““Hu

(T
.

Development of multimodal and multilingual
grammars: viability and motivation

Bjorn Bringert Robin Cooper Peter Ljurddl
Aarne Ranta

Distribution: Public

TALK

Talk and Look: Tools for Ambient Linguistic Knowledge
IST-507802 Deliverable 1.2a

19/01/05
a—
e 4
= =
{ F)

Project funded by the European Community
under the Sixth Framework Programme for
Research and Technological Development

Information Society
Technologies
The deliverable identification sheet is to be found on thenss of this page.

Project ref. no.
Project acronym
Project full title
Instrument
Thematic Priority
Start date / duration

IST-507802

TALK

Talk and Look: Tools for Ambient Linguistic Knowledge
STREP

Information Society Technologies

01 January 2004 / 36 Months

Security

Contractual date of delivery
Actual date of delivery
Deliverable number
Deliverable title

Type

Status & version
Number of pages
Contributing WP
WP/Task responsible
Other contributors
Author(s)

EC Project Officer
Keywords

Public

Dec 04

19/01/05

1.2a

Development of multimodal and multilingual grammars:
ability and motivation
Report

Public Final

31 (excluding front matter)
1

UGOT

Bjorn Bringert, Robin Cooper, Peter Ljunglof and Aar
Ranta

Kimmo Rossi

grammar, multilingual, multimodal, Grammatical Fran
work, dialogue systems

e-

The partners in TALK are:

Saarland University USAAR
University of Edinburgh HCRC UEDIN
University of Gothenburg uGoT
University of Cambridge UCAM
University of Seville USE
Deutches Forschungszentrum fur Kinstliche Intelligenz DFkI
Linguamatics LING
BMW Forschung und Technik GmbH BMW
Robert Bosch GmbH BOSCH

For copies of reports, updates on project activities androfLK-related information, contact:

TheTALK Project Co-ordinator
Prof. Manfred Pinkal
Computerlinguistik

Fachrichtung 4.7 Allgemeine Linguistik

Postfach 15 11 50
66041 Saarbriicken, Germany
pinkal@coli.uni-sb.de

Phone +49 (681) 302-4343 - Fax +49 (681) 302-4351

Copies of reports and other material can also be accessdtheviproject's administration homepage,
http://www.talk-project.org

(©2005, The Individual Authors
No part of this document may be reproduced or transmittechinfarm, or by any means, electronic

or mechanical, including photocopy, recording, or any tinfation storage and retrieval system, without
permission from the copyright owner.

Contents

1 Introduction

2 Introduction to GF and multilingual grammar writing

2.1 Separating abstract and concrete syntax

2.2 Linguisticadvantages e e
2.2.1 Higher-level language descriptions
2.2.2 Multilingual grammarwriting
223 Syntaxediting
2.2.4 Severaldescriptionallevels
2.2.5 Grammarcomposition e e
2.2.6 Resource grammars i e e e e e e e

2.3 Comparison with some grammar formalisms
2.3.1 Context-free grammar (CFG)
2.3.2 Headgrammar(HG) ittt

2.3.3 Categorial grammar (CG)
Combinatory categorial grammar (CCG)

2.3.4 Indexed grammar (IG)
Linear indexed grammar (LIG)

2.3.5 Treeadjoining grammar (TAG) i e
2.3.6 Generalized context-free grammar (GCFG)

2.3.7 Linear context-free rewriting systems (LCFRS)
Parallel multiple context-free grammar (PMCFG)

2.3.8 Literal movement grammar (LMG)
Range concatenation grammar (RCG)

2.3.9 Lexical functional grammar (LFG)
2.3.10 Dependency grammar (DG) e .
2.3.11 Head-driven phrase structure grammar (HPSG)
2.4 Grammatical Framework e
241 Typetheory e
2.4.2 Higher-order functions and dependenttypes
2.4.3 Concrete linearizations

IST-507802 TALK D:1.2a 19/01/05 Page ii/31

2.4.4 Themodule system e e i 9

2.5 Example of a multilingual GFgrammar 10
251 Theabstractsyntax e 10
2.5.2 Asimple concrete syntax forEnglish 11
2.5.3 A concrete syntax that takes care of agreement 11
2.5.4 Aconcrete syntax forSwedish L. 12

3 Extending multilinguality to multimodality 14
3.1 Parallel multimodality e 14
3.2 Integrated multimodality e e 14
4 Proof of concept implementation 15
4.1 OVEIVIEW o e e e e e 15
4.2 Grammar OVEIVIEW v it e e e e e e e 15
4.3 Transport network grammar e e 15
4.3.1 Generic transport network abstract syntax 15
4.3.2 Generic transport network concrete syntax 17
4.3.3 Goteborg abstractsyntax e 17
4.3.4 Goteborg concrete syntaxes e e e 17

4.4 Multimodal input grammars e 18
441 Commondeclarations 18
4.4.2 Clickmodality e e 19
4.4.3 Speechmodality e 19
4.4.4 Indexicality e 20

4.5 Ambiguity e 21
4.6 Multimodal output e 21
4.6.1 Abstractsyntax e e 21
4.6.2 Mapdrawing concrete syntaxo e e 22
4.6.3 Englishconcrete syntax e 22

4.7 Exampleinteraction e e 23
4.8 Multilinguality e e 24
4.9 ComponentoverviEW i i i e e e e e e e e 24
410 Limitations e e e e e 25
5 Conclusion 26
5.1 Futurework e e e 26

Version: Final (Public) Distribution: Public

Chapter 1

Introduction

Many large-scale working dialogue systems in research amelopment do not use a grammar but instead
use statistical language models (SLMs) for speech redognénd word or phrase spotting instead of
deep parsing in order to create input to the dialogue mana@erthe other hand, less ambitious but
commercially deployed systems often make use of elemegtargmars, e.g. using VoiceXML. Grammar
based systems are more accurate when the user speaks hétkioverage of the grammar whereas robust
systems using SLMs and phrase spotting give better reshlés the grammar fails. This leads naturally
to the suggestion (e.g., Knight et al. (2001)) that systdmslsl be hybrid and make use of both grammars
and statistical models.

We are interested in building multilingual multimodal diglie systems which are clearly recognisable to
the user as the same system even if they use the system ieniffenguages or in different domains using
different mixes of modalities (e.g. in-house vs in-car, anthin the in-house domain with vs without a
screen for visual interaction and touch/click input). Wehvio be able to guarantee that the functionality
of the system is the same under the different conditions.rvaedition would ultimately like the user to be
able to change language or mode in the middle of a dialogubéaatble to continue without restarting the
system. Scenarios for changing language might be a usarrtiegia dialogue with a system in English
and then realising that they prefer to continue in theirvealtinguage. Scenarios for changing mode mid-
dialogue might involve a user moving an application (e.gD&JPfrom the house to the car in the middle
of a dialogue or simply walking away from the screen withia House.

Our previous experience with building such multilinguadldgue systems is that there is a software engi-
neering problem keeping the linguistic coverage in syndiiberent languages. If all necessary grammars
are constructed purely by hand it is very difficult to guaeanthat everything that needs to be said is cov-
ered in a collection of different languages. This problemoisipounded by the fact that for each language
it is normally the case that a dialogue system requires nmt@e bne grammar, e.g. one grammar for
speech recognition and another for interaction with théodize manager. Thus multilingual systems

become very difficult to develop and maintain.

