GPU programming in Obsidian

Ack: Obsidian is developed by Joel
Svensson.

Accelerate

Get acceleration from your GPU by writing familiar
combinators

Hand tuned skeleton templates

Compiler cleverness to fuse and memoise the
resulting kernels

Leaves a gap between the programmer and the
GPU (which most people want)

Obsidian

Can we bring FP benefits to GPU programming,
without giving up control of low level details?

This is an instance of the research questions in
our big SSF project called Resource Aware
Functional Programming

Assumptions

To get really good performance from a GPU, one
must control

use of memory

memory access patterns

synchronisation points

where the boundaries of kernels are

patterns of sequential code (control of task size)

Vital to be able to experiment with variants on a
kernel easily

Assumptions

To get really good performance from a GPU, one
must control

We aim to give the this control

We avoid compiler cleverness!

Cost model should be entirely transparent

Building blocks
Embedded DSL in Haskell

Pull and push arrays (remember Jean-Philippe’s
lecture!)

Use of types to allow “hierarchy-polymorphic”
functions (Thread, Warp, Block, Grid)

A form of virtualisation to remove arbitrary limits
like max #threads per block

GPU

Shared memory

Global memory

CUDA programming model

Single Program Multiple Threads
Kernel = Function run N times by N threads
Hierarchical thread groups

Associated memory hierarchy

Per-thread lozal
;- ——
Thread Block
20000000009 4 3 Per-block shared
-4 > memory
s L

Gnrd O

Blodk (0, 0) Block (1, (0) Black(2 0)

Ap—.-

Blodk (0, 1) || Block (1,1) || Black (2. 1)

W" ’ W

Grd 1 Global memory
Block (0, 0) Block (1, 0)
Block (0, 1) Block (1 1)
2. —
Block (0, 2) Block (1, 2)

]

Image from http://docs.nvidia.com/cuda/cuda-c-programming-guide/#memory-hierarchy

The flow of kernel execution

Initialize/acquire the device (GPU)

Allocate memory on the device (GPU)

Copy data from host (CPU) to device (GPU)
Execute the kernel on the device (GPU)
Copy result from device (GPU) to host (CPU)
Deallocate memory on device (GPU)

Release device (GPU)

CUDA kernel

Executed by an array of Threads

Each thread has an ID that is used to compute memory
addresses and make control decisions

threadID |g|1|2]|3|4|5]|6]|7

float x = input[threadlID];

float y = func(x);
output[threadID] = y;

Blocks

Thread Block 0 Thread Block 1 Thread Block N - 1

7

2|1 3|1 4|5]6|7 0| 1] 2| 3| 4] 5| 6|7 0] 11 2| 3] 4] 5| 6

threadip | 0]

float x = float x = float x =

input[threadlD] ;

input[threadID]; input[threadlID];
float y = func(x); float y = func(x);

float y = func(x);
output[threadID] = y; output[threadID] = y;

output[threadID] = y;

Threads within a block communicate via shared memory and barrier synchronisation
(__ syncthreads();)

Threads in different blocks cannot cooperate

Memory access patterns

Some patterns of global memory access can be
coalesced. Others cannot. Missing out on
coalescing ruins performance!

Global memory works best when adjacent threads
access a contiguous block

For shared memory, successive 32 bit words are in
different banks. Multiple simultaneous access to a
bank = bank conflict = another way to ruin
performance. Conflicting accesses are serialised.

