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Abstract. The tool extract enables the automatic extraction of lemma-paradigm
pairs from raw text data. The tool uses search patterns that consist of regular
expressions and propositional logic. These search patterns define sufficient con-
ditions for including lemma-paradigm pairs in the lexicon, on the basis of word
forms occurring in the data. This paper explains the search pattern syntax of ex-
tract as well as the search algorithm, and discusses the design of search patterns
from the recall and precision point of view.
The extract tool was developed for morphologies defined in the Functional Mor-
phology tool [1], but it is usable for all systems that implement a word-and-
paradigm description of a morphology.
The usefulness of the tool is demonstrated by a case study on the Canadian
Hansards Corpus of French. The result is evaluated in terms of precision of the
extracted lemmas and statistics on coverage and rule productiveness. Competi-
tive extraction figures show that human-written rules in a tailored tool is a time-
efficient approach to the task at hand.

1 Introduction

A wide-coverage morphological lexicon is a key part of any information re-
trieval system, machine translation engine and of a variety of other Natural Lan-
guage Processing applications. The demand is high not only for low-density lan-
guages, since existing lexica for major languages are often not publicly avail-
able. Moreover, even if they were, running text – especially newspapers and
technical texts – will always contain new, not necessarily hapax, words.

Manual development of a full-scale lexicon is a time-consuming task, so it
is natural to investigate how the lexicon development can be automated. The
situation is usually such that access to large collections of raw language data
is cheap, so cheap that it is tempting to look at ways to exploit the raw data to
obtain the sought after high-quality morphological lexicon. Clearly, attempts to
fully automatize the process (e.g [2, 3] – most other systems for unsupervised
learning of morphology cannot be used directly to build a lexicon) do not reach
the kind of quality we are generally interested in. However, instead of using
humans for supervised learning of lexicon extraction in some form, we believe



there is a more advantageous placement of the human role. With a suitable tool,
humans can use their knowledge to guide a computerized extraction from raw
text, with comparatively little time spent.

To be more specific, we intend to show that a profitable role for the human
is to write intelligent extraction rules. The extract tool has been developed with
this in mind. The idea behind extract is simple: start with a large-sized corpus
and a description of the word forms in the paradigms with the varying parts,
which we refer to as technical stems, represented with variables. In the tool’s
syntax, we could describe the first declension noun of Swedish with the follow-
ing definition.

paradigm decl1 =
x+"a"
{ x+"a" & x+"as" & x+"an" & x+"ans" &

x+"or" & x+"ors" & x+"orna & x+"ornas" } ;

Given that all forms in the curly brackets, called the constraint, are found
for some prefix x, the tool outputs the head x+"a" tagged with the name of
the paradigm. E.g., if these forms exist in the text data: ärta, ärtas, ärtan,
ärtans, ärtor, ärtors, ärtorna and ärtornas, the tool will output
decl1 ärta. Given that we have the lemma and the paradigm class label, it
is a relatively simple task to generate all word forms.

The paradigm definition has a major drawback: very few lemmas appear in
all word forms. It could in fact be relaxed to increase recall without sacrificing
precision: to identify a Swedish word as a noun of the first declension it is
often enough to find one instance of the four singular forms and one of the
four plural forms. The tool offers a solution by supporting propositional logic in
the constraint, further described in section 2.1. Various issues of the extraction
process are discussed in section 3.

Another problem with the given definition is the lack of control over what
the variable x might be. Section 2.2 describes how the tool improves this situa-
tion by allowing variables to be associated with regular expressions.

The stems of first declension nouns in Swedish are the same for all word
forms, but this is not the case for many paradigms, e.g. German nouns with
umlaut. Section 2.3 presents the tool’s use of multiple variables as a solution to
this problem.



〈Def〉 ::= paradigm 〈Name〉 〈VarDef〉 =
〈Head〉 { 〈Logic〉 }

| regexp 〈Name〉 = 〈Reg〉

Fig. 1. Regexp and paradigm definitions

2 Paradigm File Format

A paradigm file consists of two kinds of definitions: regexp and paradigm.
The syntax is given in figure 1.

A regexp definition associates a name (Name) with a regular expression
(Reg). A paradigm definition consists of a name (Name), a set of variable-
regular expression associations (VarDef), a set of output constituents (Head)
and a constraint (Logic).