In this deliverable we will explain the nature of the GramitaltFramework and how it may provide us
with a solution to this problem. The system is oriented talsdahe writing of multilingual and multimodal
grammars and forces the grammar writer to keep a collecfigmaonmars in sync. It does this by using
computer science notions of abstract and concrete syntaserifally abstract syntax corresponds to
the domain knowledge representation of the system andaesencrete syntaxes characterising both
natural language representations of the domain and repadiems in other modalities are related to a

IST-507802 TALK D:1.2a 19/01/05 Page 2/31

single abstract syntax. The system forces the concretex@smto give complete coverage of the abstract
syntax and thus will immediately tell the grammar writerhietgrammars are not in sync. In addition the
framework provides possibilities for converting from ormmammar format to another and for combining
grammars and extracting subgrammars from larger grammars.

Version: Final (Public) Distribution: Public

Chapter 2

Introduction to GF and multilingual
grammar writing 1

2.1 Separating abstract and concrete syntax

The main idea of Grammatical Framework (GF) is the separaifcabstract and concrete syntax. The
abstract part of a grammar defines a set of abstract syntdaiittures, called abstract terms or trees; and
the concrete part defines a relation between abstractwstegscand concrete structures.

The distinction between abstract and concrete syntax has tmade by several authors since the late
1950’s; McCarthy (1963) and Landin (1966) made the distimcin describing the syntax for program-
ming languages; Chomsky (1957, 1965) made the distincdwden (abstractjeep structurend (con-
crete)surface structurgtogether with transformations between the structures;yGu963) introduced the
distinction under the headings td#ctogrammaticand phenogrammatistructure; and Montague (1974)
viewed a grammar as a set of rules linearizing logicallyrprieted (abstract) analysis trees into (concrete)
strings of a natural language.

GF has dinearization perspective to grammar writing, where the relation betwadestract and concrete
is viewed as a mapping from abstract to concrete structaadiedlinearization termsIn some cases the
mapping can be partial or even many-valued.

2.2 Linguistic advantages

Although not exploited in many well-known grammar formalis, a clear separation between abstract and
concrete syntax gives some advantages.

2.2.1 Higher-level language descriptions

The grammar writer has a greater freedom in describing théagyfor a language. When describing
the abstract syntax he/she can choose not to take cert@jndge specific details into account, such as

IThis section is an excerpt from the introduction chapterjahllof (2004)

IST-507802 TALK D:1.2a 19/01/05 Page 4/31

inflection and word order. Abstracting away smaller deteéls make the grammars simpler, both to read
and understand, and to create and maintain.

Language specific details

Abstract linguistic description —— (inflection, word order)

2.2.2 Multilingual grammar writing

It is possible to define several different concrete syntappirays for one particular abstract syntax. The
abstract syntax could e.g. give a high-level descriptioa faimily of similar languages, and each concrete
mapping gives a specific language instance.

Language 1

Abstract linguistic descriptior]

Languagen

This kind of multilingual grammar can be used as a model f@rimgua translation between languages.
But we do not have to restrict ourselves to only multilinggelmmars; different concrete syntaxes can be
given for different modalities. As an example, considerangmnar for displaying time table information.
We can have one concrete syntax for writing the informatigiplain text, but we could also present the
information in the form of a table output as/AgX file or in Excel format, and a third possibility is to
output the information in a format suitable for speech sgsik

2.2.3 Syntax editing

It is possible to write documents by directly editing the tedxst syntax, and let the program display
the resulting concrete syntax. This was done for programntanguages in e.g. the systems Mentor
(Donzeau-Gouge et al., 1975) and Cornell Program Synteéizitelbaum and Reps, 1981); and has
been generalized to natural language grammars andrau#tilingual document authoringDymetman

et al., 2000; Khegai et al., 2003), where a document is wrgieultaneously in several languages. One
example of multilingual authoring is when writing techricaer manuals which should have exactly the
same interpretation in any language.

2.2.4 Several descriptional levels

Having only two descriptional levels is not a restrictiohistcan be generalized to as many levels as is
wanted, by equating the concrete syntax of one grammanigtiethe abstract syntax of another level. As
an example we could have a spoken dialogue system with a siealaa syntactical, a morphological and
a phonological level. This system has to define three mapping mapping from semantical descriptions
to syntax treesii) a mapping from syntax trees to sequences of lexical tokamgiii) a mapping from
lexical tokens to lists of phonemes.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 5/31

Semanticsl ——>| Syntax|——>| Morphology |——>| Phonology

This formulation makes grammars similar to transducerst(ifiaen et al., 1996; Mohri, 1997) which are
mostly used in morphological analysis, but has been genedaio dialogue systems by Lager and Kronlid
(2004).

2.2.5 Grammar composition

A multi-level grammar as described above, can be viewed ataaK box”, where the intermediate levels
are unknown to the user. Then we are back in our first view asmmar specifying an abstract and
a concrete level together with a mapping. In this way we cdnabhoutgrammar compositionwhere
the compositiors, o G; of two grammars is possible if the abstract syntaxcefis equal to the concrete
syntax ofG;. The result of the composition is the grammar inheriting dbstract syntax fronts, the
concrete syntax fron®,, and having the linearization mappirigo f1, wheref;, f, are the linearization
mappings foiG1, G, respectively.

If the grammar formalism supports this, a composition ofesaigrammars can be pre-compiled into a
compact and efficient grammar which doesn’t have to mentierirttermediate domains and structures.
This is the case for e.qg. finite state transducers, but alsGFoas has been shown by Ranta (2004b).

2.2.6 Resource grammars

The possibility of separate compilation of grammar comjimss, opens up for writingesource grammars
(Ranta, 2004b). A resource grammar is a fairly completeulistic description of a specific language.
Many applications do not need the full power of a languageijrtatead want to use a more well-behaved
subset, which is often calledantrolled language Now, if we already have a resource grammar, we do
not even have to write a concrete syntax for the desired altedrlanguage, but instead we can specify
the language by mapping structures in the controlled laggirsto structures in the resource grammar.

Controlled syntax —— | Resource syntax——| Object languags

2.3 Comparison with some grammar formalisms

Here we compare some existing grammar formalisms from thgppetive of the ability to separate ab-
stract and concrete syntax. We have no intention of givinglledescription of the formalisms, and the
reader can safely skip any part of this section.

2.3.1 Context-free grammar €FG)

A context-free grammar has no separation of abstract antretensyntax whatsoever. There is only one
level of syntax rules, defining both the abstract syntastegl the concrete language. The concrete syntax
is not structured at all, making it impossible, or at leastyveomplicated, to have several descriptional
levels.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 6/31

2.3.2 Head grammar @G)

Head grammar (Pollard, 1984) is an extension of CFG, wheredhcrete syntax iseaded stringswhich
can be concatenated wrappedinside another headed string. There is not much structuteinoncrete
syntax, and the abstract syntax is tightly connected todherete word order.

2.3.3 Categorial grammar €G)
Combinatory categorial grammar (ccg)

Categorial grammar (Ajdukiewicz, 1935; Bar-Hillel, 19333mbek, 1958) is equivalent to CFG, but in-
stead of grammar rules it has compfexctional categoriestogether with rules fofunction application
Combinatory categorial grammar (Steedman, 1985, 1986)aalds rules fofunction compositioro the
framework, thus yielding an extension of CFG.

The notion corresponding to abstract syntax is the deomdtiees, and they are tightly bound to the order
of the given words. There are extensions (e.g. type logiahgar; Morrill, 1994) that add some word
order freedom, but the concrete syntax is neverthelesslesistiings. This means that CG and relatives
are similar to CFG when it comes to separating abstract ancrete syntax.