Thread ID is usually built from

blockldx Block index within a grid uint3
blockDim Dimension of the block dim3

threadldxThread index within a block uint3

gridDim gives the dimensions of the grid (the number of blocks in each dimension)

We'll use linear blocks and grids (easier to think about)

For more info about CUDA see https://developer.nvidia.com/gpu-computing-webinars
esp. the 2010 intro webinars

First CUDA kernel

__global__ void inc(float *i, float *r){
unsigned int ix = blockIdx.x * blockDim.x + threadIdx.x;
rlix] = i[ix]J]+1;

}

Host code

#include <stdio.h>

#include <cuda.h>

#define BLOCK_SIZE 256

#define BLOCKS 1024

#define N (BLOCKS * BLOCK_SIZE)

int main(){
float *v, *r;
float *dv, *dr;

(float*)malloc(N*sizeof(float));
(float*)malloc(N*sizeof(float));

\%
r

//generate input data
for (int 1 =0; 1 < N; ++1) {
v[i] = (float)(rand () % 1000) / 1000.0; }

/*¥ Continues on next slide */

Host code

cudaMalloc((void**)&dv, sizeof(float) * N);
cudaMalloc((void**)&dr, sizeof(float) * N);

cudaMemcpy(dv, v, sizeof(float) * N,cudaMemcpyHostToDevice);
1nc<<<BLOCKS, BLOCK_SIZE,@>>>(dv,dr);
cudaMemcpy(r, dr, sizeof(float) * N, cudaMemcpyDeviceToHost);

cudaFree(dv);
cudaFree(dr);

for (int 1 = 0; 1 < N; ++1) {
printf("%f ", r[i]); }
printf("\n");

free(v);
free(r);

Obsidian

incLocal arr = fmap (+1) arr

Building an AST just like in Accelerate

Obsidian Pull arrays

incLocal :: Pull Word32 EWord32 -> Pull Word32 EWord32
incLocal arr = fmap (+1) arr

Pull size element-type

Static Word32 = Haskell value known at compile time
Dynamic EWord32 = Exp Word32 (an expression tree)

Immutable

Obsidian Pull arrays

data Pull s a = Pull {pulllLen :: s,
pullFun :: EWord3Z2 -> a}

(length and function from index to value, the read-function, see Elliott’s Pan,
also called delayed arrays)

type SPull = Pull Word32
type DPull = Pull EWord32

A consumer of a pull array needs to iterate over those indices of the array
it is interested in and apply the pull array function at each of them.

Fusion for free

fmap f (Pull n ixf) = Pull n (f . 1ixf)

Example

incLocal arr = fmap (+1) arr

This says what the computation should do

How do we lay it out on the GPU??

incPar :: Pull EWord32 EWord32 -> Push Block EWord32 EWord3Z2
incPar = push . inclLocal

push converts a pull array to a push array and pins
it to a particular part of the GPU hierarchy

No cost associated with pull to push conv.

Key to getting fine control over generated code

GPU Hierarchy in types

-- A hierarchy!
data Step a -- A step in the hierarchy

data Zero

type Thread = Zero

type Warp = Step Thread
type Block = Step Warp
type Grid = Step Block

Program data type

data Program t a where

Identifier :: Program t Identifier
Assign :: Scalar a

=> Name

-> [Exp Word32]

-> (Exp a)

-> Program Thread ()

-- use threads along one level
-- Warp, Block, Grid.
ForAll :: EWord32
-> (EWord32 -> Program Thread ())

-> Program t O -- (really atleast Step t) !

Obsidian push arrays

data Push p 1 a =
Push 1 filler-function

Length a function that generates a loop at a particular level
of the hierarchy

The general idea of push arrays is due to Koen Claessen

Obsidian push arrays

data Push p 1 a =
Push 1 (receiver -> Program p ())

generates a Program at level p

Push array only allows bulk request to push ALL elements via a receiver function

The general idea of push arrays is due to Koen Claessen

Obsidian push arrays

data Push p s a =
Push s ((a -> EWord32 -> Program Thread ()) -> Program p ())

Each push array is waiting to be passed a receiver function, which takes a value (a) and
index (EWord32), and generates single-threaded code to store or use that value.

Given a receiver, a push array is then responsible for generating a program that traverses
the push array's iteration space, invoking the receiver as many times as necessary.

The general idea of push arrays is due to Koen Claessen

Obsidian push array

A push array is a length and a filler function

Filler function encodes a loop at level t in the hierarchy

Its argument is a receiver function

Push array allows only a bulk request to push all elements via a receiver function

When invoked, the filler function creates the loop structure, but it
inlines the code for the receiver inside the loop.

