

The right concurrency model.

Error & exception handling done right

Good libraries for the hard stuff

Dynamically typed.

Symbolic and transparent data structures

An interactive shell

Scalable

The right concurrency model.
Good libraries for the hard stuff
Weird but efficient strings for I/O

The right concurrency model

Lightweight processes
Message passing
Share nothing semantics
Don't stop the world GC
Monitors & Signals

Error & exception handling done right

Dynamically & Strongly Typed

Symbolic and transparent data structure

Enables:

Hot code loading
Movable heaps & stacks
Transparency of data
Garbage Collection

All values are tagged, some are boxed.

What is ERTS?

ERTS is the Erlang Runtime System.

ERTS as source code:

See: [OTP]/erts/

emulator/

beam/

hipe/

etc/

ERTS as components:

The BEAM interpreter

The Scheduler

The area reductions.

Solution of the area reductions of the area reduction of the area reductions of th

Port Tasks

The Garbage Collector

Processes

Conceptually: 4 memory areas and a pointer:

A Stack
A Heap
A Mailbox

A Process Control Block A PID

HiPE I/O

Processes

Conceptually: 4 memory areas and a pointer:

A Stack

A Heap

A Mailbox

A Process Control Block

A PID

ERTS as memory areas:

ERTS CODE

GC Scheduler BEAM Sockets etc...

The Tag Scheme

C-stack Queues

Binaries

Processes P2 **P3** P99

BEAM CODE

```
p2() ->
  L = "Hello",
  T = {L, L},
  P3 = mk_proc(),
  P3 ! T.
```


See: [OTP]/erts/emulator/beam/erl_process.h

Process Control Block

htop

stop

heap

hend

ср

fcalls

reds

status

next

prev

prio

id

flags

The Tag Scheme

```
aaaaaaaaaaaaaaaaaaaaaatttt00 HEADER (see below)
ppppppppppppppppppppppppppp01 CONS
1111111111111111111111111111111110011
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii0111 PORT
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
                                       Tuple
aaaaaaaaaaaaaaaaaaaaaaaa000000 ARITYVAL
VVVVVVVVVVVVVVVVVVVVVVVVVVVVO00100 BINARY AGGREGATE
vvvvvvvvvvvvvvvvvvvvvvv001x00 BIGNUM with sign bit
VVVVVVVVVVVVVVVVVVVVVVVVVV010000 REF
vvvvvvvvvvvvvvvvvvvvvvv010100 FUN
                                                     THINGS
VVVVVVVVVVVVVVVVVVVVVVVVVVVVV011000 FLONUM
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV011100 EXPOR
BINARIES
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVI01000 SUB BINARY
vvvvvvvvvvvvvvvvvvvvvvv101100 Not used
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV110000 EXTERNAL PID
                                       EXTERNAL THINGS
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV110100 EXTERNAL PORT
VVVVVVVVVVVVVVVVVVVVVVVVVVVVIII1000 EXTERNAL REF
vvvvvvvvvvvvvvvvvvvvvvvv111100 Not used
```

```
An example
The string "Hello", i.e. the list
[104, 101, 108, 108, 111]
```

PCB

Process Control Block

stop heap hend tp fcalls reds id flags next prev

Stack

Heap

MQ

Stack

Heap

ERTS as memory areas:

ERTS CODE

GC Scheduler BEAM Sockets etc...

The Tag Scheme

C-stack Queues

Binaries

Processes P2 **P3** P99

BEAM CODE

```
p2() ->
  L = "Hello",
  T = {L, L},
  P3 = mk_proc(),
  P3 ! T.
```

ERTS as components:

The BEAM interpreter

Processes

Conceptually: 4 memory areas and a pointer:

A Stack
A Heap
A Mailbox
A Process Control Block
A PID

HiPE I/O

The Garbage Collector

State September 1997

BEAM

- Garbage Collecting-
- Reduction Counting-
- · Non-preemptive-
- Directly Threaded-
- Register-
- Virtual-

-Machine

Memory Management:

Garbage Collection

- On the Beam level the code is responsible for:
 - checking for stack and heap overrun.
 - allocating enough space
- "test_heap" will check that there is free heap space.
- If needed the instruction will call the GC.
- The GC might call lower levels of the memory subsystem to allocate or free memory as needed.

Scheduling:

Non-preemptive, Reduction counting

- Each function call is counted as a reduction
- Beam does a test at function entry: if (reds < 0) yield
- A reduction should be a small work item
- Loops are actually recursions, burning reductions

A process can also yield in a receive.