2.3.4 Indexed grammar (G)
Linear indexed grammar (LIG)

Indexed grammar (Aho, 1968) and linear indexed grammard@a2987) are also extensions of CFG. In
these formalisms the context-free categories are augoh&vite astack of indices On each application
of a rule, an index can be pushed onto or popped from a stadkthBwabstract syntax as represented by
the syntax tree is still tightly connected to the concret@ay of strings.

2.3.5 Tree adjoining grammar (TAG)

Tree adjoining grammar (Joshi et al., 1975; Joshi and Sehdl®®7) is a formalism based on trees and
a tree rewriting operation calleatljunction It shares the basic problem with CFG, that there is only one
descriptional level; syntax trees are directly correlatethe concrete word order.

2.3.6 Generalized context-free grammarg¢cra)

Generalized context-free grammar was introduced by Rb{&984) as a mathematical framework for
describing HG. GCFG can be seen as a very nice example of gagasion of abstract and concrete
syntax. Since GCFG is a very expressive grammar formalisoiiimg general (Turing-complete) partial
functions, its main usage is as a framework for specifyingemestricted grammar formalisms.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 7/31

2.3.7 Linear context-free rewriting systemsI(CFRS)
Parallel multiple context-free grammar (PMCFG)

Linear context-free rewriting systems (Vijay-Shankerletl®87) and parallel multiple context-free gram-

mar (Seki et al., 1991) are defined as instances of GCFG whetaguistic objects are tuples of strings.

The operations associated with syntax rules are only atldweause tuple projection and string concate-
nation, and LCFRS has some extra restrictions on the lir&#oh functions to ensure mild context-

sensitivity. Since they are defined as GCFG, they share time sgparation of abstract and concrete
syntax. The only drawback is that the concrete syntax isicest to string tuples.

2.3.8 Literal movement grammar (MG)
Range concatenation grammar gca)

These formalisms are very similar; a grammar is seen asectiolh of Horn-like clauses over predicates,
just as in the programming language Prolog. Groenink (1897atroduced literal movement grammar,
where predicates range over tuples of strings, making thadiism Turing-complete. There are also
restricted variants called simple LMG and range concai@marammar (Boullier, 2000a,b), which char-
acterize the class of languages recognizable in polyndimal LMG and RCG are similar to GCFG, and
share the same representation of abstract syntax. The alcka/bre that the concrete syntax is restricted
to strings, and that the abstract and concrete syntax aredefimultaneously, making it difficult to use
the same abstract syntax with several concrete.

2.3.9 Lexical functional grammar (LFG)

Lexical functional grammar (Bresnan and Kaplan, 1982) hakean division between-structuresand
f-structures the former represents concrete syntax as trees, and tee fapresents the “functional”
(or abstract) structure as feature structures. Since tbetgtes are clearly specified, it is difficult to
implement several levels of abstraction; apart from th&Glinherits all advantages of a clear separation
between abstract and concrete syntax.

2.3.10 Dependency grammargg)

Dependency grammar consists of a large and diverse famiyashmar formalisms, all sharing the as-
sumption that syntactic structure consistdexiical nodedinked by binary relations calledependencies
(see e.g. Mel'cuk, 1988; Hudson, 1990); meaning that DG ddaee the idea of phrases. Because of the
diversity it is difficult to make general comments regarding separation of abstract and concrete syntax.
There are formalisms (Hays, 1964; Gaifman, 1965) havingepastion at all; and there are more recent
formalisms (Debusmann et al., 2004) where the concretasysiot even limited to strings.

2.3.11 Head-driven phrase structure grammar gipsG)

The syntactical structures in head-driven phrase streacguammar (Pollard and Sag, 1994) &yped
feature structuressimilar to but more powerful than records.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 8/31

An HPSG grammar has several descriptional levels, for ploggpsyntax, semantics etc., but the sep-
aration is not always that clear. The different levels ak ltogether in one single feature structure, as
different features. E.g. concrete strings reside undefetiieire PHON, whereas the syntactic structure is
split into several parts. This makes it difficult to genem@lHPSG to multilingual grammar, but also to
perform compilation to remove intermediate levels.

Later work on linearization-based HPSG has separated tiwrete word order from the feature structures
(Reape, 1991; Daniels and Meurers, 2002), thus giving albetparation of concrete and abstract syntax.

2.4 Grammatical Framework

The abstract theory of Grammatical Framework (GF; Ranté4&pis a version of dependent type theory,
similar to LF (Harper et al., 1993), ALF (Magnusson and Ns, 1994) and COQ (Cog, 1999). What
GF adds to the logical framework is a possibility to definearete syntax, that is, notations expressing
formal concepts in user-readable ways. In this sense GF dilsnto the idea of separating abstract and
concrete syntax.

The development of GF started as a notation for type-thieateframmar (Ranta, 1994), which uses
Martin-Lof’s type theory (1984) to express the semanticsatural language. The development of GF as
an authoring system started as a plug-in to the proof editdt, £0 permit natural-language rendering of
formal proofs (Hallgren and Ranta, 2000). The extensiomefdcope outside mathematics was made in
the Multilingual Document Authoring project at Xerox (Dyimean et al., 2000). In continued work, GF
has been used in areas like software specifications (H&hualle, 2002) and dialogue systems (Ranta and
Cooper, 2004).

After the first publication (Maenpaa and Ranta, 1999 akpressiveness of the concrete syntax has devel-
oped into a functional programming language. As such itnslar to a restricted version of programming
languages like Haskell (Peyton Jones, 2003) and ML (Milnexle 1997). The language is restricted
enough to be possible to compile into an efficient canonimahét, but expressive enough to incorporate
modern programming language constructs such as userdlefidata types, higher-order functions, and
a module system for defining grammatical resources.

2.4.1 Type theory

The abstract syntax of a GF grammar is defined by declaringrdoacof basic types (callechtegorie$,
and a number of basic functions. A function is declared byngivts typing

fun f : By > - > By > A

This declaration states thétis a function takingd arguments of typeBy, ..., Bs, resulting in a term of
type A. A function with no argument(= 0) is called aconstant and is simply declared as,

fun a : A

In general we writeé : T if the termt is of typeT. By applying the basic functions to each other, compound
terms can be formed,

fbl---b5 A

whenever each; : Bj and f is declared as above.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 9/31

2.4.2 Higher-order functions and dependent types

It is also possible to declare higher-order functions argbddent types in a GF grammar. A higher-order
function is a function where some of the arguments are fanstthemselves; and a dependent type is
declared to depend on (one or more) terms of other types.

These features are more thoroughly described by Ranta #200#4stead we concentrate on the very
important subclassontext-freeGF, which does not contain higher-order functions or depaht/pes.

2.4.3 Concrete linearizations

The novel thing about GF with respect to a logical framewstthat it adds a mapping from abstract terms
to concretdinearizations To define a concrete syntax of a grammar, we only need to dofibe/ing:

e For each basic categody defined in the abstract syntax, we define a corresporidiegrization
type T= A° by the declaration,

lincat A = T;

e For each basic functioi defined in the abstract syntax, we define a corresporidiegrization
function . If the original functionf has a typing,

f : Bp> --- > Bs > A
then the linearization functiof® has the typing,
f© . Bf > --- > By > A
e The linearization functiorf® is defined by a declaration,
in fx...xs = t;

wherex; : Bf, ..., X5 : By are linearization variables, amnd A° is a linearization term in which the
variablesxy, ..., Xs can occur.

