
DRAFT

A Haskell EDSL for Nested Data-parallel
Design-space Exploration on GPUs

Bo Joel Svensson
Indiana University

joelsven at indiana dot edu

Mary Sheeran
Chalmers University of Technology

ms at chalmers dot se

Ryan R. Newton
Indiana University

rrnewton at indiana dot edu

Abstract
Graphics Processing Units (GPUs) offer potential for very high per-
formance; they are also rapidly evolving. Obsidian is an embedded
language for implementing high performance kernels to be run on
GPUs. We would like to have our cake and eat it too; we want to
raise the level of abstraction beyond CUDA code and still give the
programmer control over the details relevant to kernel performance.

To that end Obsidian includes guaranteed elimination of inter-
mediate arrays and predictable space/time costs, while also provid-
ing array functions that are polymorphic across different levels of
the GPU’s hierarchical structure, providing a limited form of nested
data parallelism.

We walk through case-studies that demonstrate how to use Ob-
sidian for rapid design exploration, resulting in better performance
than hand-tuned kernels in an existing GPU language.

1. Introduction
Graphics Processing Units (GPUs) offer the potential for high-
performance implementations of data parallel computations. Yet
achieving top performance is recognized as a difficult task, requir-
ing expert programmers with the ability and time to manually opti-
mize use of on-chip storage, make granularity decisions, and match
memory access patterns to the [non-traditional] constraints placed
by GPU memory architectures (i.e. not just temporal memory pat-
terns, but the coordination of accesses across groups of threads).
Accordingly, programs are written in low-level vendor-supplied
programming environments, such as NVIDIA CUDA, where all
these details are under programmer control.

One answer to the high cost of GPU programming is to attempt
to automate the process, in particular by starting with a very high-
level language and using an optimizing compiler to make the afore-
mentioned decisions, synthesizing code in a language like CUDA.
Indeed, many recent research projects have done just this, includ-
ing embedded domain specific languages, EDSLs, in: Haskell (Ac-
celerate [6, 15], Nikola [14]), Python (Copperhead [4]), and Scala
(Delite [5]). These languages are first and foremost array lan-
guages, intentionally restricted versions of older languages such
as APL [12], and Matlab. Typical operations include mapping, fil-
tering, scanning, and reducing array data. By restricting program
structure, this language family gains one major benefit over more

[Copyright notice will appear here once ’preprint’ option is removed.]

general purpose array languages: they can very effectively fuse se-
ries of array operations, eliminating temporary arrays.

Pitfalls of abstraction The problem with aggressive abstraction
approaches to GPU programming, is that they remove the control
necessary for the design exploration process that remains critical
when porting algorithms to the GPU. Much like a computer archi-
tect, a programmer working to GPU-accelerate an application ker-
nel must go far beyond their initial version (typically ported from
CPU code), and must iterate through several different designs, ex-
perimenting with tradeoffs. Often the final result is more than an
order of magnitude faster than the starting point. In contrast, a lan-
guage like Accelerate abstracts GPU programming to the point that
there is a single way to express each communication pattern, for
example prefix sum becomes “scanl (+) 0 arr”, with no tuning
parameters. In fact, all of the following optimization tools are lost:

• Controlling how many kernels are launched
• Controlling which arrays are mapped to on-chip (local) mem-

ory.
• Controlling synchronizations points (__syncthreads)

Further, because very high-level array languages depend on com-
piler optimization for performance, there is not a fixed cost model
for the time and space cost of operations, which may or may not
be fused, deforesting intermediate arrays. One day, hopefully this
automation will work well enough to remove the human from the
performance tuning process, but it hasn’t yet.

A language for rapid design exploration In this paper we argue
that it is possible to make a more surgical strike in choosing what
to abstract in GPU programming. We propose a small embedded
language, Obsidian1, that leaves the above controls in the program-
mer’s hands while providing three key benefits over CUDA pro-
gramming:

1. Abstracting over constant limits (virtualization of threads,
warps and blocks)

2. Systematic generation of code variants, traditionally addressed
in domain-specific languages (DSLs) by metaprogramming,
which enables both design exploration and makes it easier to
build auto-tuning scripts.

3. Compositional array operations that also offer hierarchy poly-
morphism: the same programming primitives at thread, warp,
block, and grid level. Abstraction of the warp concept is an im-
provement over CUDA. The programming primitives look the
same for the programmer at each level, but result in very differ-
ent generated code.

1 https://hackage.haskell.org/package/Obsidian-0.1.0.0

Obsidian: GPU kernel generation 1 2014/5/13

The most unique benefit of Obsidian is in the last point. First,
Obsidian uses a combination of push and pull arrays, in the meta-
language (Section 4). It uses a fusion by default approach, even at
the expense of work duplication, together with an explicit function
for making arrays manifest in memory. This makes the cost model
fully transparent. Second, Obsidian exposes the hierarchical nature
of GPU hardware (directly in the type system), while still allowing
core data operations to work at any level. As such, it allows a
limited form of nested data parallelism (NDP [3]), with nestings
only as deep as the machine hierarchy itself2.

In this paper, we present the design and implementation of Ob-
sidian and demonstrate that where high-level DSLs have highly-
tuned fixed operations (such as map and reduce), we can generate
those same results and also explore the nearby design landscape.
Moreover, where high-level DSLs fail to produce good perfor-
mance, Obsidian provides the tools to drill down and fix the prob-
lem. Yet in spite of that low-level control, embedding, metapro-
gramming, and novel array representations enable better code reuse
than CUDA, comparable to higher level DSLs.

2. Background: The GPU and CUDA
Obsidian targets NVIDIA GPUs supporting CUDA [19], a C-
dialect for data-parallel programming. These GPUs are built on a
scalable architecture: each GPU consists of a number of multipro-
cessors; each multiprocessor has a number of processing elements
(cores) and an on-chip local memory that is shared between threads
running on the cores. A GPU can come with as few as one of these
multiprocessors. The GPUs used in our performance measurements
are an NVIDIA Tesla c2070 and a GTX 680. The GTX680 GPU
has eight multiprocessors, with a total of 1536 processing cores. On
these cores, groups of 32 threads called warps are scheduled. There
are a number of warp scheduling units per multiprocessor. Within a
warp, threads execute in lockstep (SIMD); diverging branches, that
is those that take different paths on different threads within a warp,
are serialised, leading to performance penalties.

The scalable architecture design also influences the program-
ming model. CUDA programs must be able to run on all GPUs
from the smallest to the largest. Hence a CUDA program must
work for any number of multiprocessors. The CUDA program-
ming model exposes abstractions that fit the underlying architec-
ture; there are threads (executing on the cores), blocks of threads
(groups of threads run by a multiprocessor) and finally the collec-
tion of all blocks, which is called the grid.

The threads within a block can use the shared memory of the
multiprocessor to communicate with each other. A synchronisation
primitive, __syncthreads(), gives all the threads within a block
a coherent view of the shared memory. There is no similar synchro-
nisation primitive between threads of different blocks.

The prototypical CUDA kernel starts out by loading data from
global memory. The indices into global memory for an individual
thread are expressed in terms of the unique identifier for that block
and thread. Some access patterns allow memory reads to be co-
alesced, while others do not, giving very poor performance. The
patterns that lead to good performance vary somewhat between dif-
ferent GPU generations, but regular, consecutive accesses by con-
secutive threads within a warp are best.