The basic unit in Head and Logic is a pattern that describes a word form.
A pattern consists of a sequence of variables and string literals glued together
with the ’+’ operator. An example of a pattern given previously was x+"a".

Both definitions will be discussed in detail in the following sections.

2.1 Propositional Logic
Propositional logic appears in the constraint to enable a more fine-grained de-
scription of what word forms the tool should look for. The basic unit is a pattern,
corresponding to a word form, which is combined with the operators & (and), |
(or), and ˜ (not).

The syntax for propositional logic is given in figure 2, where Pattern refers
to one word form.

〈Logic〉 ::= 〈Logic〉 & 〈Logic〉
| 〈Logic〉 | 〈Logic〉
| 〈Logic〉
| ˜ 〈Logic〉
| 〈Pattern〉
| ( 〈Logic〉 )

Fig. 2. Propositional logic grammar

The addition of new operators allow the paradigm in section 1 to be rewritten
with disjunction to reflect that it is sufficient to find one singular and one plural
word form.



paradigm decl1 =
x+"a"
{ (x+"a" | x+"as" | x+"an" | x+"ans") &

(x+"or" | x+"ors" |x+"orna | x+"ornas") } ;

2.2 Regular Expressions

It was mentioned in section 1 that control over the variable part of a paradigm
description was desired. The solution provided by the tool is to enable the user
to associate every variable with a regular expression. The association dictates
which (sub-)strings a variable can match. An unannotated variable can match
any string, i.e. its regular expression is Kleene star over any symbol.

As a simple example, consider German, where nouns always start with an
uppercase letter. This can be expressed as follows.

regexp UpperWord = upper letter*;

paradigm n [x:UpperWord] = ... ;

The syntax of the tool’s regular expressions is given in figure 3, with the
normal connectives: union, concatenation, set minus, Kleene star, Kleene plus
and optionality. eps refers to the empty string, digit to 0− 9, letter to an alpha-
betic Unicode character, lower and upper to a lowercase respectively an upper-
case letter. char refers to any character. A regular expression can also contain a
double-quoted string, which is interpreted as the concatenation of the characters
in the string.

〈Reg〉 ::= 〈Reg〉 | 〈Reg〉
| 〈Reg〉 − 〈Reg〉
| 〈Reg〉 〈Reg〉
| 〈Reg〉 *
| 〈Reg〉 +
| 〈Reg〉 ?
| eps
| 〈Char〉
| digit
| letter
| upper
| lower
| char
| 〈String〉
| ( 〈Reg〉 )

Fig. 3. Regular expression



2.3 Multiple Variables

Not all paradigm definitions are as neat as the initial example — phenomena
like umlaut require an increased control over the variable part. The solution
the tool provides is to allow multiple variables, i.e. a pattern may contain more
than one variable. This is best explained with an example, where two German
noun paradigms are described, both with umlaut. The change of the stem vowel
is captured by introducing two variables and by letting the stem vowel be a
constant string.

regexp Consonant = ... ;

regexp Pre = upper letter*;

regexp Aft = Consonant+ ;

paradigm n2 [F:Pre, ll:Aft] =
F+"a"+ll
{ F+"a"+ll & F+"ä"+ll+"e" } ;

paradigm n3 [W:Pre, rt:Aft] =
W+"o"+rt
{ W+"o"+rt & W+"ö"+rt+"er" } ;

The use of variables may reduce the time-performance of the tool, since ev-
ery possible variable binding is considered. The use of multiple variables should
be moderate, and the variables should be restricted as much as possible by their
regular expression association to reduce the search space.

A variable does not need to occur in every pattern, but the tool only per-
forms an initial match with patterns containing all variables. The reason for this
is efficiency — the tool only considers one word at the time, and if the word
matches one of the patterns, it searches for all other patterns with the variables
instantiated by the initial match. For obvious reasons, an initial match is never
performed under a negation, since this would imply that the tool searches for
something it does not want to find.