The linearizationfa] : A° of a terma: A can now be defined as,

[a] = f°[ba] --- [bs]

whenevera= f by --- bg andb; : By, ...,bs : Bs. The constraints on the linearization definitions assure
that linearizations always have the correct type. Gramrassthuscompositionalin the sense that a
linearization is a function of the argument linearizatiomst of the arguments themselves.

2.4.4 The module system

GF has a module system, inspired by ideas from programmirguiges. There are three kinds of mod-
ules: abstract, concrete and resource modules.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 10/31

e An abstract module defines an abstract theory, with categarnd functions.

¢ A concrete module defines the concrete syntax of an abskraatyt by giving linearization types
and linearization functions.

e Aresource module defines parameter types, and operatiahsah be used as helper functions in
concrete modules.

Modules carextendother modules by adding new definitions, thus opening theipitises for modular
grammar engineering. Another useful feature is that a eeanodule (together with the corresponding
abstract module) can be translated into a resource modulee & resource module can be used by another
concrete module, this makes it possible to perform grammiapositions as described in section 2.2.

2.5 Example of a multilingual GF grammar

In this chapter we give some examples of how to write gramrmafsF, just to get a feeling for the
possibilities.

We start with a simple context-free grammar for a fragmenElish. It consists of the context-free
categoriess, VP, NP, D, N andV (standing for Sentence, Verb Phrase, Noun Phrase, DetrnNoun
and Verb respectively), and has the following rules;

S — NP VP
VP — V NP
NP — D N
NP — N

D — “a

D — “many”

N — “lion” | “lions”
N — “fish”

V — ‘eats” | “eat’

2.5.1 The abstract syntax

To get a corresponding GF grammar, we start by giving theatissyntax. First we have to give a name
to each of the CFG rules, and then we can introduce the tygardéons,

fun s1 : NP > VP > S;
vpl : V. > NP -> VP;

npl : D -> N -> NP
np2 : N -> NP;

dl : D;

d2 D;

nl N;

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 11/31

n2 : N;
vl :V;

The predication functionl forms a sentence out of a noun phrase and a verb phrase. Tadv@avays
of forming noun phrases; either by a determiner and a ntaitign” , “many lions”), or just a plural
noun (lions”). We assume that all verbs are transitive, so we only havedhsitive verb phrase forming
functionvpl. The determinerdl, d2 are singular and plural indefinite&{ and“many”); n1, n2 are the
nouns‘lion” and“fish” ; andvl is the verb‘eat” .

2.5.2 A simple concrete syntax for English

If we only want a GF grammar that is equivalent to the origiB&G, we can assign each category the
same linearization typgs : St} , which is a record consisting of only one strihd@his is done by the
following declarations,

lincat S = {s : Str};

VP = {s : Str};
NP = {s : Str};
D ={s: St}
N ={s: Str}
vV ={s: Str}

The concrete linearizations then look like follows,

in s1 xy=1{s = xs ++ ys}
vpl X y = {s = XS ++ y.s};
npl x y = {s = x.s ++ y.sk

np2 x = {s = x.s}

d1 = {s = "a",

d2 = {s = "many'};

nl = {s = variants {'lion" ; "lions"}};
n2 = {s = "fish"}

vl = {s = variants {"eats" ; "eat'}};

2.5.3 A concrete syntax that takes care of agreement

If we want to change the grammar so that it also takes carereeagent, we can do as follows. First we
introduce the parameter typimwith the two values or constructo8g andPI ,

param Num = Sg | PI;

2The reason for using records and not just strings will becapparent later.

3The operationariants {a; b} is the GF version of the non-deterministic chofeg b). The alert reader might
notice that this makes the linearization functions noredseinistic.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 12/31

Then we make a decision that nouns, verbs and verb phraspararaeeterizedver the number, whereas
determiners and noun phrases havéndierentnumber A phrase parameterized ovéumis stored as an

inflection tableNum => Str; and an inherited parameter is stored in a record togetttartiaé linearized
string,

lincat S = {s : Str};
NP = {s : Str; n : Num};
D ={s: Str; n: Num}
VP = {s : Num => Str};
N ={s: Num => Str};
V. =1{s: Num => Str};

To give the value of an inherent parameter, we simply forntand: and to access the value of an inherent
parameter, we use record projection (just as we do to ackedmearized string). An inflection table is
formed by,

table { p1 => ti; pn => to}

where py, ..., pn are inflectionpatterns and to apply an inflection table to a parameter, we use the

selectionoperation (). Returning to our example, we get the following concretetay for the English
grammar with number agreement between the subject and thg ve

lin s1 xy=/{s = xs ++ yslx.n};
vpl x y = {s = table {z => x.slz ++ y.s}};

npl x y = {s = x.s ++ y.sx.n; n = x.n}

np2 x = {s = xs!Pl; n = PI};

dl ={s ="a" n = Sg}h

d2 = {s = "many"; n = Pl};

nl = {s = table {Sg => "lion"; Pl => "lions"}};
n2 = {s = table {_ => "fish"}};

vl = {s = table {Sg => "eats"; Pl => "eat"}};

Note that the table impl has only one pattern matching any parameter, binding itdéniablez which
can be used in the table body. Also note that the tabi® ihas ananonymougpattern, meaning that the
value is“fish” regardless of the inflection parameter. Both uses are exaopthat tables can sometimes
be compacted.

Examples of phrases that are disallowed by this concret@sytei) noun phrases consisting of just a

singular nouniji) noun phrases where the determiner and noun do not agreéi Jasehtences where the
subject noun phrase does not agree with the verb.

2.5.4 A concrete syntax for Swedish

Swedish has a more complex morphology than English; nounstonly depend on number, they also
have an inherengender(neuter and uter) associated with them. Determiners, omttier hand, have

4GF has a functional perspective on linearizations, meattiatjparameters have to be either parameterized

over or inherited. The principal way of making parametengagds to apply a parameterized inflection table to an
inherited parameter.

5A notational convention in GF is that record projectioh binds harder than table selectidn,(which in turn
binds harder that concatenatiort).

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 13/31

number as an inherent feature and depend on the gender afuhe Rirst we have to declare the corre-
sponding parameter typgen;

param Gen = Neu | Utr
then the linearization types for nouns and determiners eateblared as,

lincat N = {s : Num => Str; g : Gen};
D ={s: Gen => Str; n : Num};

Now we can define the linearizations for the determinérsi2 and the noungl, n2;

lin d1 = {s = table {Utr => "en"; Neu => "ett"}; n = Sg},

d2 = {s = table {_ =>"m anga’}; n = Pl};
nl = {s = table {_ => "lejon"}; g = Neu},
n2 = {s = table {Sg => "fisk"; PI => "fiskar"; g = Utr},

Noun phrases, on the other hand, do not influence the infieofiserbs, which means that they can have
simple linearization typeNP" =\° ={s : St} .® Now we are ready to give the linearization functions
for noun phrase formation,

lin npl x y = {s = x.sly.g ++ y.slx.n};
np2 x = {s = xs!Pl};

Finally, the word order of sentences depend on the contakieasentence. There are three different word
orders (direct, indirect and subordinate), introducingarether parameter tyerder ,

param Order = Dir | Indir | Sub;

The indirect order (used e.g. in questions) puts the subjmat phrase inside the verb phrase. The way to
solve this in GF is to use discontinuous verb phrases. Tleatization of sentences and verb phrases will
be/

lincat S = {s : Order => Str};
VP = {sl : Str; s2 : Str};

lin s1 xy ={s = table {Indir => y.s1 ++ x.5 ++ y.82;
_ => XS ++ y.sl ++ y.s2}};
vpl x y = {s1l = x.5; s2 = y.s}

A fourth possible word order could bepicalized which is used when the object is put in front of the
sentence for focusing purposes; e.g. the senttfiglar ater manga lejon” (fish eat many lions) has the
preferred reading (it is fish that many lion eat). This candieesl by adding a new constructdop to the
typeOrder , and a new row to the table in the linearization definitioslfibove,

lin s1 x y = {s = table {Top => y.s2 ++ x.s ++ y.sl; ..}};

6This is a simplification; when adding pronouns and/or adjest Swedish noun phrases can get quite complex.
"The difference between direct and subordinate word ordgrsbrows up in the presence of negation, which we
don't have in this example.

