Parallel Functional Programming
Lecture 8
Data Parallelism Il

http://www.cse.chalmers.se/edu/course/pfp

Data parallelism

Introduce parallel data structures and make
operations on them parallel

Often data parallel arrays

Canonical example : NESL (NESted-parallel Language)
(Blelloch)

NESL

concise (good for specification, prototyping)

allows programming in familiar style (but still gives parallelism)
allows nested parallelism (as we briefly saw in DPH)

associated language-based cost model

gave decent speedups on wide-vector parallel machines of the day

Hugely influential!

http://www.cs.cmu.edu/~scandal/nesl.html

NESL

Parallelism without concurrency!
Completely deterministic (modulo floating point noise)

No threads, processes, locks, channels, messages, monitors,
barriers, or even futures, at source level

Based on Blelloch’s thesis work:
Vector Models for Data-Parallel Computing, MIT Press 1990

NESL

NESL is a sugared typed lambda calculus with a set
of array primitives and an explicit parallel map over
arrays

To be useful for analyzing parallel algorithms, NESL was
designed with rules for calculating the work (the total
number of operations executed) and depth (the longest
chain of sequential dependence) of a computation.

uotes are from ICFP’96 paper

A Provable Time and Space Efficient Implementation of NESL

Guy E. Blelloch and John Greiner
Carnegie Mellon University
{blelloch, jdg}@cs. cmu. edu

Abstract

In this paper we prove time and space bounds for the im-
plementation of the programming language NESL, on various
parallel machine models. NESL is a sugared typed A-calculus
with a set of array primitives and an explicit parallel map
over arrays, Our results extend previous work on provable
implementation bounds for functional languages by consid-
ering space and by including arrays. For modeling the cost
of NESL we augment a standard call-by-value operational
semantics to return two cost measures: a DAG represent-
ing the sequential dependences in the computation, and a
‘measure of the space taken by a sequential implementation.
We show that a NEsL program with w work (nodes in the
DAG), d depth (levels in the DAG), and s sequential space
can be implemented on a p processor butterfly network, hy-
percube, or CRCW PRAM using O(w/p + dlog) time aud
O(s + dplog p) reachable space.! For programs with suffi-
cient parallelism these bounds are optimal in that they give
linear speedup and use space within a constant factor of the
sequential space.

The idea of a provably efficient implementation is to add
to the semantics of the language an accounting of costs, and
then to prove a mapping of these costs into running time
and/or space of the implementation on concrete machine
models (or possibly to costs in other languages). The mo-
tivation is to assure that the costs of a program are well
defined and to make guarantees about the performance of
the implementation. In previous work we have studied prov-
ably time efficient parallel implementations of the A-calculus
using both call-by-value [3] and i (18]
These results accounted for work and depth of a compu-
tation using a profiling semantics 20, 30] and then related
work and depth to running time on various machine models

This paper applies these ideas to the language NesL and
extends the work in two ways. First, it includes sequences
(arrays) as a primitive data type and accounts for them in
both the cost semantics and the implementation. This is
motivated by the fact that arrays cannot be simulated effi-
ciently in the A-calculus without arrays (the simulation of
an array of length n using recursive types requires a Q(log n)
slowdown). Second, it augments the profiling semantics with

uotes

~ This paper adds the accounting of costs to the semantics
of the language and proves a mapping of those costs into
running time / space on concrete machine models

A Provable Time and Space Efficient Implementation of NESL

Guy E. Blelloch and John Greiner
Carnegie Mellon University
{blelloch, jdg}@cs. cmu. edu

Abstract

In this paper we prove time and space bounds for the im-
plementation of the programming language NESL, on various
parallel machine models. NESL is a sugared typed A-calculus
with a set of array primitives and an explicit parallel map
over arrays, Our results extend previous work on provable
implementation bounds for functional languages by consid-
ering space and by including arrays. For modeling the cost
of NESL we augment a standard call-by-value operational
semantics to return two cost measures: a DAG represent-
ing the sequential dependences in the computation, and a
‘measure of the space taken by a sequential implementation.
We show that a NEsL program with w work (nodes in the
DAG), d depth (levels in the DAG), and s sequential space
can be implemented on a p processor butterfly network, hy-
percube, or CRCW PRAM using O(w/p + dlog) time aud
O(s + dplog p) reachable space.! For programs with suffi-
cient parallelism these bounds are optimal in that they give
linear speedup and use space within a constant factor of the
sequential space.

