GPU Programming |

With thanks to Manuel Chakravarty
for some borrowed slides

GPUs change the game

Gaming drives development

Relative GPU Performance

Using 3DMark Vantage (Performance Preset)

an s A
A & &F &
g A Ar
6 6

o

& & W A \ s

50000

L0000

P00

20000

10000 I
' R I R S S
4&:

W 700 Series 600 Series W 500 Series 400 Series

Image from http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-titan-black/performance

GPGPU benefits

General Purpose programming on GPU
GPUs used to be very graphics-specific (shaders and all that)

The pipeline is becoming more and more general purpose
even in the gaming GPUs, and there are also special GPUs for
GPGPU (more expensive, double precision).

Typical GPGPU users are from finance, sciences needing
simulation, bioinformatics etc.

See http://gpgpu.org/

Processing power

Theoretical GFLOP/s

5750
5500
5250
5000

4750
4500 Intel CPU Double Precision

NVIDIA GPU Single Precision
et NV|DIA GPU Double Precision

4250 emgmm|ntel CPU Single Precision

4000

3750

3500

3250

3000

2750

2500

2250

2000

1750 Tesla K40
1500 Tesla K20X
1250

1000 Tesla M2090

750 Testa C2050 -0

500 Tesla C1060 Ivy Bridge
250 Harpertown

Woodcrest
0 " pentium 4 Bloomfield Westmere

Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08 Jul-09 Nov-10 Apr-12 Aug-13 Dec-14

Sandy Bridge

Image from http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#abstract

Bandwidth to memory

Theoretical GB/s

360

330 —

300

an@ue (P Tesla K40

270 GeForce GPU
Tesla K20X

240 TestaGP———— gL

210

180 -

Tesla M2090
150

Tesla C2050

120

90
Tesla C1060
esia vy Bridge

60 Sandy Bridge
Bloomfield

30 -
GeForce FX 5900

Prescott Woodcrest
Westmere

0 Harpertown
orthwood ’ I I

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Transistors used differently

ALU IAm
CPU

Image from http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#abstract

Need a new programming model

Multithreaded QDA Program

|]

GPU with 2SMs |G|luwiun4sus

SMO || SM1 || SMO SM1 SM 2 || SM3 ||

ko mk l-n-n--

SM = multiprocessor with many small cores/ALUs. Program should run both on wimpy
GPU and on a hefty one. MANY threads need to be launched onto the GPU.

v

Detected 1 CUDA Capable device(s)

Device 0: "GeForce GT 650M"
CUDA Driver Version / Runtime Version 55/5.5
CUDA Capability Major/Minor version number: 3.0
Total amount of global memory: 1024 MBytes (1073414144 bytes)
(2) Multiprocessors, (192) CUDA Cores/MP: 384 CUDA Cores
GPU Clock rate: 900 MHz (0.90 GHz)
Memory Clock rate: 2508 Mhz
Memory Bus Width: 128-bit

Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536

Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024

Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)

C Program
Sequential
Execution

Serial code

Parallel kernel

Kernel0<<<>>>()

Serial code

Parallel kernel
Kernell<<<>>>()

Image from http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#theterogeneous-programming

CUDAC

Gives the user fine control over all of this

User must be aware of the memory hierarchy and
of costs of memory access patterns

CUDA programming is great fun (but not the
subject of this course) !

OpenCL is a sort of platform-independent CUDA

Raising the level of abstraction

Imperative
Thrust library (c++ template lib. Similar to STL)

CUB libra 'V (reusable software components for every layer of
the CUDA hierarchy. Very cool!)