Version: Final (Public) Distribution: Public

Chapter 3

Extending multilinguality to multimodality

3.1 Parallel multimodality

Parallel multimodalityis a straightforward instance of multilinguality. It meahat the concrete syntaxes
associated with an abstract syntax are not just differettralalanguages, but different representation
modalities, encoded by language-like notations such gshgraepresentation formalisms. An example
of parallel multimodality is given below when a route is d#sed, in parallel, by speech and by a line
drawn on a map (Section 4.6.2). Both descriptions conveyfuthénformation alone, without support
from the other.

This raises the dialogue management issue of whether alhiration should be presented in all modali-
ties. For example, in the implementation described beldwstaps are indicated on the graphical presen-
tation of a route whereas in the natural language presentatily stops where the user must change are
presented. Because GF permits the suppression of infarmiatconcrete syntax, this issue can be treated
on the level of grammar instead of dialogue management.

3.2 Integrated multimodality

Integrated multimodalityneans that one concrete syntax representation is a coropiraftmodalities.
For instance, the spoken utterance “I want to go from hereete”hcan be combined with two pointing
gestures corresponding to the two “here”s. It is the two rfitiels in combination that convey the full
information: the utterance alone or the clicks alone aresnotugh.

How to define integrated multimodality with a grammar is lebsious than parallel multimodality. The
GF solution we will present in Section 4.4 makes essent@bfisecords, and not just strings, as outcomes
of linearization. In brief, different modality “channelglte stored in different fields of a record, and it is
the combination of the different fields that is sent to théadjae system parser.

14

Chapter 4

Proof of concept implementation

4.1 Overview

We have implemented a multimodal route planning system dibtip transport networks. The example
system uses the Goteborg tram/bus network, but it carydzsiidapted to other networks.

The system uses multimodal grammars for user and systenantts. The user modalities are speech
and map clicks, and the system modalities are speech andngsaan the map. Input and output in all
the modalities are handled by multilingual, multimodalrgraars. For brevity and clarity, the following
sections show English concrete syntax exclusively. Foryesencrete English module shown below, the
application also contains a corresponding module for Sstedbncrete syntax.

4.2 Grammar overview

The user and system grammars are split up into a number oflewuhuorder to make reuse and modifi-
cation simpler.

The query and answer grammar modules are shown in figuresd.4.3, respectively. The following
sections show the details of the grammar modules.

4.3 Transport network grammar

The transport network is represented by a set of moduleshwdrie used in both the query and answer
grammars. Since the transport network is described in aaepset of modules, the Godteborg transport
network may be replaced easily.

4.3.1 Generic transport network abstract syntax

The interface for transport network grammars is very simflech a grammar simply exports a number
of constants in the Stop category:

abstract Transport = {

15

IST-507802 TALK D:1.2a 19/01/05 Page 16/31

—_— —

—

GbgQueryEng)

~ -~ -
— — v — — — — —
/\ GbgEng /\ GbgQuery : TransportQueryEng)

(QueryEng)y 7 CllckCnc)

N

QueryBaseCnc)

/—___
e
Ve

_ TransportEng o

A

Figure 4.1: Query grammar modules

—_— — e —

¢ GbgRouteMap D ~ GbgRouteEng)

e b TN

(GbgLabeIs/ (RouteMap /\ GbgNames | RouteEng)

- _ -~ - - =<
~
~
~
~
~
/’ \\

¢ _ TransportLabels D
- - — - ="

7 TransportNames >
~ -

= —_ - = =

Figure 4.2: Answer grammar modules

Version: Final (Public) Distribution: Public

GbgQueryEng.gf
GbgEng.gf
TransportQueryEng.gf
GbgQuery.gf
Gbg.gf
TransportEng.gf
TransportQuery.gf
QueryEng.gf
ClickCnc.gf
Transport.gf
Query.gf
Click.gf
QueryBaseCnc.gf
QueryBase.gf
GbgRouteMap.gf
GbgLabels.gf
RouteMap.gf
GbgRoute.gf
TransportLabels.gf
Gbg.gf
Route.gf
Transport.gf
GbgRouteEng.gf
GbgNames.gf
RouteEng.gf
TransportNames.gf

IST-507802 TALK D:1.2a 19/01/05 Page 17/31

cat
Stop ;

4.3.2 Generic transport network concrete syntax

The English concrete syntax is equally simple. Languageashiihflect proper nouns might need a more
complex linearization type for stops.

concrete TransporteEng of Transport = {
lincat
Stop = {s: Str};

4.3.3 (oteborg abstract syntax

The abstract syntax for a given transport network lists topss

abstract Gbg = Transport ** {
fun Angered : Stop ;
fun AxelDahlstromsTorg : Stop ;
fun Bergsjon : Stop ;
fun Biskopsgarden : Stop ;

4.3.4 teborg concrete syntaxes

Since names are not normally translated between langutiggsintroduce a problem for speech recog-
nition. We would like the map to show the names of tram/bupssio their native orthography. This is
done with one concrete syntax:

concrete GbgNames of Gbg = TransportNames ** {
lin Angered = { s = ["Angered] } ;

lin AxelDahlstromsTorg = { s = ['Axel Dahlstr oms torg" } ;
lin Bergsjon = { s = ['Bergsj on'l };
lin Biskopsgarden = { s = ['Biskopsg arden] } ;

}

However, speech recognizers often do not support chasaat#rused in the language which they rec-
ognize. Furthermore, some recognizers, such as Nuanceptdallow capitals in the recognized text.
Therefore, we introduce a different concrete syntax fop stames for each language. In the English
syntax, accented characters have the diacritics remokélbletters are converted to lower case.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 18/31

concrete GbgEng of Gbg = TransportEng ** {
lin Angered = { s = ['angered] } ;
lin AxelDahlstromsTorg = { s = ['axel dahlstroms torg"] } ;
lin Bergsjon = { s = ['bergsjon] } ;
lin Biskopsgarden = { s = ['biskopsgarden’] } ;

}

Since stop names are also used in the click and drawing ntiedalive also need an easily machine
readable and writable syntax. This is achieved by removiiagess and diacritics from the stop names:

concrete GbgLabels of Gbg = TransportLabels ** {
lin Angered = { s = ['Angered"] } ;
lin AxelDahlstromsTorg = { s = ['AxelDahlstromsTorg"] } ;
lin Bergsjon = { s = ['Bergsjon'] } ;
lin Biskopsgarden = { s = ['Biskopsgarden'] } :

4.4 Multimodal input grammars

User input is done with integrated speech and click modalitThe user may use speech only, or speech
combined with clicks on the map. Clicks are expected wherutteg makes a query containing “here”
(though “here” might also be used without a click, see Sectid.4).