The idea of a provably efficient implementation is to add
to the semantics of the language an accounting of costs, and
then to prove a mapping of these costs into running time
and/or space of the implementation on concrete machine
models (or possibly to costs in other languages). The mo-
tivation is to assure that the costs of a program are well
defined and to make guarantees about the performance of
the implementation. In previous work we have studied prov-
ably time efficient paralle] implementations of the A-calculus
using both call-by-value [3] and i (18]
These results accounted for work and depth of a compu-
tation using a profiling semantics 20, 30] and then related
work and depth to running time on various machine models

This paper applies these ideas to the language NesL and
extends the work in two ways. First, it includes sequences
(arrays) as a primitive data type and accounts for them in
both the cost semantics and the implementation. This is
motivated by the fact that arrays cannot be simulated effi-
ciently in the A-calculus without arrays (the simulation of
an array of length n using recursive types requires a Q(log n)
slowdown). Second, it augments the profiling semantics with

Image: © Thinking Machines Corporation, 1986.
Photo: Steve Grohe.

http://www.venturenavigator.co.uk/content/152

Connection Machine

First commercial massively
parallel machine

65k processors

can see CM-1 and CM-5

(from 1993) at Computer
History Museum, Mountain
View

NESL array operations

function factorial(n) =
if (n<=1)then1
else n*factorial(n-1);

{factorial(i) : i in [3, 1, 7]};

apply to each = parallel map (works with user-defined functions
=> load balancing)

list comprehension style notation

Online interpreter ©

The result of:

function factorial(n) =
if (n <= 1) then 1
else n*factorial(n-1);

{factorial(i) : i in [3, 1, 7]);
is:

factorial = fn : int -> int

it = [6, 1, 5040] : [int]

Bye.

http://www.cs.cmu.edu/~scandal/nesl/tutorial2.html

10

apply to each (multiple sequencs)

The result of:

{a+b:ain[3,-4,-9];bin[1, 2, 3]};
is:

it = [4, -2, -6] : [int]

Bye.

11

apply to each (multiple sequencs)

The result of:
{a+b:ain[3,-4,-9];bin[1, 2, 3]}
is:
it = [4, -2, -6] : [int]
Bye.
Qualifiers in comprehensions are zipping rather than nested as in Haskell

Prelude>[a+b | a<-[3,-4,-9], b<-[1,2,3]]
[4,5,6,-3,-2,-1,-8,-7,-6]

12

Filtering too

The result of:
{fa*a:ain[3,-4,-9, 5] |a> 0}
is:

it =19, 25] : [int]

Bye

13

scan (Haskell first)

*Main> scanl1 (+) [1..10]
[1,3,6,10,15,21,28,36,45,55]

Main> scanl1 () [1..10]
[1,2,6,24,120,720,5040,40320,362880,3628800]

14

scan diagram

level O

* |
\ N

binary operator

. level 7

0--- 0:3 --- 0:7

There is a standard style of diagram for representing scan algorithms. Data flows in at
the top and then downwards along the “wires”. The black dots

are binary operators and in all but the rightmost of these the output flows both
straight down and along the diagonal (to the next dot).

In this sequential case the 7 dots must operate in sequence because of the data
dependencies.

But there are other ways to calculate the same results.

15

Brent Kung ('79)

In this scan (or parallel prefix) network, more than one dot is operating at each level,
so parallelism is being used. This uses more dots, but allows us to get the answer
faster.

This example, due to Brent and Kung, has 32 inputs and depth 9, rather than the
depth 31 that would be needed for the sequential case.

16

Brent Kung

forward tree + several reverse trees

Here, the last (rightmost) output is calculated at depth 5 (log base 2 of 32). For a
binary operator, that output can’t be calculated in any smaller depth.

17

recursive decomposition

a[213 a; al arl

LAY
SIS

indices from 1 here

One can also view the network as a recursive construction (rather than in terms of
trees and reverse trees). Think of it as applying some operators at the top (to
adjacent elements in the input),

applying the network P to the outputs of the operators while passing the other
“wires” straight through, and then fixing up the result with a final row of operators,
again between adjacent elements,

but shifted one over. The inputs to P are S(1,2), S(3,4), ... S(i-1,i), ... and the outputs
are S(1,2), S(1,4), S(1,i) and it is easy enough to use those values and the odd
numbered inputs to

Also produce S(1,3), S(1,5) etc. (Here, | write S(l,j) instead of S subscript | superscript

J.