Dispatch: Directly Threaded Code

The dispatcher finds the next instruction to execute.

#define Arg(N) (Eterm *) I[(N)+1] I: 0x1000 #define Goto(Rel) goto *((void *)Rel) beam_emu.c **: Loaded code*: OpCase(move_xx): { External beam format: 0x3000: x(Arg(1)) = x(Arg(0)): 0x1000: 0x3000 I += 3; $\{move,\{x,0\},\{x,1\}\}$ 0x1004: 0x0 Goto(*I); $\{move, \{y, 0\}, \{x, 0\}\}.$ 0x1008: 0x1 $\{move, \{x, 1\}, \{y, 0\}\}.$ 0x100c: 0x3200 OpCase(move_yx): { 0x3200: x(Arg(1)) = y(Arg(0)); 0x1010: 0x1 I += 3; 0x1014: 0x1 Goto(*I); 0x1018: 0x3100 *This is a lie... beam actually rewrites the 0x101c: 0x1 external format to different internal OpCase(move_xy): { instructions.... 0x3100: y(Arg(1)) = x(Arg(0)); 0x1020: 0x1 | += 3;Goto(*I);

A Stack Machine - it is not

BEAM is a register machine

Advantage of a stack machine

- · Easier to compile to
- Easier to implement

See my blog: http://stenmans.org/happi_blog/?p=194 for an example of a stack machine.

Advantage of a register machine

More efficient (?)

- Two types of registers: X and Y-registers.
- X0 is the accumulator and mapped to a physical register, also called R0.
- Y registers are actually stack slots.

There are a number of special purpose registers: htop, stop, I, fcalls and floating point registers.

BEAM is Virtually Unreal

The Beam is a virtual machine: it is implemented in software instead of in hardware.

There is no official specification of the Beam, it is currently only defined by the implementation in Erlang/OTP.

BEAM

- Garbage Collecting-
- Reduction Counting-
- · Non-preemptive-
- Directly Threaded-
- Register-
- Virtual-

-Machine

BEAM is a register machine. It has two sets of registers: x and y

- x registers are caller save and arguments.
 y registers are callee save and actually the stack.

You can look at beam code by giving the 'S' flog to the compiler:

c(test, ['S']).

See: [DTP]/erts/emulator/beam/beam_emu.c

The Scheduler

Process State Reductions Que Handling Timing wheels

Possible Problems

erl process.c schedule()

Lukas: "It is quite short and not hard to understand if you know C".

beam_emu.c process_main()

schedule() 1. Update reduction counters

- 2. Check triggered timers
- 3. If check balance reds > 4,000,000 check balance
- 4. Possibly migrate processes+ports
- 5. Execute scheduller work (load, free, trace, etc) 6. If function_calls > 4000 check IO, update time
- 7. Execute 1 to N ports for 2000 reds

Reduction count problems

BIFs uses an arbitrary amount of reductions. Seal the market Da read to show that there

A return does not use any reductions.

NIFs uses an arbitrary amount of

reductions. Should be worried? The Doll need to know about this? Yes.

Load Balancing

Load balancing operations are calculated when a scheduler has done 4.000,000 reductions.

Processes will normally migrate towards lower schedulers if there is no overload.

If a scheduler is overloaded procesesses are evicted to other schedulers.

If reduction counting is messed up, starvation might occur.

Use: +sfwi to wake up sleeping schedulers

The Garbage C

One Scheduler Per Core

Schedulers Ready Q Running **Cores**

Process State Reductions Que Handling Timing wheels

Possible Problems

Priority Inversion

Should I be worried?

Do I need to know about this?

What can I do?

No No Don't mess with priorities

runing

- # Reductions reduced by:
 - Function call
 - Bif call
 - GC

Yield when:

0 Reductions left

bif trap

busy port

Yield and sleep when

The Process State Machine

runable

Max

High

Normal [&low]

Port Tasks

First: Last:

First: Last:

First: &P1 Last: &P3 P1 next: &P2 P2 next: &P3 P3 next: NULL

Normal [&low]

```
First: &P1
Last: &P3
```

P1 next: &P2

P2 next: &P3

P3 next: NULL

The Process State Machine

Waiting

Timing Wheel

Timing Wheel

Large Array (65536)

6 0 tiw: tiw pos: ErlTimer: slot: 6 count: 1 prev: NULL next: ErlTimer: slot: 6 count 2 prev: next: NULL

. . .

Process State Reductions Que Handling Timing wheels

Possible Problems

Priority Inversion

Should I be worried?