PyCUDA, Copperhead and many more

Raising the level of abstraction

Functional
Accelerate (this lecture)
Obsidian (next lecture)

(both EDSLs in Haskell generating CUDA)

Nova (U. Edinburgh and NVIDIA, skeleton-based like Accelerate, IR
looks generally interesting)

and more

Accelerate

Amorphous T
Data Parallel
Nested R Haskell
Flat Accelerate Repa
Embedded Full

(2nd class) (1t class)

Accelerating Haskell Array Codes with Multicore GPUs

Manuel M. T. Chakravarty’ Gabriele Keller

TUniversity of New South Wales, Australia

{chak,keller,seanl,tmcdonell }@cse.unsw.edu.au

Abstract

Current GPUs are massively parallel multicore processors opti-
mised for workloads with a large degree of SIMD parallelism.
Good performance requires highly idiomatic programs, whose de-
velopment is work intensive and requires expert knowledge.

To raise the level of abstraction, we propose a domain-specific
high-level language of array computations that captures appropri-
ate idioms in the form of collective array operations. We embed
this purely functional array language in Haskell with an online
code generator for NVIDIA’s CUDA GPGPU programming envi-
ronment. We regard the embedded language’s collective array op-
erations as algorithmic skeletons; our code generator instantiates
CUDA implementations of those skeletons to execute embedded
array programs.

This paper outlines our embedding in Haskell, details the design
and implementation of the dynamic code generator, and reports on
initial benchmark results. These results suggest that we can com-

pete with moderately optimised native CUDA code, while enabling
mrrnh fnlmmnlas cAriean meAcranan

DAMP’11

Sean Leetf

Trevor L. McDonell’ Vinod Grovert

¥NVIDIA Corporation, USA

{selee,vgrover}@nvidia.com

25]. Our work is in that same spirit: we propose a domain-specific
high-level language of array computations, called Accelerate, that
captures appropriate idioms in the form of parameterised, collec-
tive array operations. Our choice of operations was informed by
the scan-vector model [11], which is suitable for a wide range of
algorithms, and of which Sengupta et al. demonstrated that these
operations can be efficiently implemented on modern GPUs [30].

We regard Accelerate’s collective array operations as algorith-
mic skeletons that capture a range of GPU programming idioms.
Our dynamic code generator instantiates CUDA implementations
of these skeletons to implement embedded array programs. Dy-
namic code generation can exploit runtime information to optimise
GPU code and enables on-the-fly generation of embedded array
programs by the host program. Our code generator minimises the
overhead of dynamic code generation by caching binaries of pre-
viously compiled skeleton instantiations and by parallelising code
generation, host-to-device data transfers, and GPU kernel loading
and configuration.

In contrast to our earlier prototype of an embedded language

Accelerate overall structure

Surface language
1
Reify & recover sharing
HOAS = de Bruijn

1
Optimise (fusion)

— Control —

Non-parametric array
representation
— unboxed arrays
— array of tuples
= tuple of arrays

— Data —

\

Code generation

1
- Compilation
1

<

Memoisation
LLVM.run
overlap
CUDA.run

Copy host — device
(asynchronously)

\

- CPU -

— A
Allocate Link & configure
memory kernel

N/

- GPU -

Parallel execution

l Frontend l l Multiple Backends l l First pass | Second pass l

<

Figure 2. Overall structure of Data.Array.Accelerate.

(from the DAMP’11 paper)

Accelerate

* Accelerate is a Domain-specific language for
GPU programming

Compiled by NVidia’s compiler,
loaded onto the GPU,
d and executed.
Running

Haskell/Accelerate [__ 4 CUDAcode [Ji

program

Results of the GPU computation

* This process may happen several times during the program’s execution
* The CUDA code isn’t compiled every time — code fragments are cached and re-used

User’s view (slide by S. Marlow, with thanks)

Embedded code-generating DSL

You write a Haskell program that generates
CUDA programs

But the program should look very like a Haskell

program (even though it is actually producing
ASTs)!