18

recursive decomposition

one recursive call on n/2
inputs

divide
conquer
combine

19

prescan

scan ”shifted right by one”

prescan of

[a;, a,, A3, Ay e ,a,]
is

* * * * *
[, a,, a,*a,, a;*a,*a;,...,a;*.. a4l

~—J

L identity element

Blelloch often concentrates on what is called prescan. It is like taking the result of a

scan and shifting in the identity of the operator (and shifting out the last value, the
reduction of all the inputs).

scan from prescan

easy (constant time)

* * * * *
[, a;, a;*a, a;*a,*a;, ...,a;*...%a 4] a,

* * * * * * *
la,, a; *a, a;*a,*a;, ...,a;, % ... %a 4,8, % ... %a,]

To get to scan from prescan, just drop the identity and fill in the last value, which can
be got from the final element of the prescan by one operation with the final input.

21

the power of scan

Blelloch pointed out that once you have scan
you can do LOTS of interesting algorithms, inc.

To lexically compare strings of characters. For example, to determine that "strategy" should appear
before "stratification" in a dictionary

To evaluate polynomials
To solve recurrences. For example, to solve the recurrences

To implement radix sort _

To implement tjuicks tXi-l + bi Xi.2 and X = 4 + bi / X1
To solve tridiagonal linear systems

To delete marked elements from an array

To dynamically allocate processors

To perform lexical analysis. For example, to parse a program into tokens
and many more

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/scandal/public/papers/ieee-scan.ps.gz

Blelloch made very clear how tremendously powerful the scan primitive is in data
parallel programming.

prescan in NESL

function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
let e = even_elts(a);
o = odd_elts(a);
s = scan_op(op,identity,{fop(e,0): e in e; 0 in 0})
in interleave(s,{op(s,e): sin s; e in e});

23

prescan in NESL

function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
let e = even_elts(a);
0 = odd_elts(a);
s = scan_op(op,identity,{op(e,0): e in €; 0 in o})
in interleave(s,{op(s,e): s in's; e in e}};

zipWithop e o
zipWithop s e

—

—

24

prescan

function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
let e = even_elts(a);
o = odd_elts(a);
s = scan_op(op,identity,{fop(e,0): e in e; 0 in 0})
in interleave(s,{op(s,e): sin s; e in e});

scan_op('+,0,[2,8,3,-4,1,9,-2,7]);
is:
scan_op =fn: ((b, b) -> b, b, [b]) -> [b] :: (a in any; b in any)

it =10, 2,10, 13,9, 10, 19, 17] : [int]

25

prescan

function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
let e = even_elts(a);
o = odd_elts(a);
s = scan_op(op,identity,{fop(e,0): e in e; 0 in 0})
in interleave(s,{op(s,e): sin s; e in e});

scan_op(max, 0, (2,8, 3,-4,1,9,-2,7]);
is:

scan_op =fn : ((b, b) -> b, b, [b]) -> [b] :: (@ in any; b in any)

it=[0,2,8,8,8,8,9,9]:[int]

26

Exercise

Try to write scan (as distinct from prescan)

Call it oscan (as scan is built in (gives both prescan list and
the final element))

Note that apply-to-each on two sequences demands that the two
sequences have equal length (unlike zipWith)

Assume first that the sequence has length a power of two

Type your answer into one of the boxes on
http://www.cs.cmu.edu/~scandal/nesl/tutorial2.html

27

Outline of one possible solution

function init is = take(is, #is-1);
function tail is = drop(is,1);

function oscan(op,v) =

if #v == 1 then v

else let es = even_elts(v);
os = odd_elts(v);
is = oscan{(..);

us .
in interleave .. ;

28

Outline of one possible solution

function init is

function tail is

= take(is, #is-1);

= drop(is,1);

function oscan(op,v) =
if #v == 1 then v

else let es =
os =

is =

even_elts (v);
odd_elts (v);

®S interleave([1,2,3],[4,5,6]);

us = ..

in interleave ..

it = [1, 4, 2, 5, 3, 6] : [int]
interleave ([1,2,3],[4,5]);

it = [1, 4, 2, 5, 3] : [int]

interleave ([1,2,3],[4]):

RUNTIME ERROR: Length mismatch for function INTERLEAVE.