A push array with elements computed by f and receiver rcv corresponds to a loop
for (I'in [1,N]) {rcv(i,f(i));}

When forced to memory, each invocation of rcv would write one memory location
Ali] = (i)

Note

Neither pull nor push arrays are manifest

Both fuse by default.

Both immutable.

Argh. Why two types of array??

Concatenation of pull arrays is inefficient.
Introduces conditionals (which can ruin performance)

Concatenation of Push arrays is efficient.
No conditionals.

splitting arrays up and using parts of them is easy using pull
arrays.

Push and Pull arrays seem to have strengths and weaknesses
that complement each other.

Pull good for reading. Push good for writing. Pull -> Push functions common

Programming the hierarchy

-- Enter into hierarchy
tConcat :: Pull 1 (Push Thread Word32 a) -> Push t 1 a

-- Step upwards 1in hierarchy
pConcat :: Pull 1 (Push Word32 t a) -> Push (Step t) 1 a

-- Remain on a level of the hierarchy
sConcat :: Pull 1 (Push t Word32 a) -> Push t 1 a

From our recent paper (which | will post)

Combinators

pMap f n = pConcat . (fmap f). splitUp n
tMap f n = tConcat . (fmap f) . splitUp n
sMap f n = sConcat . (fmap f) . splitUp n

Last night’s thoughts © Need to think harder about API to user!

Combinators

pMap f n = pConcat . (fmap f). splitUp n

tMap f n = tConcat . (fmap f) . splitUp n

sMap f n = sConcat . (fmap f) . splitUp n
e.g.
pMap

:: ASize 1 =>

(SPull al -> SPush t a) -> Word32 ->
Pull 1 a1l -> Push (Step t) 1 a

Back to example

incrementl = pMap (push . inclLocal)

Back to example

incrementl = pMap (push . inclLocal)

Gives loopnestlike parfor parfor

Threads per block
getincPar = putStrLn S

genKernel 256 "incPar"
(incrementl 256 :: DPull EWord32 -> DPush Grid EWord32)

Elements per block

extern "C" __global__ void incPar(uint32_t* input@, uint32_t no,
uint32_t* outputl)
{

uint32_t bid
uint3Z2_t tid

blockIdx.x;
threadIdx.x;

for (int b = 0; b < n@ / 256U / gridDim.x; ++b) {
bid = blockIdx.x * (n@ / 256U / gridDim.x) + b;
outputl[bid * 256U + tid] = input@[bid * 256U + tid] + 1U;
bid = blockIdx.x;
__syncthreads();

ks
bid = gridDim.x * (n@ / 256U / gridDim.x) + blockIdx.x;

1f (blockIdx.x < n@ / 256U % gridDim.x) {
outputl[bid * 256U + tid] = input@[bid * 256U + tid] + 1U;

}
bid = blockIdx.x;
__syncthreads();

getIncPar = putStrLn $
genKernel 128 "incPar"
(incrementl 256 :: DPull EWord32 -> DPush Grid EWord3Z2)

extern "C" __global
{

volid incPar(uint32_t* input@®, uint32_t n0Q,
uint32_t* outputl)

uint32_t bid
uint32_t tid

blockIdx.x;
threadIdx.x;

for (int b = 0; b < n@ / 256U / gridDim.x; ++b) {
bid = blockIdx.x * (n@ / 256U / gridDim.x) + b;
for (int 1 =0; 1 < 2; ++1) {
tid = 1 * 128 + threadIldx.x;
outputl[bid * 256U + tid] = input@[bid * 256U + tid] + 1U;

tid = threadIdx.x;
bid = blockIdx.x;
__syncthreads(Q);

}
bid = gridDim.x * (n@ / 256U / gridDim.x) + blockIdx.x;