Repa shape-polymorphic arrays
reappear

dataZ =27 — rank-0
data tail :. head = tail :. head — increase rank by 1

type DIMO =Z

type DIM1 = DIMO :. Int

type DIM2 =DIM1 :. Int

type DIM3 = DIM2 :. Int {and so on)

type Array DIMO e = Scalar e
type Array DIM1 e = Vector e

Dot product in Haskell

dotp_list :: [Float] -> [Float] -> Float
dotp_list xs ys = foldl (+) O (zipWith (*) xs ys)

Dot product in Accelerate

dotp :: Acc (Vector Float) -> Acc (Vector Float)
-> Acc (Scalar Float)

dotp xsys — fold (+) O (zipWith (*) xs ys)

Dot product in Accelerate

dotp :: Vector Float -> Vector Float
-> Acc (Scalar Float)
dotp xs ys = let xs’ = use xs
ys’ = useys
in
fold (+) O (zipWith (*) xs’ ys’)

Moving an array (literally)

from the Haskell world to the Accelerate world

use :: (Shape sh, Elt e) => Array sh e -> Acc (Array sh e)

Implies a host to device transfer

Moving an array (literally)

from the Haskell world to the Accelerate world

use (Computations in Acc are run on the device
They work on arrays and tuples of arrays.
Remember we are talking about FLAT data parallelism

Implies
However, arrays of tuples are allowed (and get converted to tuples of arrays

internally)

Plain Haskell code is run on the host

What happens with dot product?

dotp :: Vector Float -> Vector Float
-> Acc (Scalar Float)
dotp xs ys = let xs’ = use xs
ys’ = use ys
in
fold (+) O (zipWith (*) xs’ ys’)

This results (in the original Accelerate) in 2 kernels, one for fold and one for zipWith

Collective array operations = kernels

ZipWith
:: (Shape sh, Elt a, Elt b, Elt c) =>
(Exp a -> Exp b -> Exp c)
-> Acc (Array sh a) -> Acc (Array sh b) -> Acc (Array sh c)

Collective array operations = kernels

e Exp a : a scalar computation delivering an a
* 3 is typically an instance of class Elt

map
:: (Shape sh, Elt a, Elt b) =>
(Exp a -> Exp b) -> Acc (Array sh a) -> Acc (Array sh b)

Experimenting

Prelude> import Data.Array.Accelerate as A
Prelude A> import Data.Array.Accelerate.Interpreter as |

Using the interpreter (on the host)

Prelude> import Data.Array.Accelerate as A
Prelude A> import Data.Array.Accelerate.Interpreter as |

Prelude A I> let arr = fromList (Z:.3:.5) [1..] :: Array DIM2 Int

11 12 13 14 15

Using the interpreter (on the host)

Prelude> import Data.Array.Accelerate as A
Prelude A> import Data.Array.Accelerate.Interpreter as |

Prelude A I> let arr = fromList (Z:.3:.5) [1..] :: Array DIM2 Int
Prelude A I>run S A.map (+1) (use arr)
Array (Z:.3:.5)[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

Using the interpreter (on the host)

Prelude> import Data.Array.Accelerate as A
Prelude A> import Data.Array.Accelerate.Interpreter as |

Prelude A I> let arr = fromList (Z:.3:.5) [1..] :: Array DIM2 Int
Prelude A I>run S A.map (+1) (use arr)
Array (Z:.3:5)[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

run from the interpreter ::Arraysa=>Acca->a

Even scalars get turned into arrays

Prelude> import Data.Array.Accelerate as A
Prelude A> import Data.Array.Accelerate.Interpreter as |

Prelude A I> :t unit
unit :: Elt e => Exp e -> Acc (Scalar e)

Collective array operations = kernels

fold
:: (Shape sh, Elt a) =>
(Exp a -> Exp a -> Exp a)
-> Exp a -> Acc (Array (sh :. Int) a) -> Acc (Array sh a)

Reduces the shape by one dimension

Prelude A I> run S A.fold (+) O (use arr)
Array (Z :. 3) [15,40,65]

11

12

13

14

10
15

15

40

65

to run on the GPU

Prelude A I> import Data.Array.Accelerate.CUDA as C

Prelude A1 C> C.run S A.map (+1) (use arr)

Loading package syb-0.4.0 ... linking ... done.
Loading package filepath-1.3.0.1 ... linking ... done.
Loading package old-locale-1.0.0.5 ... linking ... done.
Loading package time-1.4.0.1 ... linking ... done.
Loading package unix-2.6.0.1 ... linking ... done.