A CUDA program is expressed at two levels. Kernels are data-
parallel programs that run on the GPU. They are launched by
the controlling program, which runs on the CPU of the host ma-
chine. Obsidian is primarily a language for engineering efficient
kernels, but, like other GPU DSLs, it also provides library func-
tions for transparently generating, compiling, and invoking CUDA

2 Without employing any automatic optimizations, of which NDP flattening
transformations would be an example.

kernels from the high-level language in which Obsidian is imple-
mented (Haskell). Unlike most GPU DSLs, Obsidian can also be
used to generate standalone kernels, which can be called from
regular CUDA or C++ programs—a common need when GPU-
accelerating existing applications.

3. Obsidian Programming Model
Obsidian is an Embedded Domain Specific Language (EDSL), im-
plemented in Haskell. When running an Obsidian program—which
is really just a Haskell program using the Obsidian libraries—a
data structure is generated encoding an abstract syntax tree (AST)
in a small embedded language. Embedded languages that generate
ASTs are traditionally called deeply embedded languages. The cre-
ation of an AST offers flexibility in interpretation of the DSL. In
Obsidian’s case the AST is used for CUDA code generation. For an
excellent introduction to compiling embedded languages, see ref-
erence [8]. As a result of the embedding, the following function,
when invoked, does not immediately increment any array elements.
Rather, computation is both deferred and extracted into an AST:

incLocal arr = fmap (+1) arr

EDSLs in Haskell, like those in Scala [5] and C++ [18], tend
to use an overloading approach, resolved at compile time, to ex-
tend operations like (+) to work over AST types in addition to
actual numbers. Dynamic languages instead tend to use introspec-
tion [4, 10] to disgorge the code contents of a function object and
acquire an AST for domain-specific compilation. While these AST-
extraction methods are largely interchangeable, there are other is-
sues of representation that have a big effect on what is possible in
the DSL compiler, namely: array representation.

In Obsidian, there are two different [immutable] array represen-
tations, Pull and Push arrays, neither of which commits to an in-
memory, manifest data representation. Pull arrays are implemented
as a function from index to element, with an associated length. A
consumer of a pull array needs to iterate over those indices of the
array it is interested in and apply the pull array function at each
of them. A push array, on the other hand, encodes its own itera-
tion schema. Any consumer is forced to use the push array’s built-
in iteration pattern. Indexing is a cheap operation on pull arrays,
but on push arrays it requires generating the entire array in worst
case. Both representations can safely avoid bounds checks for typ-
ical combinations of array producers and consumers.

The incLocal function above operates on pull arrays, so both
its input and output type are (Pull size num),
e.g. (Pull Word32 EWord32). The difference between a Word32

and a EWord32 is related to the embedded nature of Obsidian. A
EWord32 (short for Exp Word32) is a data structure (an AST) while
an Word32 is a value. The Word32 type (rather than EWord32) is
used for lengths of arrays in local memory; thus ensuring that
these array sizes are known when Obsidian CUDA code generation
occurs. For simplicity of presentation we will err on the side of
monomorphism, avoiding generic types where they are not directly
required to illustrate the point. For example:

incLocal :: Pull Word32 EWord32 → Pull Word32 EWord32

Adding parallelism “Local”, in the name of the function above, is
a hint that we’re not yet entirely done. While incLocal completely
describes the computational aspects of this example, it does not
describe how that computation is laid out on the GPU. Obsidian,
like CUDA, differentiates between Thread, Block and Grid com-
putations. Additionally, while CUDA provides no abstraction for
warps, Obsidian does. The programmer specifies how the compu-
tation is laid out over the available parallel resources. For example,
after specifying a sequential computation to be carried out by each

Obsidian: GPU kernel generation 2 2014/5/13

-- Enter into hierarchy
tConcat :: Pull l (Push Thread Word32 a) → Push t l a

-- Step upwards in hierarchy
pConcat :: Pull l (Push Word32 t a) → Push (Step t) l a

-- Remain on a level of the hierarchy
sConcat :: Pull l (Push t Word32 a) → Push t l a

Figure 1: GPU hierarchy programming API, contains functions to spread
computation across parallel resources in a level of the GPU hierarchy.
These could be combined into a single polymorphic concat operation, but
doing so would lose the benefits of type inference (requiring tedious explicit
type annotations on every concat).

thread, many instances of that sequential computation can be run in
parallel across the threads of a Warp, Block or Grid.

For example, to turn the parallelism-agnostic incLocal function
into a function that executes GPU-wide, we use push to apply an
iteration schema:
incPar :: Pull Word32 EWord32

→ Push Grid Word32 EWord32
incPar arr = push (incLocal arr)

This function is still cheap in the sense that it does not make
the array manifest in memory. The behavior of the push array is
also type-directed; if we had changed Grid to Thread, we would
get a sequential rather than parallel loop. Likewise, if we see a
(Push Block size num) array, we know it is an array computed
in parallel across the threads within one block on the GPU.

In CUDA, blocks are limited to a maximum of 1024 thread.
This limitation does not hold in Obsidian, because threads within
a block are virtualized. Virtualization of threads is explained fur-
ther in Section 4. Hiding these hardware limits makes it easier to
quickly switch between different mappings of loop nests onto the
hardware hierarchy—one of the main benefits of Obsidian for en-
abling design exploration. Second, because parallel loops are im-
plicit in CUDA kernels (unlike, e.g., OpenMP or Cilk), switching
between parallel and sequential loops in CUDA requires changing
much more code than a one-word tweak to the array type. Third,
Obsidian arrays offer a modularity advantage: the logic of the pro-
gram can be defined at a point far removed from where loop struc-
ture decisions are made.

Limited nested parallelism If we can map a parallel computation
onto a single block, how do we task all the blocks in a grid? Not by
writing separate programs for each! Rather, to explore interesting
loop structures, we need nested array operations. In Obsidian, we
can split arrays into chunks of size n with splitUp, and then
concatenate them again with pConcat, obeying this law:

pConcat (splitUp n arr) == push arr

The splitUp function takes a chunk size (a Word32), a known-at-
compile-time value3. However, the length of an array can be either
static or dynamic (Word32 or EWord32). Many Obsidian functions
are limited to static sizes; code generation depends on this. The
dynamic lengths are an added convenience—after specifying a
local [fixed-size] computation, it can be launched over a varying
number of GPU blocks. For full type signatures of splitUp and
other operations, see Figure 2.

3 Obsidian compile time is Haskell runtime; so, as is typical for metapro-
gramming systems, it is still possible to build arbitrary computations that
construct these “static” Obsidian values.

-- Array creation
mkPull :: l → (EWord32 → a) → Pull l a
mkPush :: l

→ ((a → EWord32 → Program Thread ())
→ Push t l a

-- Map on pull and push arrays
fmap :: (a → b) → Pull l a → Pull l b
fmap :: (a → b) → Push t l a → Push t l b

-- Elementwise operations
zipWith :: (a → b → c)

→ Pull l a
→ Pull l b
→ Pull l c

-- Splitting
splitUp :: ASize l

⇒ Word32
→ Pull l a
→ Pull l (Pull Word32 a)

coalesce :: ASize l
⇒ Word32
→ Pull l a
→ Pull l (Pull Word32 a)

-- Array indexing
(!) :: Pull l a → EWord32 → a

-- Array convesion
push :: Pull l a → Push t l a

-- Make arrays manifest in memory
force :: Push t Word32 a

→ Program t (Pull Word32 a)
forcePull :: Pull Word32 a

→ Program t (Pull Word32 a)

Figure 2: Obsidian array programming API: a selection of functions and
their full type signatures.

