
Development of multimodal and multilingual
grammars: viability and motivation

Björn Bringert Robin Cooper Peter Ljunglöf
Aarne Ranta

Distribution: Public

TALK
Talk and Look: Tools for Ambient Linguistic Knowledge

IST-507802 Deliverable 1.2a

19/01/05

Project funded by the European Community
under the Sixth Framework Programme for
Research and Technological Development

The deliverable identification sheet is to be found on the reverse of this page.

Project ref. no. IST-507802
Project acronym TALK
Project full title Talk and Look: Tools for Ambient Linguistic Knowledge
Instrument STREP
Thematic Priority Information Society Technologies
Start date / duration 01 January 2004 / 36 Months

Security Public
Contractual date of delivery Dec 04
Actual date of delivery 19/01/05
Deliverable number 1.2a
Deliverable title Development of multimodal and multilingual grammars: vi-

ability and motivation
Type Report
Status & version Public Final
Number of pages 31 (excluding front matter)
Contributing WP 1
WP/Task responsible UGOT
Other contributors
Author(s) Björn Bringert, Robin Cooper, Peter Ljunglöf and Aarne

Ranta
EC Project Officer Kimmo Rossi
Keywords grammar, multilingual, multimodal, Grammatical Frame-

work, dialogue systems

The partners in TALK are: Saarland University USAAR

University of Edinburgh HCRC UEDIN

University of Gothenburg UGOT

University of Cambridge UCAM

University of Seville USE

Deutches Forschungszentrum fur K̈unstliche Intelligenz DFKI

Linguamatics LING

BMW Forschung und Technik GmbH BMW

Robert Bosch GmbH BOSCH

For copies of reports, updates on project activities and other TALK-related information, contact:

TheTALK Project Co-ordinator
Prof. Manfred Pinkal
Computerlinguistik
Fachrichtung 4.7 Allgemeine Linguistik
Postfach 15 11 50
66041 Saarbrücken, Germany
pinkal@coli.uni-sb.de
Phone +49 (681) 302-4343 - Fax +49 (681) 302-4351

Copies of reports and other material can also be accessed viathe project’s administration homepage,
http://www.talk-project.org

c©2005, The Individual Authors

No part of this document may be reproduced or transmitted in any form, or by any means, electronic
or mechanical, including photocopy, recording, or any information storage and retrieval system, without
permission from the copyright owner.

Contents

1 Introduction 1

2 Introduction to GF and multilingual grammar writing 3
2.1 Separating abstract and concrete syntax 3

2.2 Linguistic advantages 3

2.2.1 Higher-level language descriptions 3

2.2.2 Multilingual grammar writing 4

2.2.3 Syntax editing 4

2.2.4 Several descriptional levels 4

2.2.5 Grammar composition 5

2.2.6 Resource grammars 5

2.3 Comparison with some grammar formalisms 5

2.3.1 Context-free grammar (CFG) 5

2.3.2 Head grammar (HG) .. . 6

2.3.3 Categorial grammar (CG)
Combinatory categorial grammar (CCG) 6

2.3.4 Indexed grammar (IG)
Linear indexed grammar (LIG) .. . 6

2.3.5 Tree adjoining grammar (TAG) 6

2.3.6 Generalized context-free grammar (GCFG) 6

2.3.7 Linear context-free rewriting systems (LCFRS)
Parallel multiple context-free grammar (PMCFG) 7

2.3.8 Literal movement grammar (LMG)
Range concatenation grammar (RCG) 7

2.3.9 Lexical functional grammar (LFG) 7

2.3.10 Dependency grammar (DG) 7

2.3.11 Head-driven phrase structure grammar (HPSG) 7

2.4 Grammatical Framework 8

2.4.1 Type theory .. . 8

2.4.2 Higher-order functions and dependent types 9

2.4.3 Concrete linearizations 9

i

IST-507802 TALK D:1.2a 19/01/05 Page ii/31

2.4.4 The module system 9

2.5 Example of a multilingual GF grammar 10

2.5.1 The abstract syntax 10

2.5.2 A simple concrete syntax for English 11

2.5.3 A concrete syntax that takes care of agreement 11

2.5.4 A concrete syntax for Swedish 12

3 Extending multilinguality to multimodality 14
3.1 Parallel multimodality 14

3.2 Integrated multimodality 14

4 Proof of concept implementation 15
4.1 Overview 15

4.2 Grammar overview 15

4.3 Transport network grammar 15

4.3.1 Generic transport network abstract syntax 15

4.3.2 Generic transport network concrete syntax 17

4.3.3 Göteborg abstract syntax 17

4.3.4 Göteborg concrete syntaxes 17

4.4 Multimodal input grammars 18

4.4.1 Common declarations 18

4.4.2 Click modality 19

4.4.3 Speech modality 19

4.4.4 Indexicality 20

4.5 Ambiguity 21

4.6 Multimodal output 21

4.6.1 Abstract syntax 21

4.6.2 Map drawing concrete syntax 22

4.6.3 English concrete syntax 22

4.7 Example interaction 23

4.8 Multilinguality 24

4.9 Component overview 24

4.10 Limitations 25

5 Conclusion 26
5.1 Future work 26

Version: Final (Public) Distribution: Public

Chapter 1

Introduction

Many large-scale working dialogue systems in research and development do not use a grammar but instead
use statistical language models (SLMs) for speech recognition and word or phrase spotting instead of
deep parsing in order to create input to the dialogue manager. On the other hand, less ambitious but
commercially deployed systems often make use of elementarygrammars, e.g. using VoiceXML. Grammar
based systems are more accurate when the user speaks within the coverage of the grammar whereas robust
systems using SLMs and phrase spotting give better results when the grammar fails. This leads naturally
to the suggestion (e.g., Knight et al. (2001)) that systems should be hybrid and make use of both grammars
and statistical models.

We are interested in building multilingual multimodal dialogue systems which are clearly recognisable to
the user as the same system even if they use the system in different languages or in different domains using
different mixes of modalities (e.g. in-house vs in-car, andwithin the in-house domain with vs without a
screen for visual interaction and touch/click input). We wish to be able to guarantee that the functionality
of the system is the same under the different conditions. We in addition would ultimately like the user to be
able to change language or mode in the middle of a dialogue andbe able to continue without restarting the
system. Scenarios for changing language might be a user beginning a dialogue with a system in English
and then realising that they prefer to continue in their native language. Scenarios for changing mode mid-
dialogue might involve a user moving an application (e.g. a PDA) from the house to the car in the middle
of a dialogue or simply walking away from the screen within the house.

Our previous experience with building such multilingual dialogue systems is that there is a software engi-
neering problem keeping the linguistic coverage in sync fordifferent languages. If all necessary grammars
are constructed purely by hand it is very difficult to guarantee that everything that needs to be said is cov-
ered in a collection of different languages. This problem iscompounded by the fact that for each language
it is normally the case that a dialogue system requires more than one grammar, e.g. one grammar for
speech recognition and another for interaction with the dialogue manager. Thus multilingual systems
become very difficult to develop and maintain.