Array (Z:.3:.5)
[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]
Prelude A1 C> C.run S A.map (+1) (use arr)
Array (Z:.3:.5)
[2,3,4,5,6,7,8,9,10,11,12,13,14,15,16]

Second attempt much faster. Kernels are memoised.

Prelude A |1 C> let arrl = fromList (Z:.1000:.1000) [1..] :: Array DIM2 Int

Prelude A1 C> l.run S A.fold (+) O (use arrl)

This provokes a bug ®

*** Exception:

*** Internal error in package accelerate ***

*** Please submit a bug report at https://github.com/AccelerateHS/accelerate/issues
./Data/Array/Accelerate/CUDA/State.hs:86 (unhandled): CUDA Exception: out of memory

Though the 500 by 500 case works fine.

Making an array on the device

generate
:: (Shape sh, Elt a) =>
Exp sh -> (Exp sh -> Exp a) -> Acc (Array sh a)

Reshaping arrays

reshape
.: (Shape sh, Shape sh', Elt e) =>
Exp sh -> Acc (Array sh' e) -> Acc (Array sh e)

Reshaping arrays

reshape
:: (Shape sh, Shape sh', Elt e) =>
Exp sh -> Acc (Array sh' e) -> Acc (Array sh e)

Prelude A | C> let arr2 = fromList (Z:.4:.5) [1..] :: Array DIM2 Int

Prelude A1 C> I.run S fold (+) O (reshape (index2 (5 :: Exp Int) 4) (use arr2))
Array (Z :. 5) [10,26,42,58,74]

Omit run to see datatype

Prelude A | C> fold (+) O (reshape (index2 (5 :: Exp Int) 4) (use arr2))

let a0 = use (Array (Z2:.4:.5)[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20])
in

let al = reshape (Z:.5:.4) a0

in fold (\xO x1 -> x0 + x1) 0 al

Similarly for map

Prelude A1 C> A.map (+1) (reshape (index2 (5 :: Exp Int) 4) (use arr2))

let a0 = use (Array (Z2:.4:.5)[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20])
in

let al = reshape (Z:.5:.4) a0

in map (\x0 -> 1 + x0) al

Similarly for map

Prelude A1 C> A.map (+1) (reshape (index2 (5 :: Exp Int) 4) (use arr2))

let a0 = use (Array (Z2:.4:.5)[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20])
in

let al = reshape (Z:.5:.4) a0

in map (\x0 -> 1 + x0) al

What happens behind the scenes??

map (\x —> x + 1) arr

Slides by M. Chakravarty, with thanks

map (\x —> x + 1) arr

Reifyl AST
v

Map (Lam (Add “PrimApp"

(ZeroIdx, Const 1))) arr

map (\x —> x + 1) arr

Reify| AST

v .
Optimise
Map (Lam (Add “PrimApp’
<«

(ZeroIdx, Const 1))) arr

map (\x —> x + 1) arr

Reifyl AST
v Optimise

Map (Lam (Add “PrimApp")///
(ZeroIdx, Const 1))) arr <&
|

Skeleton instantiation
v

global__ void kernel (float *arr, int n)

{...

map (\x —> x + 1) arr

Reifyl AST
v |
Optimise
Map (Lam (Add “PrimApp" ?’//
(ZeroIdx, Const 1))) arr <&

Skeleton instantiation
v

lobal _ void kernel (float xarr, int n)

{...

