyf_(op: forward

Address

Value

Tag

Desc

1032

3000

01

CONS

1048

1044

1040

1036

1032

1028

1024

1020

1016

1012

1008

1004

1000

YA NAYA

Address Value Tag Desc
3060 3000 01 CONS
3056
3052
3048
3044
3040
3036 -5 111011]
3032 111 1111 o
3028 2032 01 CONS
3024 108 1111 |
3020 3024 01 CONS
3016 108 1111 |
3012 3016 01 CONS
3008 101, 1111 e
3004 3008 01 CONS
3000 104 1111 H

stop

htop

Erlang has no updates -
there can be no cycles: use reference count.

Why copying collector?

Erlang terms are small.

The HIiPE group did some measures:
75% cons cells
24% !cons but smaller than 8 words
1% >= 8 words

Less fragmentation & better locality with
copying collector

Generational GC

"Most objects die young."

Stack

Nursery

. Old generation
From

Tn

Advantages with 1 heap/process:

+ Free reclamation when a process dies
+ Small root set

+ Improved cache locallity
+ Cheap stack/heap test

Disadvantages with 1 heap/process:

- Message passing Is expensive
- Uses more space (fragmentation)

S

Lessons learned:

- ERTS - the’ Erlang RunTime System |s
" the defacto standard ' |
implementation of Erlang , _
-.Each p&ocess has 4ts own stack and

LR JI

heap IR
The ErlangVM BEAM executes‘the
Erlang code . ‘*“ e

\ !

Proces-s sclhedulmglsxcontroied by
rEdUCtlon count s "'f. ‘_,: Al SR £

g

-cLGt is Iocal toa process S sy ~‘:,)_f

. 'GC is gene;,atlonal and q’ogymg
S

I ¥
¥

s o
para ik
» - -

: rr-"-‘.g-‘-?;

=

LT
P

’?""":
QUESTIONS?

Bright
Passionate
Get things

done

ki . et

arianginace_po's R
i Tima 5" gy o0 ’ﬂ
Tima.all 0’ 1 pond BB [RrTre— -
wng: tracer® e S :
e e Lty
e

God way to get great programmers.

Lennart SPJ

Nice paradox: John
The lack of Erlang programmers makes it easier for us to
find great programmers.

Phil

There are many great C and Java programmers, I'm sure, but
they are hidden by hordes of mediocre programmers.

Programmers who know a functional programming
language are often passionate about programming.

™

Passionate programmers makes Great Programmers