In this deliverable we will explain the nature of the Grammatical Framework and how it may provide us
with a solution to this problem. The system is oriented towards the writing of multilingual and multimodal
grammars and forces the grammar writer to keep a collection of grammars in sync. It does this by using
computer science notions of abstract and concrete syntax. Essentially abstract syntax corresponds to
the domain knowledge representation of the system and several concrete syntaxes characterising both
natural language representations of the domain and representations in other modalities are related to a

1

IST-507802 TALK D:1.2a 19/01/05 Page 2/31

single abstract syntax. The system forces the concrete syntaxes to give complete coverage of the abstract
syntax and thus will immediately tell the grammar writer if the grammars are not in sync. In addition the
framework provides possibilities for converting from one grammar format to another and for combining
grammars and extracting subgrammars from larger grammars.

Version: Final (Public) Distribution: Public

Chapter 2

Introduction to GF and multilingual
grammar writing 1

2.1 Separating abstract and concrete syntax

The main idea of Grammatical Framework (GF) is the separation of abstract and concrete syntax. The
abstract part of a grammar defines a set of abstract syntacticstructures, called abstract terms or trees; and
the concrete part defines a relation between abstract structures and concrete structures.

The distinction between abstract and concrete syntax has been made by several authors since the late
1950’s; McCarthy (1963) and Landin (1966) made the distinction in describing the syntax for program-
ming languages; Chomsky (1957, 1965) made the distinction between (abstract)deep structureand (con-
crete)surface structure, together with transformations between the structures; Curry (1963) introduced the
distinction under the headings oftectogrammaticandphenogrammaticstructure; and Montague (1974)
viewed a grammar as a set of rules linearizing logically interpreted (abstract) analysis trees into (concrete)
strings of a natural language.

GF has alinearizationperspective to grammar writing, where the relation betweenabstract and concrete
is viewed as a mapping from abstract to concrete structures,calledlinearization terms. In some cases the
mapping can be partial or even many-valued.

2.2 Linguistic advantages

Although not exploited in many well-known grammar formalisms, a clear separation between abstract and
concrete syntax gives some advantages.

2.2.1 Higher-level language descriptions

The grammar writer has a greater freedom in describing the syntax for a language. When describing
the abstract syntax he/she can choose not to take certain language specific details into account, such as

1This section is an excerpt from the introduction chapter of Ljunglöf (2004)

3

IST-507802 TALK D:1.2a 19/01/05 Page 4/31

inflection and word order. Abstracting away smaller detailscan make the grammars simpler, both to read
and understand, and to create and maintain.

Abstract linguistic description
Language specific details
(inflection, word order)

2.2.2 Multilingual grammar writing

It is possible to define several different concrete syntax mappings for one particular abstract syntax. The
abstract syntax could e.g. give a high-level description ofa family of similar languages, and each concrete
mapping gives a specific language instance.

Language 1

Abstract linguistic description · · ·

Languagen

This kind of multilingual grammar can be used as a model for interlingua translation between languages.
But we do not have to restrict ourselves to only multilingualgrammars; different concrete syntaxes can be
given for different modalities. As an example, consider a grammar for displaying time table information.
We can have one concrete syntax for writing the information as plain text, but we could also present the
information in the form of a table output as a LATEX file or in Excel format, and a third possibility is to
output the information in a format suitable for speech synthesis.

2.2.3 Syntax editing

It is possible to write documents by directly editing the abstract syntax, and let the program display
the resulting concrete syntax. This was done for programming languages in e.g. the systems Mentor
(Donzeau-Gouge et al., 1975) and Cornell Program Synthesizer (Teitelbaum and Reps, 1981); and has
been generalized to natural language grammars and evenmultilingual document authoring(Dymetman
et al., 2000; Khegai et al., 2003), where a document is written simultaneously in several languages. One
example of multilingual authoring is when writing technical user manuals which should have exactly the
same interpretation in any language.

2.2.4 Several descriptional levels

Having only two descriptional levels is not a restriction; this can be generalized to as many levels as is
wanted, by equating the concrete syntax of one grammar levelwith the abstract syntax of another level. As
an example we could have a spoken dialogue system with a semantical, a syntactical, a morphological and
a phonological level. This system has to define three mappings; i) a mapping from semantical descriptions
to syntax trees;ii) a mapping from syntax trees to sequences of lexical tokens;and iii) a mapping from
lexical tokens to lists of phonemes.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 5/31

Semantics Syntax Morphology Phonology

This formulation makes grammars similar to transducers (Karttunen et al., 1996; Mohri, 1997) which are
mostly used in morphological analysis, but has been generalized to dialogue systems by Lager and Kronlid
(2004).

2.2.5 Grammar composition

A multi-level grammar as described above, can be viewed as a “black box”, where the intermediate levels
are unknown to the user. Then we are back in our first view as a grammar specifying an abstract and
a concrete level together with a mapping. In this way we can talk aboutgrammar composition, where
the compositionG2◦G1 of two grammars is possible if the abstract syntax ofG2 is equal to the concrete
syntax ofG1. The result of the composition is the grammar inheriting theabstract syntax fromG1, the
concrete syntax fromG2, and having the linearization mappingf2 ◦ f1, where f1, f2 are the linearization
mappings forG1, G2 respectively.

If the grammar formalism supports this, a composition of several grammars can be pre-compiled into a
compact and efficient grammar which doesn’t have to mention the intermediate domains and structures.
This is the case for e.g. finite state transducers, but also for GF as has been shown by Ranta (2004b).

2.2.6 Resource grammars

The possibility of separate compilation of grammar compositions, opens up for writingresource grammars
(Ranta, 2004b). A resource grammar is a fairly complete linguistic description of a specific language.
Many applications do not need the full power of a language, but instead want to use a more well-behaved
subset, which is often called acontrolled language. Now, if we already have a resource grammar, we do
not even have to write a concrete syntax for the desired controlled language, but instead we can specify
the language by mapping structures in the controlled language into structures in the resource grammar.

Controlled syntax Resource syntax Object language

2.3 Comparison with some grammar formalisms

Here we compare some existing grammar formalisms from the perspective of the ability to separate ab-
stract and concrete syntax. We have no intention of giving a full description of the formalisms, and the
reader can safely skip any part of this section.

2.3.1 Context-free grammar (CFG)

A context-free grammar has no separation of abstract and concrete syntax whatsoever. There is only one
level of syntax rules, defining both the abstract syntax trees and the concrete language. The concrete syntax
is not structured at all, making it impossible, or at least very complicated, to have several descriptional
levels.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 6/31

2.3.2 Head grammar (HG)

Head grammar (Pollard, 1984) is an extension of CFG, where the concrete syntax isheaded strings, which
can be concatenated orwrappedinside another headed string. There is not much structure inthe concrete
syntax, and the abstract syntax is tightly connected to the concrete word order.

2.3.3 Categorial grammar (CG)
Combinatory categorial grammar (CCG)

Categorial grammar (Ajdukiewicz, 1935; Bar-Hillel, 1953;Lambek, 1958) is equivalent to CFG, but in-
stead of grammar rules it has complexfunctional categories, together with rules forfunction application.
Combinatory categorial grammar (Steedman, 1985, 1986) also adds rules forfunction compositionto the
framework, thus yielding an extension of CFG.

The notion corresponding to abstract syntax is the derivation trees, and they are tightly bound to the order
of the given words. There are extensions (e.g. type logical grammar; Morrill, 1994) that add some word
order freedom, but the concrete syntax is nevertheless simple strings. This means that CG and relatives
are similar to CFG when it comes to separating abstract and concrete syntax.