29

Batcher’s bitonic merge

function bitonic_sort(a) =
if (#a ==1) then a
else
let
bot = subseq(a,0,#a/2);
top = subseq(a,#a/2,#a);
mins = {min(bot,top):bot;top};
maxs = {max(bot,top):bot;top};
in flatten({bitonic_sort(x) : x in [mins,maxs]});

30

bitonic_sort (merger)

max

min

| made this from a larger diagram by covering up some stuff on the left with a white

box. Writing could be put there.
You get to this picture from the previous one by taking hold of the inputs and outputs

and pulling (so that the two-input two-output boxes get stretched.

bitonic_sort (merger)

max

top

min

bot

| made this from a larger diagram by covering up some stuff on the left with a white
box. Writing could be put there.

You get to this picture from the previous one by taking hold of the inputs and outputs
and pulling (so that the two-input two-output boxes get stretched.

32

bitonic sort

function batcher_sort(a) =

if (#a ==1) then a

else
let b = {batcher_sort(x) : x in bottop(a)};
in bitonic_sort(b[0]++reverse(b[1]));

33

bitonic sort

sort

rev

sort

bitonic
merge

34

Quicksort

function Quicksort(A) = if (#A < 2) then A else
let pivot = A[#A/2];
lesser ={ein A| e < pivot};
equal ={ein A| e == pivot};
greater = {e in A| e > pivot};
result = {quicksort(v): v in [lesser,greater]};
in result[0] ++ equal ++ result[1];

35

parentheses matching

For each index, return the index of the matching parenthesis

function parentheses_match(string) =

let
depth = plus_scan({if c=="(then 1 else -1 : c in string});
depth = {d + (if c=="(then 1 else 0): c in string; d in depth};
rnk = permute([0:#string], rank(depth));
ret = interleave(odd_elts(rnk), even_elts(rnk))

in permute(ret, rnk);

one scan, a map, a zipWith, two permutes and an interleave,
also rank and odd_elts and even_elts

36

parentheses matching

permute([7,8,9],[2,1,0]);
permute([7,8,9],(1,2,0]);

For each index, return the in
it=[9, 8, 7] : [int]

function parentheses_match(
let
depth = plus_scan({if c=="(then 1 else -1 : c in string});
depth = {d + (if c=="(then 1 else 0): c in string; d in depth};
rnk = permute([0:#string], rank(depth));
ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);

it=1[9,7,8]: [int]

one scan, a map, a zipWith, two permutes and an interleave,
also rank and odd_elts and even_elts

37

parentheses matching

rank([6,8,9,7]);

it=1[0,2,3,1]: [int
For each index, return the in [I+ {int

function parentheses_match(rank([6,8,9,7,9]);
let
depth = plus_scan({if c==" it=[0,2,3,1,4]:][int]

depth = {d + (if c=="(then L ¢

rnk = permute([0:#string], rank(depth));

ret = interleave(odd_elts(rnk), even_elts(rnk))
in permute(ret, rnk);

one scan, a map, a zipWith, two permutes and an interleave,
also rank and odd_elts and even_elts

38

parentheses matching

A "step through” of this

function is provided at end of
For each index, return the index of the matching pz these slides

function parentheses_match(string) =

let
depth = plus_scan({if c=="(then 1 else -1 : c in string});
depth = {d + (if c=="(then 1 else 0): c in string; d in depth};
rnk = permute([0:#string], rank(depth));
ret = interleave(odd_elts(rnk), even_elts(rnk))

in permute(ret, rnk);

one scan, a map, a zipWith, two permutes and an interleave,
also rank and odd_elts and even_elts

39

What does Nested mean??