The next program describes how to spread local work out over
several of the GPU blocks. The input to this function is an array of
arrays, with each inner array as the input to an instance of incLocal.

increment :: Pull _ (Pull _ _) → Push Grid _ _
increment arr = pConcat (fmap body arr)
where body a = push (incLocal a)

The increment program uses pConcat to execute several instances
of incLocal in parallel across the block level of the GPU hierarchy,
thus forming a grid. The type of pConcat forces the computation to
step up one level in the hardware hierarchy. It’s signature is

Pull l (Push s t a) → Push (Step t) l a

where (Step t) is a type-level function that transforms, e.g. Warp
into Block. Because (Step t) = Grid in the increment function
above, the type checker inferred that t = Block.

But why does pConcat return a push array? That’s because it
is more efficient for pConcat to build its own iteration schema (for
example, pushing chunk 1, chunk 2, etc in sequence), rather than
form a pull array containing a chain of conditionals (based on index
i are we in chunk n?).

Loop structure experimentation The application of pConcat and
push in increment creates a nested parallel loop structure equiv-
alent to: parfor (...) { parfor (...) body(..); } The inner
parfor is parallel across threads in a block and the outer is par-
allel across blocks in a grid. But this is only one of the possible

Obsidian: GPU kernel generation 3 2014/5/13

__global__ void increment(uint32_t∗ input0,
uint32_t n0,
uint32_t∗ output1)

{
uint32_t bid = blockIdx.x;
uint32_t tid = threadIdx.x;

for (int b = 0; b < n0 / 256U / gridDim.x; ++b) {
bid = blockIdx.x ∗ (n0 / 256U / gridDim.x) + b;
output1[bid ∗ 256U + tid] =
input0[bid ∗ 256U + tid] + 1U;

bid = blockIdx.x;
__syncthreads();

}
. . .

}

__global__ void increment2(uint32_t∗ input0,
uint32_t n0,
uint32_t∗ output1)

{
uint32_t bid = blockIdx.x;
uint32_t tid = threadIdx.x;

for (int b = 0; b < n0 / 256U / gridDim.x; ++b) {
bid = blockIdx.x ∗ (n0 / 256U / gridDim.x) + b;
for (int i0 = 0; i0 < 32U; ++i0) {
output1[bid ∗ 256U + (tid ∗ 32U + i0)] =
input0[bid ∗ 256U + (tid ∗ 32U + i0)] +
1U;

}
bid = blockIdx.x;
__syncthreads();

}
. . .

}

Figure 3: Abbreviated CUDA code generated from the increment and
increment2 programs.The outermost for loop comes from block virtual-
ization. The code that has been elided in these examples is also related to
block virtualization.

decompositions of this computation over the parallel resources of
the GPU. Another way would be to create a loop nesting with a
sequential innermost loop, wrapped in two parallel for loops. This
decomposition is shown below.

increment2 :: Pull _ (Pull _ (Pull _ _))
→ Push Grid _ _

increment2 arr = pConcat (fmap body arr)
where body a = tConcat (fmap push (fmap incLocal a))

which corresponds to a loop-nest parfor/parfor/for. Because
CUDA has an implicit parallel loop that ranges over blocks as
well as threads within a block, simulating nested parallel loops
requires tedious index computations. Here, Obsidian handles those
automatically.

In Figure 3, the generated code for increment and increment2

is shown. Because the programs shown are CUDA kernels, they
show only the individual, per-thread computation. Also, for loops
in the generated code are sequential loops that originate either from
sequential loops directly from our Obsidian program (increment2),
or from programs that “spill” over the threads-per-block and
blocks-per-grid limits (Section 4).

Programs and Parallelism Finally, in addition to push/pull array
values and expressions, Obsidian contains one more AST data
type called Program, capturing program effects such as a push

array feeding its outputs into a [manifest] array in local storage.
In Section 4, we will see how push arrays internally encode their
iteration schemas by generating snippets of Program AST.

The Program type is an instance of Monad, and programs are
parameterized on a level of the GPU hierarchy, (Program level a).
The type system ensures that only programs that meet the GPU
constraints can be generated: For example, threads participating
in a barrier synchronization must always be in the same block.
Similarly, a (Program Thread a) must be sequential, and cannot
contain a parallel for loop. Parallel programs are only possible on
the warp level and up.

Transparent Cost Model One of the goals of Obsidian is to pro-
vide a transparent cost-model. Thus the user should clearly know
how much memory and computation each operation requires, and
also how, and where, unrolling occurs. As one example of a pro-
gram that can get us into trouble, consider the following function
for summing an array of numbers:

sumUp :: Pull Word32 EWord32 → EWord32
sumUp arr
| len arr == 1 = arr ! 0
| otherwise =

let (a1,a2) = halve arr
arr2 = zipWith (+) a1 a2

in sumUp arr2

Here, zipWith (a two-argument map) operates on pull arrays
and returns another. Following Obsidian’s de-facto fusion policy, it
does not use any memory for arrays. However, because the divide-
and-conquer recursion above happens at compile time, sumUp gen-
erates a large O(N)-sized expression to sum all the elements of the
array4! For example summing up an eight element array results in
code of this shape:

output[0] = input[0] + input[4] +
input[2] + input[6] +
input[1] + input[5] +
input[3] + input[7];

For small arrays, this code might be ideal. But sumUp would need to
be used with care; it precludes parallelism, and it shouldn’t be used
on larger arrays.

3.1 Using Force: Parallelism and Shared Memory
Of course, arrays can’t always stay non-manifest. The Obsidian li-
brary comes with a family of “force”-functions (force, forcePull),
which serve three roles:

1. Make array manifest in memory: For sharing of computed
results between threads.

2. Expose parallelism: Forcing a pull array (forcePull arr)

sets up an iteration schema over its range and computes the
pull array function at each index. The result of forcing a pull
array is a (Program level (Pull size num)) array. Forcing
a push array instantiates the iteration schema encoded in the
push arrays and writes all elements to memory using that
strategy. Forcing a (Push level size num) array results in a
(Program level (Pull size num)) array.

3. Conversion: from push array to pull array, enabling cheap
indexing.

Force requires that the data elements in the input array has an
Storable instance. This Storable class is similar in concept to

4 This problem, over elaboration, is a potential user error in all embedded
DSLs. For example, in Intel ArBB (embedded in C++), if one forgets to use
for_ instead of for they evaluate a loop at compile time that was meant
for runtime (fully unrolling it).

Obsidian: GPU kernel generation 4 2014/5/13

the Foreign.Storable class. Force also requires that the level in
the result is Forceable. There are Forceable instances for Thread,
Warp and Block.

A single call to forcePull transforms the sumUp program into a
binary tree shaped parallel reduction:

sumUp' :: Pull Word32 EWord32 → Program Block EWord32
sumUp' arr
| len arr == 1 = return (arr ! 0)
| otherwise =
do let (a1,a2) = halve arr

arr2 ← forcePull (zipWith (+) a1 a2)
sumUp' arr2

The statement arr2 ←forcePull (. . .) creates a manifest in-
termediate array that all threads within that block can access. The
code generated from sumUp' has the following form:

parfor (i in 0 . . . 3)
imm0[i] = input[i] + input[i+4];

parfor (i in 0 . . . 1)
imm1[i] = imm0[i] + imm[i+2];

parfor (i in 0 . . . 0)
output[i] = imm1[i] + imm1[i+1];

3.2 Programming Blocks and Warps
The increment example in section 3 already showed how to apply a
hierarchy-agnostic function on pull arrays at different levels of the
GPU’s hierarchy. To have a complete cost-model, it is also impor-
tant for the user to understand the meaning of memory operations
at the Warp and Block levels, and the rules for automatic synchro-
nization insertion. Here we will illustrate those rules with a simple
example:

agnostic arr =
do imm1 ← forcePull (fmap (+1) arr)

imm2 ← forcePull (fmap (∗2) imm1)
imm3 ← forcePull (fmap (+3) imm2)
return (push imm3)

Because the agnostic function uses force, some constraints
apply. For example, this push array cannot be instantiated at the
grid level, as we did with the previous incLocal example. Rather,
we must instantiate agnostic at the Block level or below, where
synchronized communication via shared memory is possible.