2.3.4 Indexed grammar (IG)
Linear indexed grammar (LIG)

Indexed grammar (Aho, 1968) and linear indexed grammar (Gazdar, 1987) are also extensions of CFG. In
these formalisms the context-free categories are augmented with astack of indices. On each application
of a rule, an index can be pushed onto or popped from a stack. But the abstract syntax as represented by
the syntax tree is still tightly connected to the concrete syntax of strings.

2.3.5 Tree adjoining grammar (TAG)

Tree adjoining grammar (Joshi et al., 1975; Joshi and Schabes, 1997) is a formalism based on trees and
a tree rewriting operation calledadjunction. It shares the basic problem with CFG, that there is only one
descriptional level; syntax trees are directly correlatedto the concrete word order.

2.3.6 Generalized context-free grammar (GCFG)

Generalized context-free grammar was introduced by Pollard (1984) as a mathematical framework for
describing HG. GCFG can be seen as a very nice example of the separation of abstract and concrete
syntax. Since GCFG is a very expressive grammar formalism involving general (Turing-complete) partial
functions, its main usage is as a framework for specifying more restricted grammar formalisms.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 7/31

2.3.7 Linear context-free rewriting systems (LCFRS)
Parallel multiple context-free grammar (PMCFG)

Linear context-free rewriting systems (Vijay-Shanker et al., 1987) and parallel multiple context-free gram-
mar (Seki et al., 1991) are defined as instances of GCFG where the linguistic objects are tuples of strings.
The operations associated with syntax rules are only allowed to use tuple projection and string concate-
nation, and LCFRS has some extra restrictions on the linearization functions to ensure mild context-
sensitivity. Since they are defined as GCFG, they share the same separation of abstract and concrete
syntax. The only drawback is that the concrete syntax is restricted to string tuples.

2.3.8 Literal movement grammar (LMG)
Range concatenation grammar (RCG)

These formalisms are very similar; a grammar is seen as a collection of Horn-like clauses over predicates,
just as in the programming language Prolog. Groenink (1997a,b) introduced literal movement grammar,
where predicates range over tuples of strings, making the formalism Turing-complete. There are also
restricted variants called simple LMG and range concatenation grammar (Boullier, 2000a,b), which char-
acterize the class of languages recognizable in polynomialtime. LMG and RCG are similar to GCFG, and
share the same representation of abstract syntax. The drawbacks are that the concrete syntax is restricted
to strings, and that the abstract and concrete syntax are defined simultaneously, making it difficult to use
the same abstract syntax with several concrete.

2.3.9 Lexical functional grammar (LFG)

Lexical functional grammar (Bresnan and Kaplan, 1982) has aclean division betweenc-structuresand
f-structures; the former represents concrete syntax as trees, and the latter represents the “functional”
(or abstract) structure as feature structures. Since the structures are clearly specified, it is difficult to
implement several levels of abstraction; apart from that, LFG inherits all advantages of a clear separation
between abstract and concrete syntax.

2.3.10 Dependency grammar (DG)

Dependency grammar consists of a large and diverse family ofgrammar formalisms, all sharing the as-
sumption that syntactic structure consists oflexical nodeslinked by binary relations calleddependencies
(see e.g. Mel’cuk, 1988; Hudson, 1990); meaning that DG do not have the idea of phrases. Because of the
diversity it is difficult to make general comments regardingthe separation of abstract and concrete syntax.
There are formalisms (Hays, 1964; Gaifman, 1965) having no separation at all; and there are more recent
formalisms (Debusmann et al., 2004) where the concrete syntax is not even limited to strings.

2.3.11 Head-driven phrase structure grammar (HPSG)

The syntactical structures in head-driven phrase structure grammar (Pollard and Sag, 1994) aretyped
feature structures, similar to but more powerful than records.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 8/31

An HPSG grammar has several descriptional levels, for phonology, syntax, semantics etc., but the sep-
aration is not always that clear. The different levels all live together in one single feature structure, as
different features. E.g. concrete strings reside under thefeature PHON, whereas the syntactic structure is
split into several parts. This makes it difficult to generalize HPSG to multilingual grammar, but also to
perform compilation to remove intermediate levels.

Later work on linearization-based HPSG has separated the concrete word order from the feature structures
(Reape, 1991; Daniels and Meurers, 2002), thus giving a better separation of concrete and abstract syntax.

2.4 Grammatical Framework

The abstract theory of Grammatical Framework (GF; Ranta, 2004a) is a version of dependent type theory,
similar to LF (Harper et al., 1993), ALF (Magnusson and Nordström, 1994) and COQ (Coq, 1999). What
GF adds to the logical framework is a possibility to define concrete syntax, that is, notations expressing
formal concepts in user-readable ways. In this sense GF fits well into the idea of separating abstract and
concrete syntax.

The development of GF started as a notation for type-theoretical grammar (Ranta, 1994), which uses
Martin-Löf’s type theory (1984) to express the semantics of natural language. The development of GF as
an authoring system started as a plug-in to the proof editor ALF, to permit natural-language rendering of
formal proofs (Hallgren and Ranta, 2000). The extension of the scope outside mathematics was made in
the Multilingual Document Authoring project at Xerox (Dymetman et al., 2000). In continued work, GF
has been used in areas like software specifications (Hähnleet al., 2002) and dialogue systems (Ranta and
Cooper, 2004).

After the first publication (Mäenpää and Ranta, 1999), the expressiveness of the concrete syntax has devel-
oped into a functional programming language. As such it is similar to a restricted version of programming
languages like Haskell (Peyton Jones, 2003) and ML (Milner et al., 1997). The language is restricted
enough to be possible to compile into an efficient canonical format, but expressive enough to incorporate
modern programming language constructs such as user-definable data types, higher-order functions, and
a module system for defining grammatical resources.

2.4.1 Type theory

The abstract syntax of a GF grammar is defined by declaring a number of basic types (calledcategories),
and a number of basic functions. A function is declared by giving its typing,

fun f : B1 -> · · · -> Bδ -> A;

This declaration states thatf is a function takingδ arguments of typesB1, . . . ,Bδ, resulting in a term of
typeA. A function with no arguments (δ = 0) is called aconstant, and is simply declared as,

fun a : A;

In general we writet : T if the termt is of typeT. By applying the basic functions to each other, compound
terms can be formed,

f b1 · · · bδ : A

whenever eachbi : Bi and f is declared as above.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 9/31

2.4.2 Higher-order functions and dependent types

It is also possible to declare higher-order functions and dependent types in a GF grammar. A higher-order
function is a function where some of the arguments are functions themselves; and a dependent type is
declared to depend on (one or more) terms of other types.

These features are more thoroughly described by Ranta (2004a). Instead we concentrate on the very
important subclasscontext-freeGF, which does not contain higher-order functions or dependent types.

2.4.3 Concrete linearizations

The novel thing about GF with respect to a logical framework is that it adds a mapping from abstract terms
to concretelinearizations. To define a concrete syntax of a grammar, we only need to do thefollowing:

• For each basic categoryA defined in the abstract syntax, we define a correspondinglinearization
type T= A◦ by the declaration,

lincat A = T ;

• For each basic functionf defined in the abstract syntax, we define a correspondinglinearization
function f◦. If the original functionf has a typing,

f : B1 -> · · · -> Bδ -> A

then the linearization functionf ◦ has the typing,

f ◦ : B◦
1 -> · · · -> B◦

δ -> A◦

• The linearization functionf ◦ is defined by a declaration,

lin f x1 . . . xδ = t;

wherex1 : B◦
1, . . . ,xδ : B◦

δ are linearization variables, andt : A◦ is a linearization term in which the
variablesx1, . . . ,xδ can occur.