Clicks are represented as a list of places that the click tigfier to. Normally this is a singleton list
containing a single bus/tram stop, but some stops mightdse@nough that a click could refer to more
than one stop. The set might also be empty if the click wasllosedo any stop.

In the concrete syntax, the click data is appended to thechpaput to give the parser a single string to
parse. These are some examples using the English concngtec:sy

e “i want to go from brunnsparken to vasaplatsen;”
e “i want to go from vasaplatsen to here; [Chalmers]’

¢ “i want to go from here to here; [Chalmers] [Saltholmen]”

4.4.1 Common declarations

The QueryBase module contains declarations common topalt imodalities:

abstract QueryBase = {
cat
Query ; - sequentialized input representation
Input ; -- user input: parallel text and clicks

Version: Final (Public) Distribution: Public

IST-507802 TALK

D:1.2a 19/01/05 Page 19/31

Click ; -- map clicks
fun
Qlnput : Input -> Query ; -- sequentialize user input

}
QueryBase has a single concrete syntax since it is languageah

concrete QueryBaseCnc of QueryBase = {
lincat
Query = {s: Str};
Input = { sl : Str; s2 : Str};
Click = {{ s : Str } ;
lin
Qlnput i = { s = isl ++ " ++ is2 } ;

4.4.2 Click modality

Clicks are represented by a list of stops that the click migfer to:

abstract Click = QueryBase ** {
cat
StopList ; -- a list of stop names
fun
CStops : StopList -> Click ;
NoStop : StoplList ;
OneStop : String -> StoplList ;
ManyStops : String -> StopList -> StopList ;
}

The same concrete syntax is used for clicks in all languages:

concrete ClickCnc of Click = QueryBaseCnc ** {

lincat
StopList = { s : Str } ;

lin
CStops xs = { s = "[" ++ xss ++ "' } ;
NoStop = { s = ™} ;
OneStop x = { s = x5 };
ManyStops x xs = { s = X.8 ++ "" ++ XS5 } ;

4.4.3 Speech modality

The Query module adds basic user queries and a way to usé &xiidicate a place:

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 20/31

abstract Query = QueryBase ** {
cat

Place ; -- any way to identify a place
fun

GoFromTo : Place -> Place -> Input ;
GoToFrom : Place -> Place -> Input ;

PClick : Click -> Place ; -- "here" together with a click
}

The corresponding English concrete syntax is:

concrete QueryEng of Query = QueryBaseCnc ** {
lincat

-- speech and click representations of a place
Place = {s1 : Str, s2 : Str} ;

lin
GoFromTo x y = {

sl = [want to go from"] ++ x.s1 ++ "to" ++ y.sl ;
S2 = X.S2 ++ y.s2

}
GoToFrom x y = {

sl = [want to go to"] ++ x.s1 ++ "from" ++ y.sl ;
S2 = X.S2 ++ y.s2

}
PClick ¢ = { s1 = "here" ; s2 = ¢S };

4.4.4 Indexicality

To refer to her current location, the user can use “here”autla click, or omit either origin or destination
The system is assumed to know where the user is located. BesumgEnglish concrete syntax:

e “i want to go from here to centralstationen;”

e “i want to go to valand;”

e “i want to come from brunnsparken;”

These are the abstract syntax declarations for this feétutbe Query module):

fun

-- indexical "here", without a click
PHere . Place ;

-- user input "want to come from a" (to where | am now)
ComeFrom : Place -> Input ;

-- user input "want to go to a" (from where I am now)
GoTo . Place -> Input ;

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 21/31

The English concrete syntax for this is (in the QueryEng nhedu

lin
PHere = { s1 = "here" ; s2 =[] } ;
ComeFrom x = {

sl = ['i want to come from"] ++ x.s1 ;
S2 = X.S2

b

GoTo x = {
sl = ['i want to go to"] ++ x.s1 ;
S2 = X.S2

}

4.5 Ambiguity

Some strings may be parsed in more than one way. Since “haxg”® used with or without a click,
input with two occurrences of “here” and only one click arebégnous:

¢ “| want to go from here to here; [Valand]”

A query might also be ambiguous even if it can be parsed ur@mbsly, since one click can correspond
to multiple stops:

¢ “l want go go from Chalmers to here; [Klareberg, Tagene]”

The current application fails to produce any output for ayubus queries. A real system should handle
this through dialogue management.

4.6 Multimodal output

The system’s answers to the user’s queries are presentegpeech and drawings on the map. This is an
example of parallel multimodality as the speech and the maywidgs are independent.

The information presented in the two modalities is howewaridentical as the spoken output only con-
tains information about when to change trams/buses. Theaugqut shows the entire path, including
intermediate stops.

Parallel multimodality is from the system’s point of viewsjua form of multilinguality. The abstract
syntax representation of the system’s answers has oneatersymtax for the drawing modality, and one
for each natural language. The only difference between &teral language syntaxes and the drawing
one is that the latter is a formal language rather than aalatae.

4.6.1 Abstract syntax

The abstract syntax for answers (routes) contains thenr#tion needed by all the concrete syntaxes.
All concrete syntaxes might not use all of the informationrofite is a non-empty list of legs, and a leg
consists of a line and a list of at least two stops.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 22/31

abstract Route = Transport ** {

cat
Route; -- route description
Leg; - route segment on a single line
Line; -- bus/tram line
Stops; -- list of at least two stops
fun
Then : Leg -> Route -> Route ; -- leg followed by a route
OnelLeg : Leg -> Route ; -- single leg
LineLeg : Line -> Stops -> Leg ; -- leg on a line
NamedLine : String -> Line ; -- line labelled by a string
ConsStop : Stop -> Stops -> Stops ; -- stop followed by some sto ps
TwoStops : Stop -> Stop -> Stops ; -- last two stops

4.6.2 Map drawing concrete syntax

The map drawing language contains sequences of labellexs ¢ddpe drawn on the map. The following
string:

e “drawEdge (6, [Chalmers, Vasaplatsen]); drawEdge (2,d@tsen, Gronsakstorget, Brunnsparken]);”

is an example of a string in the map drawing language desthipehis concrete syntax:

concrete RouteMap of Route = TransportLabels ** {

lincat
Route = { s : Str } ;
Leg ={s: Str};
Line = { s : Str};
Stops = { s : Str } ;

lin
Then | r={s=1s +"" ++rs};
OneLeg | = { s =1s ++ "" };
LineLeg | ss =

{ s = "drawEdge" ++ "(" ++ s ++ "'

++ " ++ sss H+ T) Y
NamedLine n = {s = ns } ;

ConsStop s ss = { s = ss ++ "" ++ sss } ;

TwoStops s1 s2 = { s = sl.s ++ "" ++ s25 } ;

4.6.3 English concrete syntax

In the English concrete syntax we wish to list only the firad &st stop of each leg of the route.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 23/31

concrete RouteEng of Route = TransportNames ** {

lincat
Route = { s : Str } ;
Leg = {s: Str};

Line = {s: Str } ;
-- a list of stops is linearized to its first and last stop
Stops = { start : Str; end : Str } ;

lin
Then I r={s=1s ++"" ++rs };
OneLeg | = {s =1ls ++ "" };
LineLeg | ss =

{ s = "Take" ++ |.s ++ "from" ++ ss.start ++ "to" ++ ss.end } ;
NamedLine n = { s = ns } ;
ConsStop s ss = { start = s.s; end = ss.end } ;
TwoStops s1 s2 = { start = sl.s; end = s25 } ;