CUDA cCompiler .
—~

- (=2 Q-
O Or -
[= = el =
QO
- O = =0

{...

map (\x —> x + 1) arr

!
Reifyl AST
v .
Optimise
Map (Lam (Add “PrimApp" ?’//
(ZeroIdx, Const 1))) arr e

Skeleton instantiation
v

lobal __ void kernel (float xarr, int n))

e

CUDA compiler °
~

- (= (=0

QO O

O O =
QO

-0 - - O

mkMap dev aenv fun arr = return $
CUTrans1Skel "map" [cunit]

$esc: ("#include <accelerate cuda.h>")

extern "C" __global__ void

map ($params:argIn, $params:argOut) {
const int shapeSize = size(shOut);
const int gridSize $exp: (gridSize dev);
int 1x;

for (ix = $exp:(threadIdx dev)
; 1X < shapeSize
ix += gridSize) {
$items: (dce x .=. get ix)
$items: (setOut "ix" .=. f x)

Combinators as skeletons

Skeleton = code template with holes
Hand tuned

Uses Mainland’s CUDA quasi-quoter

Antiquotes such as are the holes

Performance (DAMP’11 paper)

Dot Product
10

3.51

3.12

Time (ms)

2 4 6 8 10 12 14 16 18
Number of elements (million)
O Accelerate < CUBLAS

Figure 3. Kernel execution time for a dot product.

Performance (DAMP’11 paper)

Dot Product
10

3.51

3.12

Time (ms)

8
Number of elements (milliol P retty 800d

O Accelerate M But reflecting the fact that dotp in
Figure 3. Kernel execution time for & Alelel=/ [= piar ali=lels 20 daiapi=l s L plelpl=

Conclusion (DAMP’11 paper)

Need to tackle fusion of adjacent kernels
Sharing is also an issue

One should write programs to take advantage of
kernel memoisation (to reduce kernel
generation time)

Optimising Purely Functional GPU Programs

Trevor L. McDonell

Manuel M. T. Chakravarty

Gabriele Keller ~ Ben Lippmeier

University of New South Wales, Australia

{tmcdonell,chak,keller,benl}@cse.unsw.edu.au

Abstract

Purely functional, embedded array programs are a good match for
SIMD hardware, such as GPUs. However, the naive compilation
of such programs quickly leads to both code explosion and an
excessive use of intermediate data structures. The resulting slow-
down is not acceptable on target hardware that is usually chosen to
achieve high performance.

In this paper, we discuss two optimisation techniques, sharing
recovery and array fusion, that tackle code explosion and elimi-
nate superfluous intermediate structures. Both techniques are well
known from other contexts, but they present unique challenges
for an embedded language compiled for execution on a GPU. We
present novel methods for implementing sharing recovery and array
fusion, and demonstrate their effectiveness on a set of benchmarks.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classification—Applicative (functional) lan-
guages; Concurrent, distributed, and parallel languages

Keywords Arrays; Data parallelism; Embedded language; Dy-
namic compilation; GPGPU; Haskell; Sharing recovery; Array fu-
sion

1. Introduction

Recent work on stream fusion [12], the vector package [23], and
the parallel array library Repa [17, 19, 20] has demonstrated that
(1) the performance of purely functional array code in Haskell
can be competitive with that of imperative programs and that (2)
purely functional array code lends itself to an efficient parallel
implementation on control-parallel multicore CPUs.

ICFP’13

programs consisting of multiple kernels the intermediate data struc-
tures must be shuffled back and forth across the CPU-GPU bus.

We recently presented Accelerate, an EDSL and skeleton-based
code generator targeting the CUDA GPU development environ-
ment [8]. In the present paper, we present novel methods for op-
timising the code using sharing recovery and array fusion.