The linearizationJaK : A◦ of a terma : A can now be defined as,

JaK = f ◦ Jb1K · · · JbδK

whenevera = f b1 · · · bδ andb1 : B1, . . . ,bδ : Bδ. The constraints on the linearization definitions assure
that linearizations always have the correct type. Grammarsare thuscompositionalin the sense that a
linearization is a function of the argument linearizations, not of the arguments themselves.

2.4.4 The module system

GF has a module system, inspired by ideas from programming languages. There are three kinds of mod-
ules: abstract, concrete and resource modules.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 10/31

• An abstract module defines an abstract theory, with categories and functions.

• A concrete module defines the concrete syntax of an abstract theory, by giving linearization types
and linearization functions.

• A resource module defines parameter types, and operations that can be used as helper functions in
concrete modules.

Modules canextendother modules by adding new definitions, thus opening the possibilities for modular
grammar engineering. Another useful feature is that a concrete module (together with the corresponding
abstract module) can be translated into a resource module. Since a resource module can be used by another
concrete module, this makes it possible to perform grammar compositions as described in section 2.2.

2.5 Example of a multilingual GF grammar

In this chapter we give some examples of how to write grammarsin GF, just to get a feeling for the
possibilities.

We start with a simple context-free grammar for a fragment ofEnglish. It consists of the context-free
categoriesS, VP, NP, D, N andV (standing for Sentence, Verb Phrase, Noun Phrase, Determiner, Noun
and Verb respectively), and has the following rules;

S → NP VP

VP → V NP

NP → D N

NP → N

D → “a”

D → “many”

N → “lion” | “lions”

N → “fish”

V → “eats” | “eat”

2.5.1 The abstract syntax

To get a corresponding GF grammar, we start by giving the abstract syntax. First we have to give a name
to each of the CFG rules, and then we can introduce the type declarations,

fun s1 : NP -> VP -> S;
vp1 : V -> NP -> VP;
np1 : D -> N -> NP;
np2 : N -> NP;
d1 : D;
d2 : D;
n1 : N;

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 11/31

n2 : N;
v1 : V;

The predication functions1 forms a sentence out of a noun phrase and a verb phrase. There are two ways
of forming noun phrases; either by a determiner and a noun (“a lion” , “many lions”), or just a plural
noun (“lions”). We assume that all verbs are transitive, so we only have thetransitive verb phrase forming
functionvp1 . The determinersd1, d2 are singular and plural indefinites (“a” and“many”); n1, n2 are the
nouns“lion” and“fish” ; andv1 is the verb“eat” .

2.5.2 A simple concrete syntax for English

If we only want a GF grammar that is equivalent to the originalCFG, we can assign each category the
same linearization type{s : Str} , which is a record consisting of only one string.2 This is done by the
following declarations,

lincat S = {s : Str};
VP = {s : Str};
NP = {s : Str};
D = {s : Str};
N = {s : Str};
V = {s : Str};

The concrete linearizations then look like follows,3

lin s1 x y = {s = x.s ++ y.s};
vp1 x y = {s = x.s ++ y.s};
np1 x y = {s = x.s ++ y.s};
np2 x = {s = x.s};
d1 = {s = "a"};
d2 = {s = "many"};
n1 = {s = variants {"lion" ; "lions"}};
n2 = {s = "fish"};
v1 = {s = variants {"eats" ; "eat"}};

2.5.3 A concrete syntax that takes care of agreement

If we want to change the grammar so that it also takes care of agreement, we can do as follows. First we
introduce the parameter typeNumwith the two values or constructorsSg andPl ,

param Num = Sg | Pl;

2The reason for using records and not just strings will becomeapparent later.
3The operationvariants {a; b} is the GF version of the non-deterministic choice(a | b). The alert reader might

notice that this makes the linearization functions non-deterministic.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 12/31

Then we make a decision that nouns, verbs and verb phrases areparameterizedover the number, whereas
determiners and noun phrases have aninherentnumber.4 A phrase parameterized overNumis stored as an
inflection tableNum => Str ; and an inherited parameter is stored in a record together with the linearized
string,

lincat S = {s : Str};
NP = {s : Str; n : Num};
D = {s : Str; n : Num};
VP = {s : Num => Str};
N = {s : Num => Str};
V = {s : Num => Str};

To give the value of an inherent parameter, we simply form a record; and to access the value of an inherent
parameter, we use record projection (just as we do to access the linearized string). An inflection table is
formed by,

table { p1 => t1; . . . ; pn => tn}

where p1, . . . , pn are inflectionpatterns; and to apply an inflection table to a parameter, we use the
selectionoperation (!). Returning to our example, we get the following concrete syntax for the English
grammar with number agreement between the subject and the verb,5

lin s1 x y = {s = x.s ++ y.s!x.n};
vp1 x y = {s = table {z => x.s!z ++ y.s}};
np1 x y = {s = x.s ++ y.s!x.n; n = x.n};
np2 x = {s = x.s!Pl; n = Pl};
d1 = {s = "a"; n = Sg};
d2 = {s = "many"; n = Pl};
n1 = {s = table {Sg => "lion"; Pl => "lions"}};
n2 = {s = table {_ => "fish"}};
v1 = {s = table {Sg => "eats"; Pl => "eat"}};

Note that the table invp1 has only one pattern matching any parameter, binding it to the variablez which
can be used in the table body. Also note that the table inn2 has ananonymouspattern, meaning that the
value is“fish” regardless of the inflection parameter. Both uses are examples of that tables can sometimes
be compacted.

Examples of phrases that are disallowed by this concrete syntax arei) noun phrases consisting of just a
singular noun;ii) noun phrases where the determiner and noun do not agree; andiii) sentences where the
subject noun phrase does not agree with the verb.

2.5.4 A concrete syntax for Swedish

Swedish has a more complex morphology than English; nouns donot only depend on number, they also
have an inherentgender(neuter and uter) associated with them. Determiners, on theother hand, have

4GF has a functional perspective on linearizations, meaningthat parameters have to be either parameterized
over or inherited. The principal way of making parameters agree is to apply a parameterized inflection table to an
inherited parameter.

5A notational convention in GF is that record projection (.) binds harder than table selection (!), which in turn
binds harder that concatenation (++).