Do I need to know about this?

What can I do?

No No Don't mess with priorities

erl_process.c schedule()

Lukas: "It is quite short and not hard to understand if you know C".

560 lines

beam_emu.c
process_main()

Execute process till yield. call schedule()

schedule()

- 1. Update reduction counters
- 2. Check triggered timers
- 3. If check_balance_reds > 4,000,000 check balance
- 4. Possibly migrate processes+ports
- 5. Execute scheduller work (load, free, trace, etc)
- 6. If function_calls > 4000 check IO, update time
- 7. Execute 1 to N ports for 2000 reds

(More or less stolen from Lukas presentation)

Load Balancing

Load balancing operations are calculated when a scheduler has done 4,000,000 reductions.

Processes will normally migrate towards lower schedulers if there is no overload.

If a scheduler is overloaded procesesses are evicted to other schedulers.

If reduction counting is messed up, starvation might occur.

Use: +sfwi to wake up sleeping schedulers.

Reduction count problems

BIFs uses an arbitrary amount of reductions. Should De Worried?

Do I need to know about this?

What can I do?

Fix the BIF: |
Uses small data sets, add a call to erlang bump_reductions()

A return does not use any reductions.

Should I be worried?

Do I need to know about this?

What can I do?

One call thairs don't have insanely long callchains

NIFs uses an arbitrary amount of reductions. Should I be worried? Yes.

Do I need to know about this? Yes.

What can I do?

Don't use NIFs;)
Make sure your NIFs are yielding and using reductions.
Wait for "dirty schedulers".

n arbitrary amo

Should I be worried?

Do I need to know about this?

What can I do?

Yes.

Yes.

Fix the BIF;)
Use small data sets, add a call to erlang:bump_reductions()

es not use any

Reduction count problems

BIFs uses an arbitrary amount of reductions. Should I be worried?

Do I need to know about this?

What can I do?

Fix the BIF.)
Use small data sets, add a call to erlang bump_reductions()

A return does not use any reductions.

Should I be worried?

Do I need to know about this?

What can I do?

So No
Probably not
Onthave Insanely long callchains

NIFs uses an arbitrary amount of reductions. Should I be worried? Yes.

Do I need to know about this? Yes.

What can I do?

Don't use NIFs ;)

Make sure your NIFs are yielding and using reductions. Wait for "dirty schedulers".

es not use

Should I be worried?

Do I need to know about this?

What can I do?

No

Probably not

Use tail recursion, don't have insanely long callchains.

Do I need to know about this? What can I do?

Use small data sets, add a call to erlang:bump_reductions/

A return does not use any reductions

Should I be worried? Do I need to know about this? Probably not What can I do? don't have insanely long callchains.

NIFs uses an arbitrary amount of reductions. Should I be worried? Yes.

Do I need to know about this? Yes.

What can I do?

Don't use NIFs:)

Make sure your NIFs are yielding and using reductions.

Wait for "dirty schedulers".

ERTS as components:

The BEAM interpreter

Processes

Conceptually: 4 memory areas and a pointer:

A Stack
A Heap
A Mailbox
A Process Control Block
A PID

HiPE I/O

The Garbage Collector

State September 1997

Copying Generational Garbage Collector

- 1	4ddmm	Vri.n	Tag	Desc	Address	Value	Tag	Case	
- 1	1000	2300	21	00.46	18.00				
					20.00	4			
- 1					20.00	1			
\sim	12.70	150		1000	80.44	4			
1	10.11	100		11100	8.4	1			
7 E	11.41		10 20 1		50.40	4			
AΕ	10.96	2360	- 0	05,086	3036	sl .			
Z,	17.52	7.	,	43/03	3022	4			
	1036	1212		CCAR	3000	×			
$I \perp I$	103-	01	11		302	-			
VI.	1230	1012	21	00.49	30.4	4			
(*)	1216	100	111	- 1	18.79	4			
М	15.59	19%	21	90.99	10.70	1			
171	11.00	***	.11.	- 1	92 Ce	4			rijhts
AT.	11.11		111111	LI.	8.0	17.8	- 0	2796	
- 4	10.00	111	111		800	94	111	н	

Add	1422	Victor	Tr	Case	Address	Value	Tag	Dat
	1000	2000	***	1000	9.60			
					365			
					3060			
	010	1032		CC35	304			
	1044	10.52		cose	3014			
	0.10		60000	THE	30.60			
	rue e	2020			3000			
	1000	- 4	- 6	MAYATE.	30.02			
	1005	2020	16		9000			
	1004	- 4	- 6	NETS-E	80.4			
	120	10.2		CCNC	960			
	1111	744			8015			
	012	1000	91	CCNS	3012	1016	64	00.96
	***	7.00			865	121	211	
	004	-5	11 011	0	2001	2230	64	0036
	1000	111	1223		300	13-	111	- 11