1f (blockIdx.x < n@ / 256U % gridDim.x) {
for (int 1 =0; 1 < 2; ++1) {
tid = 1 * 128 + threadIldx.x;
outputl[bid * 256U + tid] = input@[bid * 256U + tid] + 1U;
ks
tid = threadIdx.x;
¥
bid = blockIdx.x;
__syncthreads();

increment3 m = pMap (tMap (push . incLocal) m)

parfor parfor for

extern "C" __global__ void incParl(uint32_t* input@, uint32_t n@,
uint32_t* outputl)

uint32_t bid
uint32_t tid

blockIdx.x;
threadIdx.x;

for (int b = 0; b < n@ / 256U / gridDim.x; ++b) {
bid = blockIdx.x * (n@ / 256U / gridDim.x) + b;
if (threadIdx.x < 8) {
tid = 0 + threadIdx.x;
for (int i@ = 0; 10 < 32U; ++i0) {
outputl[bid * 250U + (tid * 32U + i0)] = input@[bid *

250U +
(tid *
32U +
i0)] + 1U;
}
3
tid = threadIdx.x;
bid = blockIdx.x;
__syncthreads(Q);

}
bid = gridDim.x * (n@ / 256U / gridDim.x) + blockIdx.x;
if (blockIdx.x < n@ / 256U % gridDim.x) {
if (threadIdx.x < 8) {
tid = 0 + threadIdx.x;
for (int i@ = 0; 10 < 32U; ++i0) {
outputl[bid * 256U + (tid * 32U + i0)] = input@[bid *
256U +
(tid *
32U +
i0)] + 1U;
ks
}
tid = threadIdx.x;

}
bid = blockIdx.x;
__syncthreads();

increment4 m = sMap (pMap (push. inclLocal) m)

extern "C" __global__ void incParl(uint32_t* input@, uint32_t n@,
uint32_t* outputl)
{

for (int 10 = 0; 10 < n@ / 256U; ++i0Q) {
for (int b = 0; b < 8U / gridDim.x; ++b) {
bid = blockIdx.x * (8U / gridDim.x) + b;
if (threadIdx.x < 32) {
tid = 0 + threadIdx.x;
outputl[i@ * 250U + (bid * 32U + tid)] = input@[i@ * 256U +

(bid *
32U +
tid)] +
1U;

}

tid = threadIdx.x;

bid = blockIdx.x;

__syncthreads();

}
bid = gridDim.x * (8U / gridDim.x) + blockIdx.x;
1f (blockIdx.x < 8U % gridDim.x) {
1f (threadIldx.x < 32) {
tid = 0 + threadIdx.x;
outputl[i@ * 256U + (bid * 32U + tid)] = input@[i@ * 256U +
(bid *
32U +
tid)] +
1U;

}
tid = threadIdx.x;

}
bid = blockIdx.x;
__syncthreads(Q);

Gentle persuasion by type system

incrementwrong m = tMap (pMap (push . 1inclLocal) m)

LecEx.hs:71:26:
Couldn't match type "Step t0' with "Zero'
Expected type: SPull EWord32 -> SPush Thread EWord32
Actual type: Pull Word32 EWord32 -> Push (Step t0)
Word32 EWord32
In the return type of a call of "pMap'
In the first argument of "tMap', namely
"(pMap (push . incLocal) m)'
In the expression: tMap (pMap (push . 1inclLocal) m)
Failed, modules loaded: none.

Autotuning springs to mind!

Recursion is unwound

sumUp :: Pull Word32 EWord32 -> EWord32
sumUp arr
| lenarr==1=arr!0
| otherwise =
let (al,a2) = halve arr
arr2 = zipWith (+) al a2
in sumUp arr2

force

For making arrays manifest (in memory) to
share results between threads

Forcing a pull array results in a loop that
computes the indexing function at each index

Forcing a push array instantiates the iteration
schema encoded in the array and writes all
elements to memory using that strategy

sumUp' :: Pull Word32 EWord32 -» Program Block
EWord32
sumUp' arr
| len arr==1=return(arr!@)
| otherwise =
do let (al,a2) = halve arr
arr2 < forcePull (zipWith (+) al a2)
sumUp' arr2

Gives a tree shaped parallel reduction

Hierarchy agnostic function

agnostic arr =

do itmml < forcePull (fmap (+1) arr)
imm2 < forcePull (fmap (*2) imml)
imm3 < forcePull (fmap (+3) 1mm2)

return (push imm3)

Can be instantiated at Block level or below Why?