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 13/31

number as an inherent feature and depend on the gender of the noun. First we have to declare the corre-
sponding parameter typeGen;

param Gen = Neu | Utr;

then the linearization types for nouns and determiners can be declared as,

lincat N = {s : Num => Str; g : Gen};
D = {s : Gen => Str; n : Num};

Now we can define the linearizations for the determinersd1, d2 and the nounsn1, n2;

lin d1 = {s = table {Utr => "en"; Neu => "ett"}; n = Sg};
d2 = {s = table {_ => "m ånga"}; n = Pl};
n1 = {s = table {_ => "lejon"}; g = Neu};
n2 = {s = table {Sg => "fisk"; Pl => "fiskar"; g = Utr};

Noun phrases, on the other hand, do not influence the inflection of verbs, which means that they can have
simple linearization typesNP◦ = V◦ = {s : Str} .6 Now we are ready to give the linearization functions
for noun phrase formation,

lin np1 x y = {s = x.s!y.g ++ y.s!x.n};
np2 x = {s = x.s!Pl};

Finally, the word order of sentences depend on the context ofthe sentence. There are three different word
orders (direct, indirect and subordinate), introducing yet another parameter typeOrder ,

param Order = Dir | Indir | Sub;

The indirect order (used e.g. in questions) puts the subjectnoun phrase inside the verb phrase. The way to
solve this in GF is to use discontinuous verb phrases. The linearization of sentences and verb phrases will
be,7

lincat S = {s : Order => Str};
VP = {s1 : Str; s2 : Str};

lin s1 x y = {s = table {Indir => y.s1 ++ x.s ++ y.s2;
_ => x.s ++ y.s1 ++ y.s2}};

vp1 x y = {s1 = x.s; s2 = y.s};

A fourth possible word order could betopicalized, which is used when the object is put in front of the
sentence for focusing purposes; e.g. the sentence“fiskar äter m̊anga lejon” (fish eat many lions) has the
preferred reading (it is fish that many lion eat). This can be solved by adding a new constructorTop to the
typeOrder , and a new row to the table in the linearization definition ofs1 above,

lin s1 x y = {s = table {Top => y.s2 ++ x.s ++ y.s1; ...}};

6This is a simplification; when adding pronouns and/or adjectives, Swedish noun phrases can get quite complex.
7The difference between direct and subordinate word order only shows up in the presence of negation, which we

don’t have in this example.

Version: Final (Public) Distribution: Public

Chapter 3

Extending multilinguality to multimodality

3.1 Parallel multimodality

Parallel multimodalityis a straightforward instance of multilinguality. It meansthat the concrete syntaxes
associated with an abstract syntax are not just different natural languages, but different representation
modalities, encoded by language-like notations such as graphic representation formalisms. An example
of parallel multimodality is given below when a route is described, in parallel, by speech and by a line
drawn on a map (Section 4.6.2). Both descriptions convey thefull information alone, without support
from the other.

This raises the dialogue management issue of whether all information should be presented in all modali-
ties. For example, in the implementation described below all stops are indicated on the graphical presen-
tation of a route whereas in the natural language presentation only stops where the user must change are
presented. Because GF permits the suppression of information in concrete syntax, this issue can be treated
on the level of grammar instead of dialogue management.

3.2 Integrated multimodality

Integrated multimodalitymeans that one concrete syntax representation is a combination of modalities.
For instance, the spoken utterance “I want to go from here to here” can be combined with two pointing
gestures corresponding to the two “here”s. It is the two modalities in combination that convey the full
information: the utterance alone or the clicks alone are notenough.

How to define integrated multimodality with a grammar is lessobvious than parallel multimodality. The
GF solution we will present in Section 4.4 makes essential use of records, and not just strings, as outcomes
of linearization. In brief, different modality “channels”are stored in different fields of a record, and it is
the combination of the different fields that is sent to the dialogue system parser.

14

Chapter 4

Proof of concept implementation

4.1 Overview

We have implemented a multimodal route planning system for public transport networks. The example
system uses the Göteborg tram/bus network, but it can easily be adapted to other networks.

The system uses multimodal grammars for user and system utterances. The user modalities are speech
and map clicks, and the system modalities are speech and drawings on the map. Input and output in all
the modalities are handled by multilingual, multimodal grammars. For brevity and clarity, the following
sections show English concrete syntax exclusively. For every concrete English module shown below, the
application also contains a corresponding module for Swedish concrete syntax.

4.2 Grammar overview

The user and system grammars are split up into a number of modules in order to make reuse and modifi-
cation simpler.

The query and answer grammar modules are shown in figures 4.1 and 4.2, respectively. The following
sections show the details of the grammar modules.

4.3 Transport network grammar

The transport network is represented by a set of modules which are used in both the query and answer
grammars. Since the transport network is described in a separate set of modules, the Göteborg transport
network may be replaced easily.

4.3.1 Generic transport network abstract syntax

The interface for transport network grammars is very simple. Such a grammar simply exports a number
of constants in the Stop category:

abstract Transport = {

15

IST-507802 TALK D:1.2a 19/01/05 Page 16/31

GbgQueryEng

GbgEng TransportQueryEngGbgQuery

Gbg TransportEng TransportQuery QueryEng ClickCnc

Transport Query Click QueryBaseCnc

QueryBase

Figure 4.1: Query grammar modules

GbgRouteMap

GbgLabels RouteMap GbgRoute

TransportLabels Gbg Route

Transport

GbgRouteEng

GbgNames RouteEng

TransportNames

Figure 4.2: Answer grammar modules

Version: Final (Public) Distribution: Public

GbgQueryEng.gf
GbgEng.gf
TransportQueryEng.gf
GbgQuery.gf
Gbg.gf
TransportEng.gf
TransportQuery.gf
QueryEng.gf
ClickCnc.gf
Transport.gf
Query.gf
Click.gf
QueryBaseCnc.gf
QueryBase.gf
GbgRouteMap.gf
GbgLabels.gf
RouteMap.gf
GbgRoute.gf
TransportLabels.gf
Gbg.gf
Route.gf
Transport.gf
GbgRouteEng.gf
GbgNames.gf
RouteEng.gf
TransportNames.gf

IST-507802 TALK D:1.2a 19/01/05 Page 17/31

cat
Stop ;

}

4.3.2 Generic transport network concrete syntax

The English concrete syntax is equally simple. Languages which inflect proper nouns might need a more
complex linearization type for stops.

concrete TransportEng of Transport = {
lincat

Stop = { s : Str } ;
}

4.3.3 G̈oteborg abstract syntax

The abstract syntax for a given transport network lists the stops.

abstract Gbg = Transport ** {
fun Angered : Stop ;
fun AxelDahlstromsTorg : Stop ;
fun Bergsjon : Stop ;
fun Biskopsgarden : Stop ;
...

}

4.3.4 G̈oteborg concrete syntaxes

Since names are not normally translated between languages,they introduce a problem for speech recog-
nition. We would like the map to show the names of tram/bus stops in their native orthography. This is
done with one concrete syntax:

concrete GbgNames of Gbg = TransportNames ** {
lin Angered = { s = ["Angered"] } ;
lin AxelDahlstromsTorg = { s = ["Axel Dahlstr öms torg"] } ;
lin Bergsjon = { s = ["Bergsj ön"] } ;
lin Biskopsgarden = { s = ["Biskopsg ården"] } ;
...

}

However, speech recognizers often do not support characters not used in the language which they rec-
ognize. Furthermore, some recognizers, such as Nuance, do not allow capitals in the recognized text.
Therefore, we introduce a different concrete syntax for stop names for each language. In the English
syntax, accented characters have the diacritics removed and all letters are converted to lower case.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 18/31

concrete GbgEng of Gbg = TransportEng ** {
lin Angered = { s = ["angered"] } ;
lin AxelDahlstromsTorg = { s = ["axel dahlstroms torg"] } ;
lin Bergsjon = { s = ["bergsjon"] } ;
lin Biskopsgarden = { s = ["biskopsgarden"] } ;
...