17 27 11 12 13 13 14 14 14 14 14 14	4 1 1 1 1 1 1 1 1 1										
Dec Col. Dec Col.	2 CS 3F CAS 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Attes	24.0	Top Dev.		Address	Veloc	Tay	Direct	1
30 CG 31 CGC 31 CGC 31 CGC 31 CGC 31 CGC 32 33 CGC 32 34 CGC 33 34 CGC 34 34 CGC 35 34 CGC 35 35 CGC 36 36 CGC 36 36 CGC 36 36 CGC 36 36 CGC 37 38 CGC 38 38 CGC 39 39 CGC 30 30 CGC 30 30 CGC 31 CGC 32 CGC 33 CGC 34 CGC 35 CGC 36 CGC 37 CGC 37 CGC 37 CGC 38 CGC 39 CGC 30 CGC 30 CGC 30 CGC 31 CGC 31 CGC 32 CGC 33 CGC 34 CGC 35 CGC 36 CGC 37 CGC 37 CGC 37 CGC 38 CGC 38 CGC 39 CGC 30 CGC	C C C C C C C C C C		1,67	423	01.0065		2000				
0-2 C2 01 C02	2 CG 3 CAC 2					anap quera	3236				
Sel. GO St. Chr.	1 G2 M CAS2					lakes .	22				
10 10 10 10 10 10 10 10	25 16 16 17 17 17 17 17 17	-	1045	C22	OI CONS	\ \	3410				
1	1 1 1 1 1 1 1 1 1 1	77	1911	1022	01 6363	1	14.77				
1	H S	ш	5942	- 2	DECK MINE	1	20.00				1 http://
15	1	W	261	100	- 1		27.90		Trer	п	
C C C MONTO C C C C C C C C C	CHANCE Six OS OS OS OS OS OS OS O	14	202	- 4	HIMISH	1	85.53	-111	211		
OCT X S OT	X 0 0 0 0 0 0 0 0 0		>0.0	414	- 11	\rightarrow	37.86	2352		0036	
010 0 CHCCCC	20		1004	- 4	0.00500	- √ 7−1 -4	228-	05	- 11	- 1	
100 CM 100 F 100 CM 100	2 XD 01			X 16		ブナキネート	3230	2321	5.	00.95	
	a 0 6 600mb / C 20 ma mar a				0.000000	リート トラヤラー	32.6	100	1111	- 1	
	/ /		1912	XV	51	7 16	32.9	2316		35.90	
901 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 827 P 2 200 200 C 2000		1000	- 0	6 HOVED	/ *******	11.50	292	1111		

Sabbress	Value:	144	0.4			-	Ces
000	2230		C246	Addition		Teg	
000	2.00	- 11	0.145	1590		en	CORP
	_			22.6			
				2279			
1986				27-8			
011				339			
1660				2240			
600				2236	- 4	1110-1	0
>				2752	- 111	111	
000				1270	9600	- 91	CORP
1004				2724	103	7111	-
600				1270	3621	91	CGRO
*****				2216	108	1111	
010				22.9	3015	91	CGRO
				228		1111	
001				220	3000		0685
1161				2200		111	

Γ	A .1.1	1/-1	-	
	Address	Value	Tag	Desc
1	1060	1032	01	CONS
4	1048	1032	01	CONS
1	1044	1032	01	CONS
	1040	2	000000	TUPLE
	1036	1024	01	CONS
	1032	104	1111	Н
1	1028	1016	01	CONS
	1024	101	1111	е
1	1020	1012	01	CONS
1	1016	108	1111	I
1	1012	1000	01	CONS
	1008	108	1111	I
	1004	-5	111011	[]
	1000	111	1111	0

stop htop

Address	Value	Tag	Desc
3060			
3056			
3052			
3048			
3044			
3040			
3036			
3032			
3028			
3024			
3020			
3016			
3012			
3008			
3004			
3000			