As with increment, if we want to distribute the agnostic func-
tion over individual blocks, we can take a larger array, chunk it with
splitUp 256 arr, and then fmap the agnostic function over each
chunk, and finally flatten the result back out with pConcat, which
generates code following this pattern:

parfor (i in 0..255) {
imm1[i] = input[blockID ∗ 256 + i] + 1;
__syncthreads();
imm2[i] = imm1[i] ∗ 2;
__syncthreads();
imm3[i] = imm2[i] + 3;
__syncthreads();

}

Note that each stage is followed by a barrier synchroniza-
tion operation5. It is also possible to place the agnostic compu-
tation on the warp level. This can be done by splitting the in-
put pull array into a three-level nested pull array: for example
fmap (splitUp 32) (splitUp 256 arr). Each warp of a blocks
operates on the innermost chunks, and the resulting code follows
this pattern:

5 Indeed, in this simple example the synchronizations are unnecessary, and
the user should not have used forcePull!

parfor (i in 0..255) {
warpID = i / 32;
warpIx = i % 32;
imm1[warpID ∗ 32 + warpIx] =
input[blockID ∗ 256 + warpID ∗ 32 + warpIx] + 1;

imm2[warpID ∗ 32 + warpIx] =
imm1[warpID ∗ 32 + warpIx] ∗ 2;

imm3[warpID ∗ 32 + warpIx] =
imm2[warpID ∗ 32 + warpIx] + 3;

}

All the synchronization operations disappeared, because a
warp-level program is naturally lockstep (SIMD/SIMT).

4. Obsidian Implementation
The Obsidian compiler deals with two types of AST: scalar ex-
pressions (e.g. EWord32), and Programs (statements). Scalar ex-
pressions include standard first-order language constructs (arith-
metic, conditionals, etc). Obsidian source expressions such as
(5+1), elaborate into standard Haskell algebraic datatypes6, e.g.
(BinOp Add (Literal 5) (Literal 1)). The second AST, Program,
is Obsidian’s imperative core language, with data constructors
listed in Figure 4.

Pull arrays Pull arrays are indeed implemented as functions from
index to [expression] value. This is a common representation for
immutable arrays and allows easy implementation of many inter-
esting operations, such as map, zipWith and permutations.

data Pull s a = MkPull s (EWord32 → a)

The embedded language Pan [7] used a similar representation for
images and was the main inspiration for Obsidian’s pull arrays.
Contemporary languages Feldspar [1] and Repa [13] also use the
same array representation.

Push arrays Push arrays are implemented on top of the Program

data type. Where a pull array is a function that returns an element
for each index, a Push array is a code generator: a function that
returns a Program action.

data Push t s a =
MkPush s ((a → EWord32 → Program Thread ())

→ Program t ())

Each push array is waiting to be passed a receiver function,
which takes a value (a) and index (EWord32), and generates single-
threaded code to store or use that value. Given a receiver, a push
array is then responsible for generating a program that traverses the
push array’s iteration space, invoking the receiver as many times as
necessary.

Warp/Block Virtualization The length of an array, the s parame-
ter to MkPush, can be either static (a Haskell known-at-compile-time
value) or dynamic (a runtime value). Static lengths are used for lo-
cal (or block) computations, with those lengths determining shared
memory consumption and parallel and sequential loop sizes. When
an array size is larger than the hardware limit on a warp or block
size, compiler-enabled virtualization of blocks and warps occurs.
Implementing this only requires inserting an additional sequential
loop at the relevant level, to make multiple passes.

4.1 Push and pull array interplay
Forcing arrays to memory (Section 3.1) is a function overloaded on
hierarchy level. Its type is:

force :: Push t Word32 a → Program t (Pull Word32 a)

6 GADTs actually, in the current implementation: https://github.com/
svenssonjoel/Obsidian

Obsidian: GPU kernel generation 5 2014/5/13

Constructor Arguments Notes Description
Assign name, val_exp, ix_exp name[ix] = val -

ForAll range, body body is represented by a function The body is a Thread-level program that is executed range number of
times on a level (Thread, Warp, Block, Grid)

DistrPar range, body body is represented by a function The body is a level t program that is spread out in parallel over level
(Step t) in the hierarchy

SeqFor range, body body is represented by a function A sequential loop, the program remains on the same level of the hierar-
chy as the body

Allocate name, size, type - Allocate space for array name in shared memory
Declare name, type - declare a variable name
Sync - Barrier synchronization across all threads of a block
Seq* program, program - sequences of statements

Figure 4: A list of some constructors from the program AST data type, (data Program t a).
*In the implementation sequences of statements are not really provided by a Seq constructor, but rather via making the Program data type a monad. Sequencing
is then provided via the monad bind operations. This allows sequences of statements in the AST to be generated using Haskell do notation. For example do
{Allocate �arr1� 512 Int; ForAll 512 body; Sync}

with very different implementations at each level (i.e. different t’s).
For example, below is pseudo code of force at the block level:

force (MkPush size p) = do
name ← gensymname
Allocate name size type
p (Assign name)
Sync
return (MkPull size (λix →Index name ix))

Converting in the other direction, pull array to a push array, is
cheap and is done using a function called push that also behaves
differently (sequentially or in parallel) at different levels of the
GPU hierarchy:

push :: ASize s ⇒ Pull s e → Push t s e
push (Pull n ixf) =
Push n (λwf →
forAll (sizeConv n) (λi → wf (ixf i) i))

ASize, an additional type class, has instances for both the static
and dynamic lengths, both of which are internally converted (via
sizeConv) into Exp, after noting the known sizes.

Now, the push function captures just one possible way to con-
vert a pull array into push array—with one write per thread. Con-
version of pull arrays into push arrays can be done in many ways.
For example, more than one element could be written by each
thread, and then choices of stride length come into play. For ex-
ample, one specialized “push”-function available in the Obsidian
library is load:

load :: Word32 → Pull Word32 a → Push Block Word32 a
load n arr =
MkPush m (λwf →
forAll (fromIntegral n') (λtid →

seqFor (fromIntegral n) (λix →
wf (arr ! (tid + (ix∗fromIntegral n')))

(tid + (ix∗fromIntegral n')))))
where
m = len arr
n' = m `div` n

The load function combines sequential and parallel loops in
pushing the pull array. The reason it is called load is its intended
use as a initial load coalescer (to coalesce the first load a kernel
performs from global memory).

Finally, just like push arrays, pull arrays can be forced (made
manifest in memory). A Pull array is forced by converting it to
push forcePull arr = force (push arr)

4.2 Compilation to CUDA
During Haskell evaluation, operations like fmap and zipWith dis-
appear, leaving an explicit AST Program. After this point, the Ob-
sidian compiler begins, and proceeds through the following phases:

1A Reification: Haskell functions representing Obsidian programs
are turned into ASTs, including generating names for arrays.

1B Stripping: The Program level datatype is converted from a
higher-order representation to a list of statements (IM datatype)
that make the hierarchy level of parallel loops concrete. This is
an example of monad reification which is explained in detail in
the references [22, 23, 25].

2A Liveness Analysis: The IM is analyzed to discovering the live
ranges of arrays in shared memory. This stage annotates the IM

with liveness information, that keeps track of where an array is
created and at what point it can be freed.