}

Since stop names are also used in the click and drawing modalities, we also need an easily machine
readable and writable syntax. This is achieved by removing spaces and diacritics from the stop names:

concrete GbgLabels of Gbg = TransportLabels ** {
lin Angered = { s = ["Angered"] } ;
lin AxelDahlstromsTorg = { s = ["AxelDahlstromsTorg"] } ;
lin Bergsjon = { s = ["Bergsjon"] } ;
lin Biskopsgarden = { s = ["Biskopsgarden"] } ;
...

}

4.4 Multimodal input grammars

User input is done with integrated speech and click modalities. The user may use speech only, or speech
combined with clicks on the map. Clicks are expected when theuser makes a query containing “here”
(though “here” might also be used without a click, see Section 4.4.4).

Clicks are represented as a list of places that the click might refer to. Normally this is a singleton list
containing a single bus/tram stop, but some stops might be close enough that a click could refer to more
than one stop. The set might also be empty if the click was not close to any stop.

In the concrete syntax, the click data is appended to the speech input to give the parser a single string to
parse. These are some examples using the English concrete syntax:

• “i want to go from brunnsparken to vasaplatsen;”

• “i want to go from vasaplatsen to here; [Chalmers]”

• “i want to go from here to here; [Chalmers] [Saltholmen]”

4.4.1 Common declarations

The QueryBase module contains declarations common to all input modalities:

abstract QueryBase = {
cat

Query ; -- sequentialized input representation
Input ; -- user input: parallel text and clicks

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 19/31

Click ; -- map clicks
fun

QInput : Input -> Query ; -- sequentialize user input
}

QueryBase has a single concrete syntax since it is language neutral:

concrete QueryBaseCnc of QueryBase = {
lincat

Query = { s : Str } ;
Input = { s1 : Str ; s2 : Str } ;
Click = { s : Str } ;

lin
QInput i = { s = i.s1 ++ ";" ++ i.s2 } ;

}

4.4.2 Click modality

Clicks are represented by a list of stops that the click mightrefer to:

abstract Click = QueryBase ** {
cat

StopList ; -- a list of stop names
fun

CStops : StopList -> Click ;
NoStop : StopList ;
OneStop : String -> StopList ;
ManyStops : String -> StopList -> StopList ;

}

The same concrete syntax is used for clicks in all languages:

concrete ClickCnc of Click = QueryBaseCnc ** {
lincat

StopList = { s : Str } ;
lin

CStops xs = { s = "[" ++ xs.s ++ "]" } ;
NoStop = { s = "" } ;
OneStop x = { s = x.s } ;
ManyStops x xs = { s = x.s ++ "," ++ xs.s } ;

}

4.4.3 Speech modality

The Query module adds basic user queries and a way to use a click to indicate a place:

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 20/31

abstract Query = QueryBase ** {
cat

Place ; -- any way to identify a place
fun

GoFromTo : Place -> Place -> Input ;
GoToFrom : Place -> Place -> Input ;
PClick : Click -> Place ; -- "here" together with a click

}

The corresponding English concrete syntax is:

concrete QueryEng of Query = QueryBaseCnc ** {
lincat

-- speech and click representations of a place
Place = {s1 : Str; s2 : Str} ;

lin
GoFromTo x y = {

s1 = ["i want to go from"] ++ x.s1 ++ "to" ++ y.s1 ;
s2 = x.s2 ++ y.s2

} ;
GoToFrom x y = {

s1 = ["i want to go to"] ++ x.s1 ++ "from" ++ y.s1 ;
s2 = x.s2 ++ y.s2

} ;
PClick c = { s1 = "here" ; s2 = c.s } ;

}

4.4.4 Indexicality

To refer to her current location, the user can use “here” without a click, or omit either origin or destination.
The system is assumed to know where the user is located. Examples in English concrete syntax:

• “i want to go from here to centralstationen;”

• “i want to go to valand;”

• “i want to come from brunnsparken;”

These are the abstract syntax declarations for this feature(in the Query module):

fun
-- indexical "here", without a click
PHere : Place ;
-- user input "want to come from a" (to where I am now)
ComeFrom : Place -> Input ;
-- user input "want to go to a" (from where I am now)
GoTo : Place -> Input ;

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 21/31

The English concrete syntax for this is (in the QueryEng module):

lin
PHere = { s1 = "here" ; s2 = [] } ;
ComeFrom x = {

s1 = ["i want to come from"] ++ x.s1 ;
s2 = x.s2

} ;
GoTo x = {

s1 = ["i want to go to"] ++ x.s1 ;
s2 = x.s2

} ;

4.5 Ambiguity

Some strings may be parsed in more than one way. Since “here” may be used with or without a click,
input with two occurrences of “here” and only one click are ambiguous:

• “I want to go from here to here; [Valand]”

A query might also be ambiguous even if it can be parsed unambiguously, since one click can correspond
to multiple stops:

• “I want go go from Chalmers to here; [Klareberg,Tagene]”

The current application fails to produce any output for ambiguous queries. A real system should handle
this through dialogue management.

4.6 Multimodal output

The system’s answers to the user’s queries are presented with speech and drawings on the map. This is an
example of parallel multimodality as the speech and the map drawings are independent.

The information presented in the two modalities is however not identical as the spoken output only con-
tains information about when to change trams/buses. The mapoutput shows the entire path, including
intermediate stops.

Parallel multimodality is from the system’s point of view just a form of multilinguality. The abstract
syntax representation of the system’s answers has one concrete syntax for the drawing modality, and one
for each natural language. The only difference between the natural language syntaxes and the drawing
one is that the latter is a formal language rather than a natural one.

4.6.1 Abstract syntax

The abstract syntax for answers (routes) contains the information needed by all the concrete syntaxes.
All concrete syntaxes might not use all of the information. Aroute is a non-empty list of legs, and a leg
consists of a line and a list of at least two stops.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 22/31

abstract Route = Transport ** {
cat

Route; -- route description
Leg; -- route segment on a single line
Line; -- bus/tram line
Stops; -- list of at least two stops

fun
Then : Leg -> Route -> Route ; -- leg followed by a route
OneLeg : Leg -> Route ; -- single leg
LineLeg : Line -> Stops -> Leg ; -- leg on a line
NamedLine : String -> Line ; -- line labelled by a string
ConsStop : Stop -> Stops -> Stops ; -- stop followed by some sto ps
TwoStops : Stop -> Stop -> Stops ; -- last two stops

}

4.6.2 Map drawing concrete syntax

The map drawing language contains sequences of labelled edges to be drawn on the map. The following
string:

• “drawEdge (6, [Chalmers, Vasaplatsen]); drawEdge (2, [Vasaplatsen, Gronsakstorget, Brunnsparken]);”

is an example of a string in the map drawing language described by this concrete syntax:

concrete RouteMap of Route = TransportLabels ** {
lincat

Route = { s : Str } ;
Leg = { s : Str } ;
Line = { s : Str } ;
Stops = { s : Str } ;

lin
Then l r = { s = l.s ++ ";" ++ r.s } ;
OneLeg l = { s = l.s ++ ";" } ;
LineLeg l ss =

{ s = "drawEdge" ++ "(" ++ l.s ++ ","
++ "[" ++ ss.s ++ "]" ++ ")" } ;

NamedLine n = { s = n.s } ;
ConsStop s ss = { s = s.s ++ "," ++ ss.s } ;
TwoStops s1 s2 = { s = s1.s ++ "," ++ s2.s } ;