4.7 Example interaction

The user says “i want to go from chalmers to here” and click&imamnen. This is represented by the
input string:

¢ “i want to go from chalmers to here; [Frihamnen]’
The parser produces this abstract syntax representation:

Qlnput (GoFromTo (PStop Chalmers)
(PClick (CStops (OneStop "Frihamnen™))))

The system responds with this answer:

Then (LineLeg (NamedLine "6") (TwoStops Chalmers Vasaplat sen))
(Then (LineLeg (NamedLine "2")
(ConsStop Vasaplatsen
(TwoStops Gronsakstorget Brunnsparken)))
(OneLeg (LineLeg (NamedLine "5")
(ConsStop Brunnsparken
(TwoStops LillaBommen Frihamnen)))))

This is linearized to this speech output:

e “Take 6 from Chalmers to Vasaplatsen. Take 2 from VasapiatséBrunnsparken. Take 5 from
Brunnsparken to Frihamnen.”

And to these drawing instructions:

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 24/31

M blan =

'::_ sLinsmansgarden (msgerad |:_ wirtadala (_wEdrosidn

-;:- wEiskop sgdrden .
h (waKogome

(" aHinnebacksgatan

|L WCAmlastadstorger

{wHjalmar Braniingsplasen p p—
e et - (mOgra sjukhuser

’ -f rihanmnen s —
(" mLindhosmen - . l,\.-di}rlanda
p - (wlundbny strand — e -
"l { _srgribergsplaisen
(" wEfksberg [~ mfiyrdstan a
L. | y -
ia Bormmen o ,/ (-d.‘.-lﬁr rokstoroet
. ~ ._[\.ucéntralﬂa.honen S -
finsparken (&Tarp
Mnsakstarget \\\ [-LITPﬂ 1\ .F;érralunds;alan
~T ,
|'\ wRjseniund
-)P rw;;flj' gakyrkan Y v
- LY o A i Cialix al
p — I l_‘,.,:ﬂa_m \ I\._.,:?T.E'n“ Sigfrids plan
_ (wydsaplatzen | {whdrsidgen
. ‘: w353 W0 iagatan B
{ witlabergstorges — (&Chalmers-._
{_ wtlippan I A L 'F'}?i!?lsﬂi'-i"
e (wOlvedalsgatan et
?Lclj_jl"' arsen T
I N s ahlgrenska (" wSdrgdrdsskolan [wkalleback
| (wBdtaniska ™ i e A
—.(_aMpriaplan T ," Wi ETInskys plats
(nSEJIlﬁlnaplan N,

. =
— . (“wMyrklandsgatan . '_'C'L-'Idhale"

{ wKingssten f\ el Bantsroms 1org
-—" | _sFrplunda torg

(_ ®5dtholmen wTynnerad :'- wBfoplatsen

Figure 4.3: The map showing the path from Chalmers to Frilamn

e “drawEdge (6, [Chalmers, Vasaplatsen]); drawEdge (2,d@tsen, Gronsakstorget, Brunnsparken]);
drawEdge (5, [Brunnsparken, LillaBommen, Frihamnen]);”

The map with this output is shown in figure 4.3.

4.8 Multilinguality

Currently, speech input and output in English and Swedistimplemented. The dialogue system itself
accepts input in either language, but speech recognizersften only handle a single language at a time.

System output is linearized using the same language as ¢eelsnput was in.
Adding support for a new language requires writing concsgtdgaxes for the user and system grammars.

4.9 Component overview

The application consists of the following agents:

e Speech recognizer - Nuance through OAA using NuanceWrapper

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 25/31

e Clickable map + Path drawing - An OAA agent written in Java
e Parser + Linearizer (multilingual and multimodal) - Java iGterpreter
e Shortest path finder - OAA agent written in Java

e Speech synthesis - FreeTTS over OAA using FreeTTSAgent

The demo application (Tramdemo), NuanceWrapper, the Jdvant@rpreter and FreeTTSAgent are
all available from the Goteborg TALK software library latp://www.ling.gu.se/projekt/talk/
software/

4.10 Limitations

There is no dialogue management in this version. Queridsdivaot have exactly one interpretation
are not answered. The purpose of this application is to detraie use of multimodal and multilingual
grammars. Adding dialogue management should be orthogoiais.

There is no handling of departure times, only time betweepsst Adding support for this would be
relatively straightforward, but would require some effartsupport time expressions. The shortest-path
algorithm would also need to be changed to take waiting tim@saccount.

The current system is not usable for practical route plansince the Goteborg public transit network
description is incomplete and out of date.

Version: Final (Public) Distribution: Public

Chapter 5

Conclusion

GF provides a solution to the problems named in the intrédudb this deliverable. Abstract syntax
can be used to characterise the linguistic functionalita sfstem in an abstract language and modality
independent way. The system forces the programmer to dafit@ate syntaxes which completely cover
the abstract syntax. In this way, the system forces the arogrer to keep all the concrete syntaxes in
sync. In addition, since GF is oriented towards creatingngnars from other grammars, our philosophy
is that it should not be necessary for a grammar writer to kaeeeate by hand any equivalent grammars
in different formats. For example, if the grammar for theexgerecogniser is to be the same as that used
for interaction with dialogue management but the grammeesaeded in different formats, then there
should be a compiler which takes the grammar from one formtid other. Thus, for example, we have
a compiler which converts a GF grammar to Nuance’s formaspeech recognition grammars.

Another reason for using GF grammars has to do with the usesoiurce grammars and cascades of
levels of representation as described in section 2.2. Thws for the hiding of grammatical detail
from language and the precise implementation of modalaotemn for other modalities. This enables
the dialogue system developer to reuse previous grammapdalnnteraction implementations without
herself having to reprogram the details for each new diadogyustem. Thus the dialogue engineer need
not be a grammar engineer or an expert in multimodal integac

5.1 Future work

The proof of concept dialogue system presented in sectiantiei first complete GF-based application
built within the TALK project. Another project is in progresvithin the smart house domain, where a set
of extensive GF grammars has been written for programmirideeowecorder in English and Swedish. Of
particular interest is the use of the module system to matiegplurality of different but related devices.
For instance, MP3 players have many shared functionalitidsvideo recorders, but even more with CD
players. The challenge is to avoid the duplication of grammies, thereby also giving the user a feeling
of uniformity which makes it easier to learn to control newides.

To make GF grammar writing more accessible to authors obdiad systems, we will continue the work
on resource grammars and their documentation. In partjcutaare developing a resource grammar API
giving easy access to constructs that are needed in diafygbems.

For those projects that are not using GF grammars directlgre@eeveloping tools that generate corpora.

26

IST-507802 TALK D:1.2a 19/01/05 Page 27/31

The idea is to generate a corpus by “bootstrapping”: to usmall orpus as a filter that extracts a

domain grammar from a resource grammar, an then generatgea torpus from the domain grammar.

This corpus can then be used e.g. as data for a statisticdgagunodel. By the use of dependent types
(Section 2.4.2), it is possible to prevent the generatioexpiessions that although linguistically correct
are semantically nonsense and would hence never occur & eampus.

Version: Final (Public) Distribution: Public

Bibliography

Aho, A. (1968). Indexed grammars—an extension to contexd-firammarslournal of the ACM15:647—
671.