Sharing recovery for embedded languages recovers the sharing
of let-bound expressions that would otherwise be lost due to the
embedding. Without sharing recovery, the value of a let-bound
expression is recomputed for every use of the bound variable.
In contrast to prior work [14] that decomposes expression trees
into graphs and fails to be type preserving, our novel algorithm
preserves both the tree structure and typing of a deeply embedded
language. This enables our runtime compiler to be similarly type
preserving and simplifies the backend by operating on a tree-based
intermediate language.

Array fusion eliminates the intermediate values and additional
GPU kernels that would otherwise be needed when successive
bulk operators are applied to an array. Existing methods such as
foldr/build fusion [15] and stream fusion [12] are not applica-
ble to our setting as they produce tail-recursive loops, rather than
the GPU kernels we need for Accelerate. The NDP2GPU system
of [4] does produce fused GPU kernels, but is limited to simple
map/map fusion. We present a fusion method partly inspired by
Repa’s delayed arrays [17] that fuses more general producers and
consumers, while retaining the combinator based program repre-
sentation that is essential for GPU code generation using skeletons.

With these techniques, we provide a high-level programming
model that supports shape-polymorphic maps, generators, reduc-
tions, permutation and stencil-based operations, while maintaining
performance that often approaches hand-written CUDA code.

Skeleton #1 Skeleton #2

dotp xs ys = fold (+) 0 (zipWith (%) xs ys)

Intermediate array

Extra traversal

Combined skeleton

dotp xs ys = fold (+) 0 (zipWith (%) xs ys)

Producers

“Operations where each element of the result array depends on at most one element of
each input array. Multiple elements of the output array may depend on a single input
array element, but all output elements can be computed independently. We refer to
these operations as producers.”

~
L~
L7
L7
-

Producers

“Operations where each element of the result array depends on at most one element of
each input array. Multiple elements of the output array may depend on a single input
array element, but all output elements can be computed independently. We refer to

these operations as producers.”

L
L7

>

L 7
v
v

Consumers

“Operations where each element of the result array depends on multiple elements of
the input array. We call these functions consumers, in spite of the fact that they also
produce an array.”

\

map o
zipWith H
->
backpermute ::
->
replicate M-
->
->
slice B
=>
->
generate
fold B
->
scan{l,r} T
->
permute B
->
stencil

Producers
(Exp a -> Exp b) -> Acc (Array sh a) -> Acc (Array sh b)
(Exp a -> Exp b -> Exp c) -> Acc (Array sh a) -> Acc (Array sh b)
Acc (Array sh c)
Exp sh’ -> (Exp sh’ -> Exp sh) -> Acc (Array sh a)
Acc (Array sh’ e)
Slice slix => Exp slix
Acc (Array (SliceShape slix) e)
Acc (Array (FullShape slix) e)
Slice slix
Acc (Array (FullShape slix) e) -> Exp slix
Acc (Array (SliceShape slix) e)

:: Exp sh -> (Exp sh -> Exp a) -> Acc (Array sh a)

Consumers
(Exp a -> Exp a -> Exp a) -> Exp a -> Acc (Array (sh:.Int) a)
Acc (Array sh a)
(Exp a -> Exp a -> Exp a) -> Exp a -> Acc (Vector a)
Acc (Vector a)
(Exp a -> Exp a -> Exp a) -> Acc (Array sh’ a)
(Exp sh -> Exp sh’) -> Acc (Array sh a) -> Acc (Array sh’ a)
Stencil sh a stencil => (stencil -> Exp b) -> Boundary a
Acc (Array sh a) -> Acc (Array sh b)

—USINg NEtworks of skeletons

) 4

___i c2

) 94

—USINg Networks of skeletons

Phase 1: producer/producer fusion

i

This is the easy case

—USINg Networks of skeletons

Phase 2: consumer/producer fusion

Fuse a producer followed by a consumer into the consumer
Happens during code generation. Speciaiise consumer skeleton with producer code