}

4.6.3 English concrete syntax

In the English concrete syntax we wish to list only the first and last stop of each leg of the route.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 23/31

concrete RouteEng of Route = TransportNames ** {
lincat

Route = { s : Str } ;
Leg = { s : Str } ;
Line = { s : Str } ;
-- a list of stops is linearized to its first and last stop
Stops = { start : Str; end : Str } ;

lin
Then l r = { s = l.s ++ "." ++ r.s } ;
OneLeg l = { s = l.s ++ "." } ;
LineLeg l ss =

{ s = "Take" ++ l.s ++ "from" ++ ss.start ++ "to" ++ ss.end } ;
NamedLine n = { s = n.s } ;
ConsStop s ss = { start = s.s; end = ss.end } ;
TwoStops s1 s2 = { start = s1.s; end = s2.s } ;

}

4.7 Example interaction

The user says “i want to go from chalmers to here” and clicks onFrihamnen. This is represented by the
input string:

• “i want to go from chalmers to here; [Frihamnen]”

The parser produces this abstract syntax representation:

QInput (GoFromTo (PStop Chalmers)
(PClick (CStops (OneStop "Frihamnen"))))

The system responds with this answer:

Then (LineLeg (NamedLine "6") (TwoStops Chalmers Vasaplat sen))
(Then (LineLeg (NamedLine "2")

(ConsStop Vasaplatsen
(TwoStops Gronsakstorget Brunnsparken)))

(OneLeg (LineLeg (NamedLine "5")
(ConsStop Brunnsparken

(TwoStops LillaBommen Frihamnen)))))

This is linearized to this speech output:

• “Take 6 from Chalmers to Vasaplatsen. Take 2 from Vasaplatsen to Brunnsparken. Take 5 from
Brunnsparken to Frihamnen.”

And to these drawing instructions:

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 24/31

Figure 4.3: The map showing the path from Chalmers to Frihamnen.

• “drawEdge (6, [Chalmers, Vasaplatsen]); drawEdge (2, [Vasaplatsen, Gronsakstorget, Brunnsparken]);
drawEdge (5, [Brunnsparken, LillaBommen, Frihamnen]);”

The map with this output is shown in figure 4.3.

4.8 Multilinguality

Currently, speech input and output in English and Swedish are implemented. The dialogue system itself
accepts input in either language, but speech recognizers can often only handle a single language at a time.

System output is linearized using the same language as the speech input was in.

Adding support for a new language requires writing concretesyntaxes for the user and system grammars.

4.9 Component overview

The application consists of the following agents:

• Speech recognizer - Nuance through OAA using NuanceWrapper

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 25/31

• Clickable map + Path drawing - An OAA agent written in Java

• Parser + Linearizer (multilingual and multimodal) - Java GFinterpreter

• Shortest path finder - OAA agent written in Java

• Speech synthesis - FreeTTS over OAA using FreeTTSAgent

The demo application (Tramdemo), NuanceWrapper, the Java GF interpreter and FreeTTSAgent are
all available from the Göteborg TALK software library athttp://www.ling.gu.se/projekt/talk/
software/ .

4.10 Limitations

There is no dialogue management in this version. Queries that do not have exactly one interpretation
are not answered. The purpose of this application is to demonstrate use of multimodal and multilingual
grammars. Adding dialogue management should be orthogonalto this.

There is no handling of departure times, only time between stops. Adding support for this would be
relatively straightforward, but would require some effortto support time expressions. The shortest-path
algorithm would also need to be changed to take waiting timesinto account.

The current system is not usable for practical route planning since the Göteborg public transit network
description is incomplete and out of date.

Version: Final (Public) Distribution: Public

Chapter 5

Conclusion

GF provides a solution to the problems named in the introduction to this deliverable. Abstract syntax
can be used to characterise the linguistic functionality ofa system in an abstract language and modality
independent way. The system forces the programmer to define concrete syntaxes which completely cover
the abstract syntax. In this way, the system forces the programmer to keep all the concrete syntaxes in
sync. In addition, since GF is oriented towards creating grammars from other grammars, our philosophy
is that it should not be necessary for a grammar writer to haveto create by hand any equivalent grammars
in different formats. For example, if the grammar for the speech recogniser is to be the same as that used
for interaction with dialogue management but the grammars are needed in different formats, then there
should be a compiler which takes the grammar from one format to the other. Thus, for example, we have
a compiler which converts a GF grammar to Nuance’s format forspeech recognition grammars.

Another reason for using GF grammars has to do with the use of resource grammars and cascades of
levels of representation as described in section 2.2. This allows for the hiding of grammatical detail
from language and the precise implementation of modal interaction for other modalities. This enables
the dialogue system developer to reuse previous grammar or modal interaction implementations without
herself having to reprogram the details for each new dialogue system. Thus the dialogue engineer need
not be a grammar engineer or an expert in multimodal interfaces.

5.1 Future work

The proof of concept dialogue system presented in section 4 is the first complete GF-based application
built within the TALK project. Another project is in progress within the smart house domain, where a set
of extensive GF grammars has been written for programming a video recorder in English and Swedish. Of
particular interest is the use of the module system to managethe plurality of different but related devices.
For instance, MP3 players have many shared functionalitieswith video recorders, but even more with CD
players. The challenge is to avoid the duplication of grammar rules, thereby also giving the user a feeling
of uniformity which makes it easier to learn to control new devices.

To make GF grammar writing more accessible to authors of dialogue systems, we will continue the work
on resource grammars and their documentation. In particular, we are developing a resource grammar API
giving easy access to constructs that are needed in dialoguesystems.

For those projects that are not using GF grammars directly weare developing tools that generate corpora.

26

IST-507802 TALK D:1.2a 19/01/05 Page 27/31

The idea is to generate a corpus by “bootstrapping”: to use a small corpus as a filter that extracts a
domain grammar from a resource grammar, an then generate a larger corpus from the domain grammar.
This corpus can then be used e.g. as data for a statistic language model. By the use of dependent types
(Section 2.4.2), it is possible to prevent the generation ofexpressions that although linguistically correct
are semantically nonsense and would hence never occur in a real corpus.

Version: Final (Public) Distribution: Public

Bibliography

Aho, A. (1968). Indexed grammars—an extension to context-free grammars.Journal of the ACM, 15:647–
671.

Ajdukiewicz, K. (1935). Die syntaktische Konnexität.Studia Philosophica, 1:1–27.

Bar-Hillel, Y. (1953). A quasi-arithmetical notation for syntactic description.Language, 29:47–58.

Boullier, P. (2000a). A cubic-time extension of context-free grammars.Grammars, 3:111–131.

Boullier, P. (2000b). Range concatenation grammars. In6th International Workshop on Parsing Tech-
nologies, pages 53–64, Trento, Italy.

Bresnan, J. and Kaplan, R. (1982). Lexical-functional grammar: A formal system for grammatical repre-
sentation. In Bresnan, J., editor,The Mental Representation of Grammatical Relations, pages 173–281.
MIT Press, Cambridge, MA.

Chomsky, N. (1957).Syntactic Structures. Mouton, The Hague.

Chomsky, N. (1965).Aspects of the Theory of Syntax. MIT Press, Cambridge, MA.

Coq (1999). The Coq Proof Assistant Reference Manual. The Coq Development Team. Available at
http://pauillac.inria.fr/coq/

Curry, H. B. (1963). Some logical aspects of grammatical structure. In Jacobson, R., editor,Structure of
Language and its Mathematical Aspects: Proceedings of the 12th Symposium in Applied Mathematics,
pages 56–68. American Mathematical Society.