{plus_scan(a) : a in [[2,3], [8,3,9], [7]11};

it = [[0, 2], [0, 8, 11], [O0]] : [[int]]

40

What does Nested mean??

sequence of sequences
apply to each of a PARALLEL
function

{plus_scan(a) : a in [[2,3], [8,3,9], [711};

it = [[0, 2], [0, 8, 11], [O0]] : [[int]]

What does Nested mean??

sequence of sequences
apply to each of a PARALLEL
function

{plus_scan(a) : a in [[2,3], [8,3,9], [711};

it = [[0, 2], [0, 8, 11], [O0]] : [[int]]

Implemented using Blelloch’s Flattening Transformation, which
converts nested parallelism into flat. Brilliant idea, challenging
to make work in fancier languages (see DPH and good work on Manticore (ML))

A good place to find out more is this DPH paper: http://research.microsoft.com/en-
us/um/people/simonpj/papers/ndp/fsttcs2008.pdf

What does Nested mean??
Another example

function svxv (sv, v) =
sum ({x * v[i] : (x, i) in sv});

function smxv (sm, v) =
{ svxv(row, v) : row in sm}

43

Nested parallelism

Arbitrarily nested parallel loops + fork-join

Assumes no synchronization among parallel

tasks except at join points => a task can only sync with its
parent (sometimes called fully strict)

Deterministic (in absence of race conditions)

Advantages:
Good schedulers are known
Easy to understand, debug, and analyze

44

Nested Parallelism

Dependence graph is series-parallel

45

Nested Parallelism

Dependence graph is series-parallel

Task can only synchronise with

its parent

46

But not

47

But not

Here, a task can only
synchronise with an ancestor
(strict (but not fully strict))

48

Back to examples

49

this prescan is actually flat

function scan_op(op,identity,a) =
if #a == 1 then [identity]
else
let e = even_elts(a);
o = odd_elts(a);
s = scan_op(op,identity,{fop(e,0): e in e; 0 in 0})
in interleave(s,{op(s,e): sin s; e in e});

50

Back to examples
Batcher’s bitonic merge 1S NESTED

function bitonic_sort(a) =
if (#a ==1) then a
else
let
bot = subseq(a,0,#a/2);
top = subseq(a,#a/2,#a);
mins = {min(bot,top):bot;top};
maxs = {max(bot,top):bot;top};
in flatten({bitonic_sort(x) : x in [mins,maxs]});

and so is the sort

51

Back to examples
Batcher’s bitonic merge 1S NESTED

nestedness is good for D&C

. o and for irregular computations
function bitonic_sort(a) =

if (#a ==1) then a
else
let
bot = subseq(a,0,#a/2);
top = subseq(a,#a/2,#a);
mins = {min(bot,top):bot;top};
maxs = {max(bot,top):bot;top};
in flatten({bitonic_sort(x) : x in [mins,maxs]});

and so is the sort

52

Back to examples
parentheses matching is FLAT

For each index, return the index of the matching parenthesis

function parentheses_match(string) =

let
depth = plus_scan({if c=="(then 1 else -1 : c in string});
depth ={d + (if c=="(then 1 else 0): c in string; d in depth};
rnk = permute([0:#string], rank(depth));
ret = interleave(odd_elts(rnk), even_elts(rnk))

in permute(ret, rnk);

53

What about a cost model?

Blelloch empasises

1) work: total number of operations
represents total cost (integral of needed resources over time = running time
on one processor)

2) depth or span: longest chain of sequential dependencies

best possible running time on an unlimited number of processors

claims:

1) easier to think about algorithms based on work and depth than to use running
time on machine with P processors (e.g. PRAM)

2) work and depth predict running time on various different machines
(at least in the abstract)

54

Part 1: simple language based performance model

Call-by-value A-calculus

Jx.el ix.e (LAM)

el ixe e, v elv/x1{V

e e v

(APP)

slide from Blelloch’s ICFP10 invited talk

Blelloch’s ICFP10 invited talk is great. Watch the video!

55

The Parallel A-calculus: cost model
el viw.d

Reads: expression e evaluates to v with work w
and span d.

* Work (W): sequential work

* Span (D): parallel depth

slide from Blelloch’s ICFP10 invited talk

56

The Parallel A-calculus: cost model

el sx.ell] (LAM)

(APP)

Work adds : .
Span adds sequentially, d
and max in parallel i' =

slide from Blelloch’s ICFP10 invited talk

57

The Parallel A-calculus: cost model

el aveflll] (LAM)