It is allowed to have repeated variables, i.e. non-linear patterns, which is
equivalent to back reference in the programming language Perl. An example
where a sequence of bits is reduplicated is given. This language is known to be
non-context-free [4].

regexp ABs = (0|1)*;

paradigm reduplication [x:ABs] =
x+x { x+x } ;



2.4 Multiple Arguments

The head of a paradigm definition may have multiple arguments to support more
abstract paradigms. An example is Swedish nouns, where many nouns can be
correctly classified by just detecting the word forms in nominative singular and
nominative plural. An example is given below, where the first and second de-
clension is handled with the same paradigm function, where the head consists
of two output forms. The constraints are omitted.

paradigm regNoun = paradigm regNoun =
flick+"a" flick+"or" pojk+"e" pojk+"ar"
{...} ; {...} ;

2.5 The Algorithm

The underlying algorithm of the tool is presented in pseudo-code notation.

let L be the empty lexicon.
let P be the set of extraction paradigms.
let W be all word types in the corpus.
for each w : W
for each p : P
for each constraint C with which w matches p
if W satisfies C with the result H,
add H to L

endif
end

end
end

The algorithm is initialized by reading the word types of the corpus into an
array W . A word w matches a paradigm p, if it can match any of the patterns in
the paradigm’s constraint that contains all variables occurring in the constraint.
The result of a successful match is an instantiated constraint C, i.e. a logical
formula with words as atomic propositions. The corpus W satisfies a constraint
C if the formula is true, where the truth of an atomic proposition a means that
the word a occurs in W .

2.6 The Performance of the Tool

The extraction tool is implemented in Haskell. It is available as an open-source
free software 1. A typical example of using the tool, the experiment reported in
Section 4 extracted a lexicon of 19,295 lemmas from a corpus of 66,853 word

1 Extract homepage: http://www.cs.chalmers.se/∼markus/extract/



types, by using 43 paradigms. The execution time was 11min 23s on a computer
with an AMD 3600+ CPU and 1 GB memory, running Kubuntu Linux 5.10. The
memory consumption was 34 MB.

3 The Art of Extraction

The constraint of a paradigm describes a sub-paradigm, a subset of the word
forms, considered to be evidence enough to be able to judge that the lemmas
in the head are in that paradigm class. The identification of appropriate sub-
paradigms requires good insights into the target language and intuitions about
the distributions of the word forms. However, these insights and intuitions may
be acquired while using the tool by trial and error.

Lexicon extraction is a balance between precision, i.e. the percentage of the
extracted lemmas that are correctly classified, and recall, i.e. the percentage of
the lemmas in the text data that are extracted. Precision, however, is by far the
most important, since poor recall can be compensated with more text data, but
poor precision requires more human labor.

How about extracting the paradigm descriptions from a set of paradigms
automatically? We use the term minimum-size sub-paradigm to describe the
minimum-sized set of word forms needed to uniquely identify a paradigm P .
More formally, a minimum-sized sub-paradigm is a minimum-size set of word
forms P ′ ⊆ P such that for any other paradigm Q, P ′ 6⊆ Q. It turns out that the
problem of finding the minimum-size sub-paradigm for a paradigm P is NP-
complete2. Furthermore, the minimum-size sub-paradigm need not be of high
practical interest since it may contain forms that are very uncommon in actual
usage. Therefore there is all the more reason to let a human choose which forms
to require and also weigh in which forms are likely to be common or uncommon
in actual usage.

Also, some natural languages have overshadowed paradigms, i.e. paradigms
where the form of one paradigm is a subset of another paradigm. For example,
in Latin some noun paradigms are overshadowed by adjective paradigms. The
distinction of Latin nouns and adjectives can be done through the use of negation
where a second declension noun paradigm is defined by also stating that the
feminine endings, which would indicate that it is an adjective, should not be
present. This definition, however, misses e.g filius where the feminine parallel
filia does exist.

paradigm decl2fungus =

2 The minimum-size sub-paradigm problem (MSS) is equivalent to the well-known set-cover
problem. Proof omitted.



fung++"us"
{ fung+"us" & fung+"i" & ˜(fung+"a" | fung+"ae")};

Negation is similar with negation as failure in Prolog, with the same prob-
lems associated with it. The main problem is that negation rests on the absence,
not the presence, of information, which in turn means that the extraction process
with negation is non-monotonic: the use of a larger corpus may lead to an ex-
tracted lexicon which is smaller. A worst-case scenario is a misspelt or foreign
word that, by negation, removes large parts of the correctly classified lemmas in
the extracted lexicon.