2B Memory Mapping: The annotated AST goes through a simple
abstract interpretation, simulating it in order to create a memory
map. Then, each array is renamed with direct accesses to its
allotted memory offset.

3 CUDA Code Generation: At this stage, explicit for loops in
the IM are compiled into CUDA. This is where virtualization
of threads, warps and blocks take place.

Reification and Stripping At this stage Obsidian functions (Haskell
functions using the Obsidian library) are turned into ASTs. A com-
plete Obsidian program has a type such as:

prg1 :: Pull EWord32 EWord32
→ Push Grid EWord32 EWord32

(Variable numbers of input and result arrays are permitted as
well.) Reifying this program is as simple as applying it to a named
array in global memory:
(MkPull n (λix →Index "input" ix)).

The function then yields its push array result. That push array, in
turn, is a Program parameterized on a write-function. Providing the
push array with a receiver-function, such as
(λ a ix →Assign "output"a ix),

which writes to a named (global) array, completes reification.

Liveness Analysis and Memory Mapping The force function,
that introduces manifest arrays in shared memory, generates unique
names for each intermediate array. CUDA does not provide any
memory management facilities for shared memory so in Obsidian
we analyse kernel memory usage and create a memory map at
compile time.

There are 48Kb of shared memory available on each GPU mul-
tiprocessor, so it is a limited resource. Making good use (and reuse)

Obsidian: GPU kernel generation 6 2014/5/13

of it is important. The Obsidian Program AST already contains
Allocate nodes that show where an array comes into existence,
and we compute the full live range of each array with a standard
analysis:

• Step through list of statements in reverse. When an array name
is encountered for the first time, it is added to a set of live
arrays. The list of statements is annotated with this liveness
information.
• When an Allocate statement is found, the array being allocated

is removed from the set of live arrays.

Following this analysis phase, a memory map is constructed us-
ing a greedy strategy. This is done by simulating the AST execution
against an abstraction of the shared memory. The simulated shared
memory is implemented as a list of free ranges and a list of allo-
cated ranges. “malloc” requests are serviced with the first available
memory segment of sufficient size. The maximum size ever used is
tracked, and in the end this is the total amount of shared memory
needed for this kernel. After creating the memory map, the list of
statements is traversed again and all array names are replaced with
their location in shared memory.

Finally, this can potentially lead to memory fragmentation, and
the greedy solution is certainly not optimial. However, (1) in prac-
tice we see local arrays either of the same size or shrinking sizes
(divide and conquer), and (2) unlike traditional register allocation,
this process primarily affects whether a kernel will compile, not its
performance: we do not spill to main memory. The upside of auto-
matic shared memory management is that it makes it much easier
to reuse and remap shared memory within a large kernel, than it
would be in CUDA. In CUDA you would need to allocate a local
array and then manually cast portions of it for reuse—tedious and
error prone.

CUDA Code Generation During this phase CUDA code is gen-
erated from the list of statements. This phase takes as a parameter
the number of real CUDA threads that the code should be gener-
ated for. Hence it is here resource virtualization must be addressed.
The compilation is done using the Language.C.Quote library that
allows us to mix in C syntax in our Haskell code. Most cases of
this compilation are very simple, as many statements correspond
directly to their CUDA counterparts. For example, an assignment
statement is compiled as follows:

compileStm _ (Assign name ix e) =
[[cstm| $(compileExp name)[$(compileExp ix)] =

$(compileExp e); |]]

The interesting cases are those that deal with parallelism: such
as the ForAll and DistrPar statements. For example, compiling a
parallel-for over threads in a block follows the structure shown in
Figure 5. Compilation of DistrPar performs a similar technique
for the virtualization of the available number of warps and blocks.

5. Case studies
The question we want to ask about Obsidian is not directly “how
fast is it”? Because the program synthesis abstractions we have
described do not add overhead, achievable performance remains the
same as CUDA generally. Rather, we explore how Obsidian helps
navigate the design space around a solution (manually, or indirectly
through building an auto-tuning script).

The following case studies start with a simple kernel that is em-
barassingly parallel with no inter-thread communication. Even with
such a kernel, there is non-trivial tuning to maximize throughput.
The remaining case studies consider reduction, a key building block
that have a data-flow graph involving much more communication.
We compare the reduction benchmark against the corresponding

compileStm realThreads (ForAll Block n body) = goQ++goR
where
-- how to split the iteration space
-- across the realThreads.
-- q passes across all real threads
-- followed by a stage of using r real threads
q = n `quot` realThreads
r = n `rem` realThreads

goQ = for (int i = 0; i <q; ++i) {
-- repurpose tid
tid = i∗nt + threadIdx.x;
body

}
goR = -- run the last r threads

if (threadIdx.x <r) {
. . .

}

Figure 5: Compilation of ForAll over the threads within a block.

kernels within the Accelerate implementation, a much higher level
DSL but one with hand-tuned (but not auto-tuned) CUDA skeletons
for patterns like scan and fold.

5.1 Mandelbrot Fractals
The Mandelbrot fractal is generated by iterating a function:

zn+1 = z2n + c

where z and c are complex numbers. The method to generate the
fractal presented here is based on a sequential C program from
reference [24].

In order to get the Mandelbrot image, one lets z0 be zero and
maps the x and y coordinates of the image being generated to the
real and imaginary components of the c variable.

xmax = 1.2 :: EFloat; xmin = -2.0 :: EFloat
ymax = 1.2 :: EFloat; ymin = -1.2 :: EFloat

To obtain the well known and classical image of the set, we let
the real part of c range over −2.0 to 1.2 as the x coordinate range
from 0 to 511 and similarly the imaginary part ranges over −1.2
and 1.2 as y ranges from 0 to 511

-- For generating a 512x512 image
deltaP = (xmax - xmin) / 512.0
deltaQ = (ymax - ymin) / 512.0

The image is generated by iterating the function presented
above. We map the height of the image onto blocks of execut-
ing threads. Each row of the image is computed by one block of
threads. This means that for a 512×512 pixel image, 512 blocks
are needed.

The function to be iterated is defined below and called f. This
function will be iterated until a condition holds (defined in the
function cond). We count the number of iterations and if they reach
512 we break out of the iteration.

Obsidian: GPU kernel generation 7 2014/5/13

size 32 64 128 256 512 1024
256 0.25 0.17 0.12 0.21 0.33 0.60
512 0.71 0.43 0.34 0.41 0.69 1.16
1024 2.41 1.39 1.05 1.22 1.53 2.58
2048 8.86 4.98 3.67 3.88 4.69 5.95
4096 34.21 18.82 13.69 14.07 15.36 18.65
size 32 64 128 256 512 1024
256 0.44 0.38 0.41 0.36 0.41 0.98
512 1.44 1.16 1.17 1.16 1.14 2.00
1024 5.12 3.96 3.95 3.98 4.17 4.75
2048 18.80 14.53 14.38 14.48 14.84 17.50
4096 72.12 55.36 54.94 55.16 55.67 61.89

Figure 6: Running times for the Mandelbrot program. The top table shows
times measured on an NVIDIA GTX680 GPU. The bottom table shows times
measured on an NVIDIA TESLA c2070. The columns vary the number of
threads per block, while the rows vary image size. Each benchmark was
executed 1000 times and the total time is reported in seconds. The transfer
of data to or from the GPU is not included in the timing measurements.