.
ey oy U [Lewy +w, + w1+ max(d,.d,) + d,

Work adds
Span adds sequentially,
and max in parallel

slide from Blelloch’s ICFP10 invited talk

58

The Parallel A-calculus cost model

Jx.el Jx.e; Ll (LAM)
el Avce;wnd e, L viw,d, elv/x]|v'w,.d, (APP)
e e, v 1+w +w, +w,, 1+max(d,.d,) +d,
cle Ll (CONST)
el ciwed e, b viw,d, ocy) |V (APPC)
e e, v 1+w, +w,, 1+max(d,.d,)
€= 00ty <o<ga <y XXy, X - (constants)

slide from Blelloch’s ICFP10 invited talk

59

Adding Functional Arrays: NESL

- xine. | e
{e;:xme, | o5}

e /x1lv w.d, T€{l...n}
{exin v, 1F by v, T+ Siwy, 1+ maxt 4,

Primitives:

<- : ‘a seq * (int,’a) seq -> ‘a seqg
* [g:cra:P] <- [(old)l(zlf)((oll)]
[i,¢,f,p]

elt, index, length [ICFP95]

slide from Blelloch’s ICFP10 invited talk

60

Adding Functional Arrays: NESL

{e;:xme, | o5}

Blelloch:

programming based cost models could change the way people think about
costs and open door for other kinds of abstract costs

doing it in terms of machines.... "that's so last century"

<- : ‘a seq * (int,’a) seq -> ‘a seqg
* [glcralp] <- [(old)l(zlf)l(oll)]
[i,¢,f,p]

elt, index, length [ICFP95]

slide from Blelloch’s ICFP10 invited talk

61

The Second Half:
Provable Implementation Bounds

Theorem [FPCA95]:If e || v:w.d then v can be
calculated from ¢ on a CREW PRAM with p
processors in ()"I—:Hllogp] time.

Can’t really do better than: ma.\'i%,d]
If w/p > d log p then “work dominates”

We refer to w/ 43s the parallelism.

(Typo fixed by MS)

slide from Blelloch’s ICFP10 invited talk

62

Brent’s lemma

If a computation can be performed in t steps with g operations on a parallel
computer (formally, a PRAM) with an unbounded number of processors, then
the computation can be performed in t + (g-t)/p steps with p processors

http://maths-people.anu.edu.au/~brent/pd/rpb022.pdf

63

Back to our scan

oblivious or dataindependent computation
N =2" inputs, work of dotis 1
work =7?

depth =7

and bitonic sort?

work=N-1 + N/2—-1 + N/4-1 ..3+1 = 2N-1-(n+l1l) =2N-n-2 e.g.for 32
inputs, 64-5-2 = 57

depth =2n-1

For bitonic sort, think about a merger first (again with N = 2”*n inputs). The merger is
n deep and its work is N/2 times n if we assume that one comparator (min+max)
costs 1.

Then we end up with multiple mergers on 2 inputs, then on 4, 8 and so on up to N. So
you should be able to figure out the total work and depth.

64

Quicksort

function Quicksort(A) = if (#A < 2) then A else
let pivot = A[#A/2];
lesser ={ein A| e < pivot};
equal ={ein A| e == pivot};
greater = {e in A| e > pivot};
result = {quicksort(v): v in [lesser,greater]};
in result[0] ++ equal ++ result[1];

Analysis in ICFP10 video gives depth = O(log N) work = O(N logN)

65

Quicksort

function Quicksort(A) = if (#A < 2) then A else
let pivot = A[#A/2];
lesser ={ein A| e < pivot};
equal ={ein A| e == pivot};
greater = {e in A| e > pivot};
result = {quicksort(v): v in [lesser,greater]};
in result[0] ++ equal ++ result[1];

Analysis in ICFP10 video gives depth = O(log N) work = O(N logN)

(The depth is improved over the example with trees, due to the addition of
parallel arrays as primitive.)

66

From the NESL quick reference

Basic Sequence Functions

Basic Operations Description
#a Length of a
ali] ith element of a

dist(a,n) Create sequence of length n with a in each element.

zip(a,b) Elementwise zip two sequences together into a sequence of pairs.

[s:e] Create sequence of integers from s to e (not inclusive of e)
[s:e:d] Same as [s:e] but with a stride d.

Scans
plus_scan(a)
min_scan(a)
max_scan(a)
or_scan(a)
and_scan(a)

Execute a scan on a using the + operator

Execute a scan on a using the minimum operator
Execute a scan on a using the maximum operator
Execute a scan on a using the or operator
Execute a scan on a using the and operator

Work
0(1)
0(1)
0O(n)
O(n)
O(e-s)

Depth
0(1)
0(1)
0(1)
0(1)
0(1)

O((e-s)/d)0(1)

O(n)
O(n)
O(n)
O(n)
O(n)

O(log n)
O(log n)
O(log n)
O(log n)
O(log n)

67

NESL :what more should be done?