Root set: 1060

	Address	Value	Tag	Desc
	1060	1032	01	CONS
	1048	1032	01	CONS
	1044	1032	01	CONS
X	1040	2	000000	TUPLE
X	1036	1024	01	CONS
	1032	104	1111	н
	1028	1016	01	CONS
	1024	101	1111	е
	1020	1012	01	CONS
	1016	108	1111	I
	1012	1000	01	CONS
	1008	108	1111	I
	1004	-5	111011	[]
*	1000	111	1111	o

stop htop

Address	Value	Tag	Desc
3060			
3056			
3052			
3048			
3044			
3040			
3036			
3032			
3028			
3024			
3020			
3016			
3012			
3008			
3004			
3000			

n_htop

n_hp

Ad	dress	Value	Tag	Desc	Address Value Tag Des
	1060	3000	01	CONS	3060
					3056
					3052
	1048	1032	01	CONS	3048
	1044	1032	01	CONS	3044
	1040	2	000000	TUPLE	3040
	1036	3000	00	CONS	3036
	1032	0	0	MOVED	3032
	1028	1016	01	CONS	3028
	1024	101	1111	е	3024
	1020	1012	01	CONS	3020
	1016	108	1111	ı	3016
•	1012	1000	01	CONS	3012
	1008	108	1111	ı	3008
	1004	-5	111011	0	3004 1024 01 CONS
	1000	111	1111	О	3000 104 1111 H

Root set: 1080

While n_hp < n_htop: forward

c	Desc	Tag	Value	Address		Desc	Tag	Value	Address
				3060	_	CONS	01	3000	1060
				3056	stop				
				3052	htop				
				3048	\	CONS	01	1032	1048
				3044		CONS	01	1032	1044
				3040		TUPLE	000000	2	1040
				3036			00	3000	1036
				3032		MOVED	0	0	1032
				3028			00	3000	1028
				3024		MOVED	0	0	1024
				3020		CONS	01	1012	1020
				3016		ı	1111	108	1016
	CONS	01	1016	3012		CONS	01	1000	1012
	е	1111	101	3008		ı	1111	108	1008
	CONS	01	3008	3004		0	111011	-5	1004
	Н	1111	104	3000		О	1111	111	1000

Root set: 1000 While n_hp < n_htop: forward

	Desc	Tag	Value	Address		Desc	Tag	Value	dress
				3060	_	CONS	01	3000	060
				3056	stop				
				3052	htop				
				3048		CONS	01	1032	1048
				3044		CONS	01	2	103
n_hte				3040		TUPLE	000000	2	40
	0	111011	-5	3036			00	3000	1036
	o	1111	111	3032		MOVED	0	0	1032
	CONS	01	2032	3028			00	8	300
	ı	1111	108	3024		MOVED	0	0	1024
	CONS	01	3024	3020			01	3016	
	ı	1111	108	3016	/ '	MOVED	0	0	1016
	CONS	01	3016	3012	7		01	3024	1012
	е	1111	101	3008		MOVED	0	0	1008
	CONS	01	3008	3004			0	3032	1004
	н	1111	104	3000		MOVED	0	0	1000

Root set: 1080
While n_hp < n_htop: forward

Address	Value	Tag	Desc
1032	3000	01	CONS
1048			
1044			
1040			
1036			
1032			
1028			
1024			
1020			
1016			
1012			
1008			
1004			
1000			

	Address	Value	Tag	Desc
	3060	3000	01	CONS
	3056			
/	3052			
	3048			
	3044			
	3040			
	3036	-5	111011	[]
→	3032	111	1111	О
	3028	2032	01	CONS
	3024	108	1111	ı
	3020	3024	01	CONS
	3016	108	1111	ı
$\setminus \setminus$	3012	3016	01	CONS
\	3008	101	1111	е
10	3004	3008	01	CONS
	3000	104	1111	Н

stop

htop

Erlang has no updates there can be no cycles: use reference count.

Why copying collector?

Erlang terms are small.

The HiPE group did some measures:

75% cons cells

24% !cons but smaller than 8 words

1% >= 8 words

Less fragmentation & better locality with copying collector

Generational GC

"Most objects die young."

From

Old generation

 $\mathsf{T} \mathsf{\cap}$

Advantages with 1 heap/process:

- + Free reclamation when a process dies
- + Small root set
- + Improved cache locallity
- + Cheap stack/heap test

Disadvantages with 1 heap/process:

- Message passing is expensive
- Uses more space (fragmentation)

God way to get great programmers.

Lennart

Phil

SPJ

Nice paradox:

John

The lack of Erlang programmers makes it easier for us to find great programmers.

There are many great C and Java programmers, I'm sure, but they are hidden by hordes of mediocre programmers.

Programmers who know a functional programming language are often passionate about programming.

TM

Passionate programmers makes Great Programmers