f b t (x,y,iter) =
(xsq - ysq + (xmin + t ∗ deltaP),
2∗x∗y + (ymax - b ∗ deltaQ),
iter+1)
where
xsq = x∗x
ysq = y∗y

cond (x,y,iter) = ((xsq + ysq) <∗ 4) &&∗ iter <∗ 512
where
xsq = x∗x
ysq = y∗y

The number of iterations that are executed is used to decide
which colour to assign to the corresponding pixel. In the function
below, seqUntil iterates f until the condition cond holds. Then
the number of iterations is extracted and used to compute a colour
value (out of 16 possible values).

iters :: EWord32 → EWord32 → SPush Thread EWord8
iters bid tid =
fmap extract (seqUntil (f bid' tid') cond (0,0,1))
where
extract (_,_,c) = (w32ToW8 (c `mod` 16)) ∗ 16
tid' = w32ToF tid
bid' = w32ToF bid

The final step is to run the iterations for each pixel location,
by implementing a genRect functions that spreads a sequential
Push Thread computation across the grid.

genRect :: EWord32
→ Word32
→ (EWord32 → EWord32 → SPush Thread b)
→ DPush Grid b

genRect bs ts p =
pConcat (mkPull bs (λbid →

(tConcat (mkPull ts (p bid)))))

Generating the Mandelbrot image is done by generating a rectan-
gle, applying the iters function at all points.

mandel = genRect 512 512 iters

5.2 Reduction
In this section, we implement a series of reduction kernels. The
Obsidian reductions take an associative operator as a parameter.
In these benchmarks, the reduction will be addition only and the
elements will be 32 bit unsigned integers. Some of the reduction
kernels will also require that the operation be commutative.

0 1 2 3 4 5 6 7

1 5 9 13

6 22

28

0 1 2 3 4 5 6 7

4 6 8 10

12 16

28

Figure 7: Left: evenOdds - zipWith reduction, leads to uncoalesced mem-
ory accesses. Right: halve - zipWith reduction, leads to coalesced mem-
ory accesses. This coalescing is most important during the very first phase,
when data is read from global memory.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6 22 38 54

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

24 28 32 46

Figure 8: Left: BAD Adding sequential reductions like this, reintroduces
memory coalescing issues. Consecutive threads nolonger access consecu-
tive memory locations. Right: GOOD Using sequential reduction but main-
taining coalescing

To illustrate the kind of low level control that an Obsidian pro-
grammer has over expressing details of a kernel, we show a se-
ries of reduction kernels, each with different optimisations applied.
Many of the optimisations applied to the kernels can be found in a
presentation from NVIDIA [9].

This section focuses on local reduction kernels (on-chip storage
only). The construction of large reduction algorithms from these
kernels will be illustrated in section 6.

5.2.1 Reduction 1
Our first attempt at reduction combines adjacent elements repeat-
edly. This approach is illustrated on the left of Figure 7. In Obsid-
ian, this entails splitting the array into its even and its odd elements
and using zipWith to combine these. This procedure is then re-
peated until there is only one element left. This kernel will work
for arrays whose length is a power of two.

red1 :: Storable a
⇒ (a → a → a)
→ Pull Word32 a
→ Program Block a

red1 f arr
| len arr == 1 = return (arr ! 0)
| otherwise =
do let (a1,a2) = evenOdds arr

imm ← forcePull (zipWith f a1 a2)
red1 f imm

The above code describes what one block of threads does. To
spread this computation out over many blocks and thus perform
many simultaneous reductions, pConcat is used, as before:

mapRed1 :: Storable a
⇒ (a → a → a)
→ Pull EWord32 (SPull a)
→ Push Grid EWord32 a

mapRed1 f arr = pConcat (fmap body arr)
where
body arr = singletonPush (red1 f arr)

This kernel does not perform well (Figure 9), which may be at-
tributed to its memory access pattern. Remember that one gets bet-
ter performance on memory access when consecutive threads ac-

Obsidian: GPU kernel generation 8 2014/5/13

cess consecutive elements, which happens if each thread accesses
elements that are some stride apart.

5.2.2 Reduction 2
red2 lets each thread access elements that are further apart. It does
this by halving the input array and then using zipWith on the
halves (see Figure 7).

red2 :: Storable a
⇒ (a → a → a)
→ Pull Word32 a
→ Program Block a

red2 f arr
| len arr == 1 = return (arr ! 0)
| otherwise =
do let (a1,a2) = halve arr

arr2 ← forcePull (zipWith f a1 a2)
red2 f arr2

5.2.3 Reduction 3
The two previous implementations of reduce write the final value
into shared memory (as there is a force in the very last stage). This
means that the last element is stored into shared memory and then
directly copied into global memory. This can be avoided by cutting
the recursion off at length 2 instead of 1, and performing the last
operation without issuing a force.

red3 :: Storable a
⇒ Word32
→ (a → a → a)
→ Pull Word32 a
→ Program Block a

red3 cutoff f arr
| len arr == cutoff = return (foldPull1 f arr)
| otherwise =
do let (a1,a2) = halve arr

arr2 ← forcePull (zipWith f a1 a2)
red3 cutoff f arr2

This kernel takes a cutoff as a parameter and when the array
reaches that length, sequential fold over a pull array is used to
sum up the remaining elements. Setting the cutoff to two does
not change the overall depth of the algorithm, but since there is no
force in the last stage the result will not be stored in shared memory.

5.2.4 Reduction 4
Now we have a set of three basic ways to implement reduction
and can start experimenting with adding sequential, per thread,
computation. red4 uses seqReduce, which is provided by the
Obsidian library and implements a sequential reduction that turns
into a for loop in the generated CUDA code. The input array is split
into chunks of 8 that are reduced sequentially. The partial results
are reduced using the previously implemented (red3).

red4 :: Storable a
⇒ (a → a → a)
→ Pull Word32 a
→ Program Block a

red4 f arr =
do arr2 ← force (tConcat (fmap (seqReduce f)

(splitUp 8 arr)))
red3 2 f arr2

As can be seen by the running times in Figure 9, this optimi-
sation did not come out well. The problem is that it reintroduces
memory coalescing issues (see Figure 8).

5.2.5 Reduction 5
With red5, the coalescing problem is dealt with by defining a new
function to split up the array into sub arrays. The idea is that the

elements in the inner arrays should be drawn from the original array
in a strided fashion.
coalesce :: ASize l

⇒ Word32
→ Pull l a
→ Pull l (Pull Word32 a)

coalesce n arr =
mkPull s (λi →
mkPull n (λj → arr ! (i + (sizeConv s) ∗ j)))

where s = len arr `div` fromIntegral n

With coalesce in place of splitUp, red5 can be defined as:

red5 :: Storable a
⇒ (a → a → a)
→ Pull Word32 a
→ Program Block a

red5 f arr =
do arr2 ← force (tConcat (fmap (seqReduce f)

(coalesce 8 arr)))
red3 2 f arr2

5.2.6 Reductions 6 and 7
Lastly, we try to push the tradeoff between number of threads
and sequential work per thread further. red6 and red7 represent
changing red5 to reduce 16 and 32 elements in the sequential
phase. The performance of the fastest of these kernels is very
satisfactory, at a level where the kernel is memory bound, that is,
constrained by memory bandwidth.