Behaves differently at different levels

Block level (code outline)

parfor (1 in 0..255) {
imm1l[i] = input[blockID * 256 + i] + 1;
__syncthreads();

imm2[i] = imml[i] * 2;
__syncthreads(Q);

imm3[i] = imm2[i] + 3;
__syncthreads();
¥

Warp level

parfor (1 in 0..255) {
warpID = 1 / 32;

warpIx = 1 % 32;
imml[warpID * 32 + warpIx]
imm2[warpID * 32 + warpIx]
imm3[warpID * 32 + warpIx]
¥

input[blockID * 256 + warpID * 32 + warpIx] + 1;
imml[warpID * 32 + warpIx] * 2;
imm2[warpID * 32 + warpIx] + 3;

Warp level

parfor (i in 0..255) {
warpID = 1 / 32;

warpIx = 1 % 32;
imml[warpID * 32 + warpIx]
imm2[warpID * 32 + warpIx]
imm3[warpID * 32 + warpIx]
¥

input[blockID * 256 + warpID * 32 + warpIx] + 1;
imml[warpID * 32 + warpIx] * 2;
imm2[warpID * 32 + warpIx] + 3;

No synchronsations!

Warp level

parfor (1 in 0..255) {
warpID = 1 / 32;

warpIx = 1 % 32;
imml[warpID * 32 + warpIx]
imm2[warpID * 32 + warpIx]
imm3[warpID * 32 + warpIx]
¥

input[blockID * 256 + warpID * 32 + warpIx] + 1;
imml[warpID * 32 + warpIx] * 2;
imm2[warpID * 32 + warpIx] + 3;

O IT IS NO IoNnger at syncs in

warps can be dropped (so Obsidian will have to adapt)

Case study, reductions, one example

red5' :: MemoryOps a = Word32 -> (a ->a -> a) -> Pull Word32 a -> Program Block a
red5'nfarr=
do

arr2 <- force (tConcat (fmap (seqReduce f) (coalesce n arr)))

red3 2 farr2

See the draft paper on the lectures page

Case study, reductions, one example

red5' :: MemoryOps a = Word32 -> (a ->a -> a) -> Pull Word32 a -> Program Block a
red5'nfarr=
do

arr2 <- force (tConcat (fmap (seqReduce f) (coalesce n arr)))

red3 2 farr2

Adding sequential work Like splitUp but
strided, to give
Better memory access
pattern

reuse

Case study, reductions, one example

reds Case study demonstr?tkes ea;se of experiment (exploration ock 3
red5 of kernel variants)
do - :

- This is the key benefit of an EDSL

(Up but
Strided, to give

Better memory access
pattern

reuse

Reduce 2724 elements (1000 times)

Variant | Parameter | Seconds || Parameter* | Seconds*
ACC Loop 2.767

ACC AWhile 2.48

Redl 256 threads 0.751 32 2.113
Red?2 256 threads 0.802 32 2.413
Red3 256 threads 0.799 32 2.410
Red4 512 threads 1.073 1024 2.083
Redb 256 threads 0.706 1024 1.881
Red7 128 threads 0.722 1024 1.968

Best parameter selection worst parameter selection

Reduce 27224 elements (1000 times)

Performance is most satisfactory
Need to do more benchmarks (including scan!)

The degree of control for the user finally feels at the proper control
freak level

Still need to think more about the API
See Ulvinge’s thesis for an interesting development

We need to do a lot of benchmarking to turn this into science

ameter selection worst parameter selection

We would be happy if any of you wanted to
work on using or developing Obsidian ©

CUDA programming is fun, but Obsidian
programming is even more fun!

