
Tool Demo: BNF Converter

Markus Forsberg and Aarne Ranta
markus@cs.chalmers.se

Haskell Workshop 2004

Chalmers University of Technology, Sweden

Developing a compiler front-end

• We start with an Idea about the language:

– Language Specification

– In the mind of the implementor

• We continue by developing a set of modules,
usually with the help of existing tools.

Lexer Parser Abstract Syntax Documentation

Case analysis (e.g. type checking) Pretty Printer

Problem: Consistency

• Hard to keep all modules consistent!

• Say that we want to extend our language
with a new language construct. Then we
have to change every module!

Lexer Parser Abstract Syntax Documentation

Case analysis (e.g. type checking) Pretty Printer

Problem: boring code

• We have to write a lot of boring code.

...
Stm :: { Stm }
Stm : Labeled_stm { LabelS $1 }
 | Compound_stm { CompS $1 }
 | Expression_stm { ExprS $1 }
 | Selection_stm { SelS $1 }
 | Iter_stm { IterS $1 }
 | Jump_stm { JumpS $1 }
...

Example: Happy parser generator code

Problem: Language-specific result

• We end up with a compiler front end in a specific programming
language.

• But, we (may) want to design in a declarative language

• and as the final product use an imperative language (e.g. a compiler
in C).

• or incorporate our language in a system written in another language

• Then we have to rewrite everything! Irgghh...

Solution

• Use a single source to generate all modules.

• Use a simple formalism for the single source.

• Use a declarative style for the single source.
Describe instead of implement the language.

System overview: BNF Converter

BNF ConverterLabelled
BNF

Java

C

C++

Haskell
Parser

Lexer

Abstract Syntax

Documentation

Pretty-printer

Case Skeleton

Test bench

Output

Input

Data exchange format

Another use of BNF Converter is as a data exchange format

The multi-linguality of BNF Converter provides a convenient
way of communicating data between different programming
languages

Language 1
pretty-print

Language 2
parse

BNFC requirement

1. The language’s lexical structure must be describable by a
regular expression.

2. The language must not only be context-free, but LALR(1)
parsable (actually, this is requirements from the used tools).

3. The language implementation can be separated into a lexer,
a parser and whatever more that lurks in the back-end.

Most modern-day programming languages have (at least) a
well-defined subset that fullfills these requirements.

Grammar projects
Existing languages developed in BNF Converter:
• C
• Java
• OCL
• Alfa
• External Core in GHC
• ASN.1

New languages developed with BNF Converter:
• Grammatical Framework
• BNF Converter's own source format

BNFC availability

GPL License

Available at BNFC Homepage:
http://www.cs.chalmers.se/~markus/BNFC

Also available as a Debian Linux package, in the testing
distribution.

The People behind BNF Converter
(in alphabetical order)

Björn Bringert
Markus Forsberg

Peter Gammie
Patrik Jansson

Antti-Juhani Kaijanaho
Michael Pellauer

Aarne Ranta

Demo: External Core

• A grammar written by Aarne Ranta – approximately 2.5 h work including
debugging (GHC 5.02.2).

• Extracted from the abstract syntax and the Happy parser from the GHC
source code.

• WC count (source format)
 92 474 26792Core.cf
instead of
 89 243 1324 ExternalCore.lhs
 240 1042 5168 ParserExternalCore.y
 168 906 4667 PprExternalCore.lhs
 497 2191 11159 total

where the lexer source and the language document are still missing.