We augment red5 with a parameter saying how much sequential
work should be performed.

red5' :: Storable a
⇒ Word32
→ (a → a → a)
→ Pull Word32 a
→ Program Block a

red5' n f arr =
do arr2 ← force (tConcat (fmap (seqReduce f)

(coalesce n arr)))
red3 2 f arr2

red6 f arr = red5' 16 f arr

red7 f arr = red5' 32 f arr

Lines of Code Figure 10 lists the number of lines of code for each
of the reduction kernels. The reduction benchmarks were based, in
spirit, on the reduction optimization tutorial from by NVIDIA [9],
and as a comparison the CUDA kernels shown in that tutorial we
estimate to range between 10 and 19 lines of code; not counting
lines containing just a “}” character or type signatures. Likewise for
our Obsidian code the type signature has been left out of the count
and we have not counted the lines in the very restrictive vertical
space offered in the papers format, but rather how the code would
look using more standard line length. Notable in the lines of code
count is that as we apply more optimisations reuse of prior effort
leads to less and less added new work. This is one strength of meta
programming.

There are important differences between the sequence of reduc-
tion optimizations performed in this section and those described in
reference [9]. First, the authors do not employ unrolling of the ker-
nel until the very last step. The Obsidian approach, using Haskell
recursion to implement the reduction kernels leads to unrolled code
by default. Second, in the NVIDIA tutorial they apply an opti-
mization that computes on elements before ever storing anything
in shared memory. This is something that we also get for free in
Obsidian and would actually need to add code to get the kind of re-

Obsidian: GPU kernel generation 9 2014/5/13

 0.1

 1

 10

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

S
e
c
o
n
d
s

Input size

Reduce r1
Reduce r2
Reduce r3
Reduce r4
Reduce r5
Reduce r6

Kernel 256 512 1024 2048 4096 8192 16384
Reduce r1 64 64 128 128 256 512 512
Reduce r2 64 64 128 256 256 512 512
Reduce r3 64 64 128 128 256 512 512
Reduce r4 32 64 128 256 512 64 128
Reduce r5 32 64 64 256 256 256 256
Reduce r6 32 32 64 128 256 512 512

Figure 9: Top: The best time for each kernel variant at each input size.
Bottom: the thread setting that achieved that best time. These settings are
difficult to predict in advance. Kernels that use virtualized threads are
highlighted, note that there are many of these amongst the best selection.
The running times reported does not include transfer of data to and from
the GPU DRAM.

Kernel Lines Acc Total Kernel Lines Acc Total
red1 5 5 7 red5 3 8 10
red2 5 5 7 red6 1 9 11
red3 5 5 7 red7 1 9 11
red4 3 8 10

Figure 10: The figure shows number of lines of code for the different
reduction kernels. The Lines column contains number of lines in the body
of that particular reduction function, reuse of prior effort not included. The
Acc column includes reuse of previously implemented kernels in the count.
The Total column also includes extra lines for distributing the reductions
over blocks (using pConcat, fmap and push). This distribution code is
identical for all of the reduction kernels.

duction that stores the elements in shared memory before operating
on them in the first stage. The code that needs to be added is a use
of forcePull on the input array as step one in the reduction kernel.

6. Combining kernels to solve large problems
With Obsidian, we can experiment with details during the imple-
mentation of a single kernel. In section 5, we saw that the descrip-
tion of a local kernel involves its behavior when spread out over
many blocks. However, solving large problems must sometimes
make use of many different kernels or the same kernel used repeat-
edly. Here the procedure of making use of combinations of kernels
is explained using large reduction as an example.

6.1 Large reductions
We implement reduction of large arrays by running local kernels
on blocks of the input array. If the local kernel reduces n elements
to 1 then this first step reduces numBlocks ∗ n elements into
numBlocks partial results. The procedure is then repeated on the
numBlocks elements until there is one value.

Variant Parameter Seconds Parameter* Seconds*
ACC Loop 2.767
ACC AWhile 2.48
Red1 256 threads 0.751 32 2.113
Red2 256 threads 0.802 32 2.413
Red3 256 threads 0.799 32 2.410
Red4 512 threads 1.073 1024 2.083
Red5 256 threads 0.706 1024 1.881
Red7 128 threads 0.722 1024 1.968

Figure 11: Running times of 224 element reduction using Obsidian or Ac-
celerate. The results were obtained on a NVIDIA TESLA c2070. Each re-
duction procedure was executed 1000 times, and the total execution time
is reported in the table (not including data transfer to GPU). Two differ-
ent methods for executing the Accelerate (ACC) reduction repeatedly was
tested. There variants are refered to as “Loop” and “AWhile”. Using Ac-
celerate it is harder to separate out the data transfer time, but at least only
one transfer of data to and from the GPU is performed and amortised over
the 1000 executions. A large number of experiments was performed on the
reduction benchmarks (Red1 to Red7) and the best threads per block set-
ting is listed in the table.* The two columns on the right show the number
of threads - kernel combinations that perform the worst.

launchReduce = withCUDA (
do let n = blocks * elts

blocks = 4096
elts = 4096

kern <- capture 32 (mapRed5 (+) . splitUp elts)

(inputs :: V.Vector Word32) <-
lift (mkRandomVec (fromIntegral n))

useVector inputs (\i ->
allocaVector (fromIntegral blocks) (\ o ->
allocaVector 1 (\ o2 -> do

do o <== (blocks,kern) <> i
o2 <== (1,kern) <> o
copyOut o2))))

The code above is one example of our API for writing CPU-side
host-programs, though it is also possible to call Obsidian-generated
kernels from CUDA code as well. Figure 11 shows the running time
for the above program executing a 224 element reduction compared
against Accelerate.

7. Related work
There are many languages and libraries for GPU programming.
Starting at the low-level end of the spectrum we have CUDA
[19]. CUDA is NVIDIA’s name for the programming model and
extended C language for their GPUs. It is the capabilities of CUDA
that we seek to match with Obsidian, while giving the programmer
the benefits of having Haskell as a meta programming language.

While remaining in the imperative world, but going all the way
to the other end of the high-level - low-level spectrum, we have the
NVIDIA Thrust Library [20]. Thrust offers a programming model
where details of GPU architecture are completely abstracted away.
Here, the programmer expresses algorithms using building blocks
like: Sort, Scan and Reduce.

Data.Array.Accelerate is a language embedded in Haskell for
GPU programming [6]. The abstraction level is comparable to that
of Thrust. In other words, Accelerate hides most GPU details from
the programmer. Accelerate provides a set of operations (that are
parallel and suitable for GPU execution, much like in Thrust) im-
plemented as skeletons. Recent work has permitted the optimisa-
tion of Accelerate programs using fusion techniques to decrease
the number of kernel invocations needed (see reference [15]).
When using Accelerate the programmer has no control over how
to decompose his computation onto the GPU or how to make use

Obsidian: GPU kernel generation 10 2014/5/13

of shared memory resources. For many users, remaining entirely
within Haskell will be a big attraction of Accelerate. Obsidian’s in-
tended users are those who wish to get fine control of the GPU, at
roughly the level of CUDA, but without having to manually write
all the necessary index transformations.

Nikola [14] is another language embedded in Haskell that
occupies the same place as Accelerate and Thrust on the abstraction
level spectrum.

In the imperative world, there is also system called CUB [16,
17] with similar goals to Obsidian. CUB aims at providing reusable
software components using C++ template metaprogramming. CUB
provides primitives such as sort, scan and reduce that can oper-
ate at each of the GPU hierarchy levels (thread, warp, block and
grid). Moreover, these primitives take tuning parameters: threads-
per-block, items-per-thread, and so on. Yet CUB is more manual
than Obsidian, for example requiring manual allocation of on-chip
shared memory for CUB primitives, rather than Obsidian’s auto-
matic shared-memory management. Further, CUB makes it possi-
ble to call reusable functions from kernels, but it doesn’t change the
way kernels (with their implicit nested loops superimposed onto a
flat implicit loop) are written.

The systems mentioned above are all for flat data-parallelism,
Bergstrom and Reppy are attempting nested data-parallelism by
implementing a compiler for the NESL language for GPUs [2].