Take account of LOCALITY of data and
account for communication costs
(Blelloch has been working on this.)

Deal with exceptions and randomness

See these slides by Blelloch from 2006 for an interesting retrospective on NESL:

http://glew.org/damp2006/Nesl.ppt

68

Data Parallel Haskell (DPH) intentions

NESL was a seminal breakthrough but, fifteen years later it remains largely un-exploited.
Our goal is to adopt the key insights of NESL, embody them in a modern, widely-used
functional programming language, namely Haskell, and implement them in a state-of-the-
art Haskell compiler (GHC). The resulting system, Data Parallel Haskell, will make nested
data parallelism available to real users.

Doing so is not straightforward. NESL a first-order language, has very few data types,

was focused entirely on nested data parallelism, and its implementation is an interpreter.
Haskell is a higher-order language with an extremely rich type system; it already includes
several other sorts of parallel execution; and its implementation is a compiler.

http://www.cse.unsw.edu.au/~chak/papers/fsttcs2008.pdf

69

NESL also influenced

Intel Array Building Blocks (ArBB)

That has been retired, but ideas are reappearing as C/C++ extensions

(see forthcoming workshop on compilers and languages for ARRAY programming)

Collections seems to encourage a functional style even in non functional languages

70

Summary

Programming-based cost models are (according to Blelloch) MUCH BETTER
than machine-based models

They open the door to other kinds of abstract costs than just work, depth, space ...

There is fun to be had with parallel functional algorithms (especially as the
Algorithms community is still struggling to agree on useful models for use
In analysing parallel algorithms).

71

End

72

parentheses matching

For each index, return the index of the matching parenthesis

function parentheses_match(string) =

let
depth = plus_scan({if c=="(then 1 else -1 : c in string});
depth ={d + (if c=="(then 1 else 0): c in string; d in depth};
rnk = permute([0:#string], rank(depth));
ret = interleave(odd_elts(rnk), even_elts(rnk))

in permute(ret, rnk);

73

() ccryery)ycoco)y))

1-111-11-1-1111-1-1-1

74

() ccryery)ycoco)y))

1111-11-1-1111-1-1-1

0101212 1012 321
prescan
(+)

75

+1 if (
+0 if)

(> cc)ye)y)y ooy
1-111-11-1-1111-1-1-1
0101212 1012321

1112222 1123 321

76

+1 if (
+0 if)

(> cc)ye)y)y ooy
1-111-11-1-1111-1-1-1
0101212 1012321

1112222 1123 321 depth

77

()Y cc)re)y)y o))
1-111-11-1-1111-1-1-1
0101212 1012321

11122221123321

0126789 3 4101213115

string

depth

rank(depth)

78

~

w

IS

cCC)) string

111-1-1-1

012 321
123321 depth

8 910 111213 [O:#string]
4101213115 rank(depth)
56 9 121011 rnk

79

~

w

)

) string

111-1-1-1

012 321
123321 depth

8 910 111213 [O:#string]
4101213115 rank(depth)
506 5 1c permute

([O:##string),rank(depth));

80

2221123321

o

910 111213
10121311 5

[O:#string]
rank(depth)

o

456 9 121011

138 436 52 9 11 10

81

o O

EE RN

())) string

2221123321 depth

(Saes]
o O
~N W

4101213115 rank(depth)
8 910 111213 [O:#string]

8133 45 6 9 121011 rnk

138 4 2 A

interleave(odd_elts(rnk), even_elts(rnk))

82

()rccyc)y)y ooy string

11122221123321 depth

o o
[ERNY
NN
w o

8 9 34101213115 rank(depth)
56 7 8 910 111213 [O:#string]
1 072138 43652 9 1110 ret
01 278133 45609121011 rnk

1074365 2131211109 8

()rccyc)y)y ooy

11122221123321

o o
[ERNY
NN
w o

8 9 3 410121311 5
56 7 8 910 111213
1 07 213843652 9 1110
01 27 8133 45 69 1011

107 43635 2131z11a1v

string

depth

rank(depth)
[O:##string]

ret
rnk

permute(ret,rnk);

84

() ccyo)y o))

1074365 2131211109 ¢

string

85