Daniels, M. and Meurers, D. (2002). Improving the efficiencyof parsing with discontinuous constituents.
In NLULP-02: 7th International Workshop on Natural Language Understanding and Logic Program-
ming, Copenhagen, Denmark.

Debusmann, R., Duchier, D., and Kruijff, G.-J. M. (2004). Extensible dependency grammar: A new
methodology. InCOLING 2004 Workshop on Recent Advances in Dependency Grammar.

Donzeau-Gouge, V., Huet, G., Kahn, G., Lang, B., and Levy, J.J. (1975). A structure-oriented program
editor: a first step towards computer assisted programming.In International Computing Symposium
(ICS’75).

Dymetman, M., Lux, V., and Ranta, A. (2000). XML and multilingual document authoring: Convergent
trends. InCOLING, pages 243–249, Saarbrücken, Germany.

28

IST-507802 TALK D:1.2a 19/01/05 Page 29/31

Gaifman, H. (1965). Dependency systems and phrase-structure systems.Information and Control, 8:304–
337.

Gazdar, G. (1987). Applicability of indexed grammars to natural languages. In Reyle, U. and Rohrer,
C., editors,Natural Language Parsing and Linguistic Theories, pages 69–94. D. Reidel Publishing
Company.

Groenink, A. (1997a). Mild context-sensitivity and tuple-based generalizations of context-free grammar.
Linguistics and Philosophy, 20:607–636.

Groenink, A. (1997b).Surface without Structure — Word order and tractability issues in natural language
analysis. PhD thesis, Utrecht University.

Hallgren, T. and Ranta, A. (2000). An extensible proof text editor. In Parigot, M. and Voronkov, A.,
editors,LPAR-2000, volume 1955 ofLNCS/LNAI, pages 70–84. Springer.

Harper, R., Honsell, F., and Plotkin, G. (1993). A frameworkfor defining logics. Journal of the ACM,
40(1):143–184.

Hays, D. (1964). Dependency theory: A formalism and some observations.Language, 40:511–525.

Hudson, R. (1990).English Word Grammar. Blackwell.

Hähnle, R., Johannisson, K., and Ranta, A. (2002). An authoring tool for informal and formal require-
ments specifications. In Kutsche, R.-D. and Weber, H., editors, Fundamental Approaches to Software
Engineering, volume 2306 ofLNCS, pages 233–248. Springer.

Joshi, A. and Schabes, Y. (1997). Tree-adjoining grammars.In Rozenberg, G. and Salomaa, A., editors,
Handbook of Formal Languages. Vol 3: Beyond Words, chapter 2, pages 69–123. Springer-Verlag,
Berlin/Heidelberg/New York.

Joshi, A. K., Levy, L. S., and Takahashi, M. (1975). Tree adjunct grammars.Journal of Computer and
System Sciences, 10(1):136–163.

Karttunen, L., Chanod, J.-P., Grefenstette, G., and Schiller, A. (1996). Regular expressions for language
engineering.Natural Language Engineering, 2(4):305–328.

Khegai, J., Nordström, B., and Ranta, A. (2003). Multilingual syntax editing in GF. In Gelbukh, A.,
editor,CICLing-2003: Intelligent Text Processing and Computational Linguistics, LNCS 2588, pages
453–464. Springer.

Knight, S., Gorrell, G., Rayner, M., Koeling, R., and Lewin,I. (2001). Comparing grammar-based and
robust approaches to speech understanding: a case study. InEurospeech 2001: Proceedings of the 7th
European Conference on speech communication and technology, pages 1779–1782.

Lager, T. and Kronlid, F. (2004). The Current platform: Building conversational agents in Oz. In2nd
International Mozart/Oz Conference.

Lambek, J. (1958). The mathematics of sentence structure.American Mathematical Monthly, 65:154–170.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 30/31

Landin, P. J. (1966). The next 700 programming languages.Communications of the ACM, 9(3):157–166.

Ljunglöf, P. (2004).Expressivity and Complexity of the Grammatical Framework. PhD thesis, Göteborg
University, Gothenburg, Sweden.

Magnusson, L. and Nordström, B. (1994). The ALF proof editor and its proof engine. InTypes for Proofs
and Program, volume 806 ofLNCS, pages 213–237. Springer.

Martin-Löf, P. (1984).Intuitionistic Type Theory. Bibliopolis, Napoli.

McCarthy, J. (1963). Towards a mathematical science of computation. InIFIP Congress, pages 21–28,
Amsterdam. North-Holland.

Mel’cuk, I. (1988).Dependency Syntax: Theory and Practice. State University of New York Press.

Milner, R., Tofte, M., Harper, R., and MacQueen, D. (1997).The Definition of Standard ML – Revised.
MIT Press, Cambridge, MA.

Mohri, M. (1997). Finite-state transducers in language andspeech processing.Computational Linguistics,
23(2):269–312.

Montague, R. (1974).Formal Philosophy. Yale University Press, New Haven. Collected papers editedby
R. Thomason.

Morrill, G. (1994). Type Logical Grammar: Categorial Logic of Signs. Dordrecht.

Mäenpää, P. and Ranta, A. (1999). The type theory and typechecker of GF. InPLI-1999 workshop on
Logical Frameworks and Meta-languages, Paris, France.

Peyton Jones, S. (2003).Haskell 98 Language and Libraries. Cambridge University Press, New York.

Pollard, C. (1984).Generalised Phrase Structure Grammars, Head Grammars and Natural Language.
PhD thesis, Stanford University.

Pollard, C. and Sag, I. (1994).Head-Driven Phrase Structure Grammar. University of Chicago Press.

Ranta, A. (1994).Type-Theoretical Grammar. Oxford University Press.

Ranta, A. (2004a). Grammatical Framework, a type-theoretical grammar formalism.Journal of Func-
tional Programming, 14(2):145–189.

Ranta, A. (2004b). Modular grammar engineering in GF. Submitted.

Ranta, A. and Cooper, R. (2004). Dialogue systems as proof editors. Journal of Logic, Language and
Information, 13(2):225–240.

Reape, M. (1991). Parsing bounded discontinuous constituents: Generalisations of some common algo-
rithms. In Reape, M., editor,Word Order in Germanic and Parsing, pages 41–70. Centre for Cognitive
Science, Edinburgh.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 31/31

Seki, H., Matsumara, T., Fujii, M., and Kasami, T. (1991). Onmultiple context-free grammars.Theoretical
Computer Science, 88:191–229.

Steedman, M. (1985). Dependency and coordination in the grammar of Dutch and English.Language,
61:523–568.

Steedman, M. (1986). Combinators and grammars. In Oehrle, R., Bach, E., and Wheeler, D., editors,
Categorial Grammars and Natural Language Structures, pages 417–442. Foris, Dordrecht.

Teitelbaum, T. and Reps, T. (1981). The Cornell Program Synthesizer: a syntax-directed programming
environment.Communications of the ACM, 24(9):563–573.

Vijay-Shanker, K., Weir, D., and Joshi, A. (1987). Characterizing structural descriptions produced by
various grammatical formalisms. In25th Meeting of the Association for Computational Linguistics.

Version: Final (Public) Distribution: Public