In most cases, a better alternative to negation is a more careful use of reg-
ular expressions, and in cases like Latin nouns, a rudimentary POS tagger that
resolves the POS ambiguity may outperform negation.

3.1 Manual Verification

Almost all corpora have misspellings which may lead to false conclusions.
Added to that are word forms that incidentally coincide. One possible solution
to handle misspellings is to only consider words that occur at some frequency.
However, that would remove a lot of unusual but correctly spelled words (to an
extent which is unacceptable). Coincidences are in practice impossible to avoid.

Misspellings, foreign words and coincidences are the reason why manual
verification of the extracted lexicon cannot be circumvented even with ”perfect”
paradigm definitions. However, browse-filtering a high-precision extracted lex-
icon requires much less time than building the same lexicon by hand. Also,
nothing in principle prohibits statistical techniques to be applied in collabora-
tion here. For instance, one can sort the extracted lemmas heuristically accord-
ing to how many forms and with what frequencies they occur (cf. section 5).
In general, this is productive for poly-occurring lemmas but helps little for the
(typically many) hapax lemmas.

4 Experiments

We will evaluate our proposed extraction technique with a study of real-world
extraction on the Hansards corpus of Canadian French [5]. All words were man-
ually annotated to enable a thorough evaluation. However, the intended practical
usage of the extraction tool is to simply run the tool on the raw text data and eye-
browse the output list for erroneous extractions.

The corpus consisted of approximately 15 million running tokens of 66853
types. From these 66853 types we manually removed all junk – foreign words,



proper names, misspellings, numeric expressions, abbreviations as well as pro-
nouns, prepositions, interjections and non-derived adverbs – so that a 49477
true lexical items remained. 27681 lemmas account for the 49477 forms, where
verb lemmas tended to occur in more forms than noun and adjective lemmas.
Of course, not all these lemmas occurred in such forms that their morpholog-
ical class could be recognized by their endings alone. Many lemmas occur in
only one form – usually not enough to infer its morphological class – unless,
as is often the case, they contain a derivational morpheme which, together with
its inflectional ending, does suffice. For example, a single occurrence of a word
ending in -e is hardly conclusive, whereas one ending in -tude is almost certainly
a feminine noun with a plural in -s. Nouns without derivational ending cannot be
reliably distinguished from adjectives even when they occur in all their forms,
i.e both the singular and plural. The table in figure 4 summarizes these data.

Tokens 15 000 000
Types 66 853
Non-junk types 49 477
Lemmas 27 681

Fig. 4. Statistics on the corpus of Canadian French Hansards used in the experiment

We now turn to the question of precision and coverage of rule-extraction
of the targeted 27 681 lemmas. We quickly devised a set of 43 rules to extract
French nouns (18 rules), verbs (7 rules) and adjectives (18 rules). The verb-
rules aimed at -ir and -er verbs by requiring salient forms for these paradigms,
whereas the noun- and adjective rules make heavy use of regularities in deriva-
tional morphology to overcome the problems of overlapping forms. Two typical
example groups are given below:

regexp NOTi = char* (char-"i") ;

paradigm Ver [regard:NOTi]
= regard+"er"

{regard+"e" &
(regard+"é" | regard+"ée" |
regard+"ez" | regard+"ont" |
regard+"ons" | regard+"a" )} ;

paradigm Aif
= sport+"if"

{sport+"if" | sport+"ifs" |
sport+"ive" | sport+"ives"} ;



The results of the extraction are shown in figure 5. If possible, one would
like to know where one’s false positives come from – sloppy rules or noisy
data? At least one would like to know roughly what to expect. Since we have
already annotated this corpus we can give some indicative quantitative data. To
assess the impact of misspellings and foreign words – the two main sources for
spurious extractions – we show the results of the same extraction performed
on the corpus with all junk removed beforehand. As expected, false positives
increase when junk is added. To be more precise, we get a lot of spurious verbs
from English words and proper names in -er (e.g farmer, worchester) as well
as many nouns, whose identification requires only one form, from misspellings
(e.g qestion). Non-junk-related cases of confusion worth mentioning are nouns
in -ment – the same ending as adverbs – and verbs which have spelling changes
(manger-mangeait, appeler-appelle etc).