The Copperhead [4] system compiles a subset of Python to run
on GPUs. Much like other languages mentioned here, Copperhead
identifies usages of certain parallel primitives that can be executed
in parallel on the GPU (such as reduce, scan and map). But Cop-
perhead also allows the expression of nested data-parallelism and
is in that way different from both Accelerate and Obsidian.

In reference [21], Oancea et al. use manual transformations
to study a set of compiler optimisations for generating efficient
GPU code from high-level and functional programs based on map,
reduce and scan. They tackle performance problems related to
GPU programming, such as bad memory access patterns and di-
verging branches. Obsidian enables easy exploration of decisions
related to these issues.

8. Conclusion
Obsidian lends itself well to experimentation with low level details.
Having control of these details is essential for the implementation
of efficient kernels. This is illustrated in section 5.2. The case study
also shows how we can compose kernels and thus reuse prior effort.

The use of GPU-hierarchy generic functions makes the kernel
code concise. The push, pConcat, tConcat and sConcat functions
provide an easy way to control placement of computation onto
levels of the hierarchy. The typing-design used to model the GPU
hierarchy also rules out many programs that we cannot efficiently
compile to the GPU.

While other approaches to GPU programming in higher level
languages deliberately abstract away from the details of the GPU,
we persist in our aim of exposing architectural details of the ma-
chine and giving the programmer fine control. This is partly be-
cause trying to provide simple but effective programming idioms
is an interesting challenge. More importantly, we are fascinated by
the problem of how to assist programmers in making the subtle
algorithmic decisions needed to program parallel machines with
programmer-controlled memory hierarchies, and exotic constraints
on memory access patterns. This problem is by no means confined
to GPUs, and it is both difficult and pressing.

Acknowledgments
Push arrays were invented by Koen Claessen. The implementation
of push arrays in Obsidian is targeted at GPUs and restricted com-

pared to Koen’s more general idea. Koen has also been a source of
important insights and tips that have improved this work greatly.

This research has been funded by the Swedish Foundation for
Strategic Research (which funds the Resource Aware Functional
Programming (RAW FP) Project), by the Swedish Research Coun-
cil, and by U.S. NSF award #1337242.

References
[1] E. Axelsson, K. Claessen, M. Sheeran, J. Svenningsson, D. Engdal,

and A. Persson. The Design and Implementation of Feldspar an
Embedded Language for Digital Signal Processing. IFL’10, Berlin,
Heidelberg, 2011. Springer Verlag.

[2] L. Bergstrom and J. Reppy. Nested data-parallelism on the GPU. In
Proceedings of the 17th ACM SIGPLAN International Conference on
Functional Programming (ICFP 2012), pages 247–258, Sept. 2012.

[3] G. Blelloch. Programming Parallel Algorithms. Communications of
the ACM, 39(3), 1996.

[4] B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: Compiling
an embedded data parallel language. In In Principles and Practices of
Parallel Programming, PPoPP 11, 2011.

[5] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and
K. Olukotun. A domain-specific approach to heterogeneous paral-
lelism. In ACM SIGPLAN Notices, volume 46, pages 35–46. ACM,
2011.

[6] M. M. Chakravarty, G. Keller, S. Lee, T. L. McDonell, and V. Grover.
Accelerating Haskell Array Codes with Multicore GPUs. In Proceed-
ings of the sixth workshop on Declarative aspects of multicore pro-
gramming, DAMP ’11, New York, NY, USA, 2011. ACM.

[7] C. Elliott. Functional images. In The Fun of Programming, “Cor-
nerstones of Computing” series. Palgrave, Mar. 2003. URL http:
//conal.net/papers/functional-images/.

[8] C. Elliott, S. Finne, and O. de Moor. Compiling embedded languages.
Journal of Functional Programming, 13(2), 2003. URL http://
conal.net/papers/jfp-saig/.

[9] M. Harris. Optimizing parallel reduction in CUDA. "http:
//developer.download.nvidia.com/assets/cuda/files/
reduction.pdf".

[10] S. Herhut, R. L. Hudson, T. Shpeisman, and J. Sreeram. Parallel pro-
gramming for the web. In Proceedings of the 4th USENIX conference
on Hot Topics in Parallelism, HotPar, volume 12, pages 1–6, 2012.

[11] E. Holk, W. E. Byrd, N. Mahajan, J. Willcock, A. Chauhan, and
A. Lumsdaine. Declarative parallel programming for gpus. In PARCO,
pages 297–304, 2011.

[12] K. E. Iverson. A programming language. In Proceedings of the May
1-3, 1962, spring joint computer conference, pages 345–351. ACM,
1962.

[13] G. Keller, M. M. Chakravarty, R. Leshchinskiy, S. Peyton Jones, and
B. Lippmeier. Regular, shape-polymorphic, parallel arrays in haskell.
In Proceedings of the 15th ACM SIGPLAN international conference
on Functional programming, ICFP ’10, New York, NY, USA, 2010.
ACM.

[14] G. Mainland and G. Morrisett. Nikola: Embedding Compiled GPU
Functions in Haskell. In Proceedings of the third ACM Haskell sym-
posium, pages 67–78. ACM, 2010.

[15] T. L. McDonell, M. M. Chakravarty, G. Keller, and B. Lippmeier. Op-
timising Purely Functional GPU Programs, 2013. 18th ACM SIG-
PLAN International Conference on Functional Programming, ICFP
2013.

[16] D. Merrill. Cub. http://nvlabs.github.io/cub/.

[17] D. Merrill. Cub: Kernel-level software reuse and library design, 2013.
http://on-demand.gputechconf.com/gtc/2013/poster/pdf/P0267_-
DuaneMerrill.pdf.

[18] C. J. Newburn, B. So, Z. Liu, M. McCool, A. Ghuloum, S. D. Toit,
Z. G. Wang, Z. H. Du, Y. Chen, G. Wu, P. Guo, Z. Liu, and D. Zhang.
Intel’s array building blocks: A retargetable, dynamic compiler and

Obsidian: GPU kernel generation 11 2014/5/13

embedded language. CGO ’11, Washington, DC, USA, 2011. IEEE
Computer Society.

[19] NVIDIA. CUDA C Programming Guide, . URL http://docs.
nvidia.com/cuda/cuda-c-programming-guide/index.html.

[20] NVIDIA. NVIDIA Thrust Library, . URL https://developer.
nvidia.com/thrust.

[21] C. E. Oancea, C. Andreetta, J. Berthold, A. Frisch, and F. Henglein. Fi-
nancial software on gpus: between haskell and fortran. In Proceedings
of the 1st ACM SIGPLAN workshop on Functional high-performance
computing, FHPC ’12, pages 61–72, New York, NY, USA, 2012.
ACM.

[22] A. Persson, E. Axelsson, and J. Svenningsson. Generic monadic con-
structs for embedded languages. In Proceedings of the 23rd interna-
tional conference on Implementation and Application of Functional
Languages, IFL’11. Springer-Verlag, 2012.

[23] N. Sculthorpe, J. Bracker, G. Giorgidze, and A. Gill. The Constrained-
Monad Problem, 2013. 18th ACM SIGPLAN International Confer-
ence on Functional Programming, ICFP 2013.

[24] R. T. Stevens. Fractal Programming in C, 1989. M&T Books.
[25] J. Svenningsson and B. J. Svensson. Simple and Compositional Reifi-

cation of Monadic Embedded Languages, 2013. 18th ACM SIGPLAN
International Conference on Functional Programming, ICFP 2013.

Obsidian: GPU kernel generation 12 2014/5/13