—USINg Networks of skeletons

Phase 2: consumer/producer fusion

S0

Producer consumer pairs were not fused at time of writing of the ICFP’13 paper

Fusion friendly

data DelayedAcc a where
Done :: Acc a
DelayedAcc a
Yield :: (Shape sh, Elt e)
Exp sh
Fun (sh —> e)
DelayedAcc (Array sh e)

mapD f (Yield sh g) = Yield sh (f . g)

For Producer Producer fusion, use delayed arrays (like we saw in Repa)

Fusion friendly

data DelayedAcc a where
Done :: Acc a
—> DelayedAcc a
Yield :: (Shape sh, Elt e)
=> EXp sh
—> Fun (sh —> e)
—> DelayedAcc (Array sh e)

mapD f (Yield sh g) = Yield sh (f . g)

The third constructor, Step, encodes a special case of the more general
Yield that represents the application of an index and/or value space transformation
to the argument array.

Fusion friendly

data DelayedAcc a where
Done :: Acc a
—> DelayedAcc a
Yield :: (Shape sh, Elt e)
=> Exp sh
—> Fun (sh —> e)
—> DelayedAcc (Array sh e)

mapD f (Yield sh g) = Yield sh (f . g)

codeGenAcc .. (Fold f z arr)

= mkFold .. (codeGenFun f) (codeGenExp z)
(codeGenEmbeddedAcc arr)

—USION O skeletons
...reduces the abstraction penalty

Code generation 1dioms vary from high-level combinators
Smart constructors combine producers

Instantiate consumer skeletons with producer code

Run Time (ms)

Dot Product

100 F T T 1]
10 E
1 3 ata.Vector —e— 1

- Repa -N8 —m—

- NDP2GPU —B— -

- Accelerate -fusion —¢— -

T F CUBLAS —— -

C | | | | | | | []

4 6 8 10 12 14 161820

Elements (millions)

blackscholes ::

Sharing recovery

Vector (Float, Float, Float)

-> Acc (Vector (Float, Float))

blackscholes =
where

callput x =

let (price,

r =

v =

v_sqrtT =

d1

d2 =

cnd d =

cndD1 =

cndD2 =

x_expRT =
in

map callput .

strike, years) =

use

unlift x
constant riskfree
constant volatility

v * sqrt years

= (log (price / strike) +

(r + 0.5 * v x v) * years) / v_sqrtT
dl - v_sqrtT

let c =cnd’ dind > 0 ? (1.0 - ¢, c)
cnd di

cnd d2

strike * exp (-r * years)

lift (price * cndDl1 - x_expRT * cndD2

, x_expRT * (1.0 - cndD2) - price * (1.0 - cndD1))

riskfree, volatility ::
= 0.02
volatility = 0.30

riskfree

horner ::

horner coeff x =
where

madd a b = a

cnd’ :: Floating

cnd’ 4 =
let poly
coeff

rsqrt2pi
k

in
rsqrt2pi * exp

Num a =>

Float

[a] > a > a
x * foldrl madd coeff

+ x*b

a=>a->a

= horner coeff

[0.31938153, -0.356563782,
1.781477937, -1.821255978,
1.330274429]

0.39894228040143267793994605993438
1.0 / (1.0 + 0.2316419 * abs d)

(-0.5%d*d) * poly k

“The function callput includes a significant amount of sharing: the
helper functions cnd’, and hence also horner, are used twice —for d1
and d2— and its argument d is used multiple times in the body. Our
embedded implementation of Accelerate reifies the abstract syntax of
the (deeply) embedded language in Haskell. Consequently, each
occurrence of a let-bound variable in the source program creates a
separate unfolding of the bound expression in the compiled code.”

Summary

ICFP’13 paper introduces a new way of doing sharing
recovery (a perennial problem in EDSLs)

It also introduces novel ways to fuse functions on arrays
Performance is considerably improved

This is a great way to do GPU programming without
bothering too much about how GPUs make life difficult