Extr. All Extr. Non-Junk
False Positives 2 031 664
Correctly Indentified 17 264 17 264

19 295 17 928
Precision 89.5% 96.3%

Fig. 5. Extraction results on raw text vs. text with junk removed first.

The rule productiveness, i.e a rule on average catches 17264/43 ≈ 401,
must be considered very high. As for coverage, we can see that our rules catch
the lions share of the available lemmas, 17 264 out of 27 681 (again, not all of
which occur in enough forms to predict their morphological class), in the corpus.
This is relevant because even if we can always find more raw text cheaply, we
want our rules to make maximal use of whatever is available and more raw data
is of little help unless we can actually extract a lot of its lemmas with reasonable
effort. It is also relevant because a precision figure without a rule productiveness
figure is meaningless. It would be easy to tailor 43 rules to perfect precision,
perhaps catching one lemma per rule, so what we show is that precision and
rule productiveness can be simultaneously high. In general it is of course up to
the user how much of the raw-data lemmas to sacrifice for precision and rule-
writing effort, which are usually more important objectives.

5 Related Work

The most important work dealing with the very same problem as addressed here,
i.e extracting a morphological lexicon given a morphological description, is the



study of the acquisition of French verbs and adjectives in Clément et al. [6].
Likewise, they start from an existing inflection engine and exploit the fact that
a new lemma can be inferred with high probability if it occurs in raw text in
predictable morphological form(s). Their algorithm ranks hypothetical lemmas
based on the frequency of occurrence of its (hypothetical) forms as well as part-
of-speech information signalled from surrounding closed-class words. They do
not make use of human-written rules but reserve an unclear, yet crucial, role for
the human to hand-validate parts of output and then let the algorithm re-iterate.
Given the many differences, the results cannot be compared directly to ours but
rather illustrate a complementary technique.

Tested on Russian and Croat, Oliver et al. [7, 8, Ch. 3] describe a lexicon
extraction strategy very similar to ours. In contrast to human-made rules, they
have rules extracted from an existing (part of) a morphological lexicon and use
the number of inflected forms found to heuristically choose between multiple
lemma-generating rules (additionally also querying the Internet for existence
of forms). The resulting rules appear not at all as sharp as hand-made rules
with built-in human knowledge of the paradigms involved and their respective
frequency (the latter being crucial for recall). Also, in comparison, our search
engine is much more powerful and allows for greater flexibility and user conve-
nience.

For the low-density language Assamese, Sharma et al. [3] report an experi-
ment to induce both morphology, i.e the set of paradigms, and a morphological
lexicon at the same time. Their method is based on segmentation and alignment
using string counts only – involving no human annotation or intervention inside
the algorithm. It is difficult to assess the strength of their acquired lexicon as
it is intertwined with induction of the morphology itself. We feel that inducing
morphology and extracting a morphological lexicon should be performed and
evaluated separately. Many other attempts to induce morphology, usually with
some human tweaking, from raw corpus data (notably Goldsmith [9]), do not
aim at lexicon extraction in their current form.

There is a body of work on inducing verb subcategorization information
from raw or tagged text (see [10–12] and references therein). However, the par-
allel between subcategorization frame and morphological class is only lax. The
latter is a simple mapping from word forms to a paradigm membership, whereas
in verb subcategorization one also has the onus discerning which parts of a sen-
tence are relevant to a certain verb. Moreover, it is far from clear that verb sub-
categorization comes in well-defined paradigms – instead the goal may be to
reduce the amount of parse trees in a parser that uses the extracted subcatego-
rization constraints.



6 Conclusions and Further Work

We have shown that building a morphological lexicon requires relatively little
human work. Given a morphological description, typically an inflection engine
and a description of the closed word classes, such as pronouns and prepositions,
and access to raw text data, a human with knowledge of the language can use
a simple but versatile tool that exploits word forms alone. It remains to be seen
to what extent syntactic information, e.g part-of-speech information, can further
enhance the performance. A more open question is whether the suggested ap-
proach can be generalized to collect linguistic information of other kinds than
morphology, such as e.g verb subcategorization frames.
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