Ajdukiewicz, K. (1935). Die syntaktische Konnexit&tudia Philosophical:1-27.
Bar-Hillel, Y. (1953). A quasi-arithmetical notation foyrgtactic descriptionLanguage 29:47-58.
Boullier, P. (2000a). A cubic-time extension of contexde€rgrammarsGrammars 3:111-131.

Boullier, P. (2000b). Range concatenation grammarséttninternational Workshop on Parsing Tech-
nologies pages 53-64, Trento, Italy.

Bresnan, J. and Kaplan, R. (1982). Lexical-functional green A formal system for grammatical repre-
sentation. In Bresnan, J., editdhie Mental Representation of Grammatical Relatjimages 173-281.
MIT Press, Cambridge, MA.

Chomsky, N. (1957)Syntactic StructuresMouton, The Hague.
Chomsky, N. (1965)Aspects of the Theory of SyntalIT Press, Cambridge, MA.

Coqg (1999). The Cog Proof Assistant Reference Manudhe Coq Development Team. Available at
http://pauillac.inria.fr/coqg/

Curry, H. B. (1963). Some logical aspects of grammaticalcstire. In Jacobson, R., edit&fructure of
Language and its Mathematical Aspects: Proceedings of 2tle ymposium in Applied Mathematics
pages 56—68. American Mathematical Society.

Daniels, M. and Meurers, D. (2002). Improving the efficienfyparsing with discontinuous constituents.
In NLULP-02: 7th International Workshop on Natural Languagedédrstanding and Logic Program-
ming Copenhagen, Denmark.

Debusmann, R., Duchier, D., and Kruijff, G.-J. M. (2004). téhsible dependency grammar: A new
methodology. INCOLING 2004 Workshop on Recent Advances in Dependency Gramm

Donzeau-Gouge, V., Huet, G., Kahn, G., Lang, B., and Lewy, (1975). A structure-oriented program
editor: a first step towards computer assisted programmindnternational Computing Symposium
(ICS'75).

Dymetman, M., Lux, V., and Ranta, A. (2000). XML and multdural document authoring: Convergent
trends. INCOLING, pages 243-249, Saarbriicken, Germany.

28

IST-507802 TALK D:1.2a 19/01/05 Page 29/31

Gaifman, H. (1965). Dependency systems and phrase-steusyatemsinformation and Contrql8:304—
337.

Gazdar, G. (1987). Applicability of indexed grammars tounalt languages. In Reyle, U. and Rohrer,
C., editors,Natural Language Parsing and Linguistic Theorigmges 69-94. D. Reidel Publishing
Company.

Groenink, A. (1997a). Mild context-sensitivity and tufilased generalizations of context-free grammar.
Linguistics and Philosophy20:607—-636.

Groenink, A. (1997b)Surface without Structure — Word order and tractabilityuiss in natural language
analysis PhD thesis, Utrecht University.

Hallgren, T. and Ranta, A. (2000). An extensible proof teditar. In Parigot, M. and Voronkov, A.,
editors,LPAR-2000Qvolume 1955 of NCS/LNA) pages 70-84. Springer.

Harper, R., Honsell, F., and Plotkin, G. (1993). A framewfokdefining logics. Journal of the ACM
40(1):143-184.

Hays, D. (1964). Dependency theory: A formalism and somembsions.Language 40:511-525.
Hudson, R. (1990)English Word GrammarBlackwell.

Hahnle, R., Johannisson, K., and Ranta, A. (2002). An aintdool for informal and formal require-
ments specifications. In Kutsche, R.-D. and Weber, H., esjilundamental Approaches to Software
Engineering volume 2306 of.NCS pages 233-248. Springer.

Joshi, A. and Schabes, Y. (1997). Tree-adjoining grammarRozenberg, G. and Salomaa, A., editors,
Handbook of Formal Languages. Vol 3: Beyond Wortlsapter 2, pages 69-123. Springer-Verlag,
Berlin/Heidelberg/New York.

Joshi, A. K., Levy, L. S., and Takahashi, M. (1975). Tree adjigrammars.Journal of Computer and
System Science$0(1):136—-163.

Karttunen, L., Chanod, J.-P., Grefenstette, G., and ®chil. (1996). Regular expressions for language
engineering Natural Language Engineerin@(4):305-328.

Khegai, J., Nordstrom, B., and Ranta, A. (2003). Multiliag) syntax editing in GF. In Gelbukh, A.,
editor, CICLing-2003: Intelligent Text Processing and ComputadibLinguistics LNCS 2588, pages
453-464. Springer.

Knight, S., Gorrell, G., Rayner, M., Koeling, R., and Lewin(2001). Comparing grammar-based and
robust approaches to speech understanding: a case stuglyrdspeech 2001: Proceedings of the 7th
European Conference on speech communication and techyyq@ages 1779-1782.

Lager, T. and Kronlid, F. (2004). The Current platform: Bliilg conversational agents in Oz. 2md
International Mozart/Oz Conference

Lambek, J. (1958). The mathematics of sentence struchunerican Mathematical Month|¥5:154—-170.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 30/31

Landin, P. J. (1966). The next 700 programming languagGesnmunications of the ACNJ(3):157-166.

Ljunglof, P. (2004).Expressivity and Complexity of the Grammatical FramewdRD thesis, Goteborg
University, Gothenburg, Sweden.

Magnusson, L. and Nordstrom, B. (1994). The ALF proof aditad its proof engine. Ifiypes for Proofs
and Program volume 806 olLNCS pages 213-237. Springer.

Martin-Lof, P. (1984).Intuitionistic Type TheoryBibliopolis, Napoli.

McCarthy, J. (1963). Towards a mathematical science of coation. InlFIP Congress pages 21-28,
Amsterdam. North-Holland.

Mel'cuk, I. (1988). Dependency Syntax: Theory and Practi&ate University of New York Press.

Milner, R., Tofte, M., Harper, R., and MacQueen, D. (199The Definition of Standard ML — Revised
MIT Press, Cambridge, MA.

Mobhri, M. (1997). Finite-state transducers in languagespabch processin@omputational Linguistigs
23(2):269-312.

Montague, R. (1974)Formal Philosophy Yale University Press, New Haven. Collected papers ediyed
R. Thomason.

Morrill, G. (1994). Type Logical Grammar: Categorial Logic of Sign3ordrecht.

Maenpaa, P. and Ranta, A. (1999). The type theory anddiipeker of GF. IfPLI-1999 workshop on
Logical Frameworks and Meta-languagd2aris, France.

Peyton Jones, S. (2003Hlaskell 98 Language and Librarie€ambridge University Press, New York.

Pollard, C. (1984).Generalised Phrase Structure Grammars, Head Grammars atdril Language
PhD thesis, Stanford University.

Pollard, C. and Sag, |. (1994l ead-Driven Phrase Structure Grammadsniversity of Chicago Press.
Ranta, A. (1994)Type-Theoretical GrammaOxford University Press.

Ranta, A. (2004a). Grammatical Framework, a type-thezaktirammar formalism.Journal of Func-
tional Programming 14(2):145-189.

Ranta, A. (2004b). Modular grammar engineering in GF. Sttiechi

Ranta, A. and Cooper, R. (2004). Dialogue systems as protafredJournal of Logic, Language and
Information 13(2):225-240.

Reape, M. (1991). Parsing bounded discontinuous const#u&eneralisations of some common algo-
rithms. In Reape, M., edito¥ord Order in Germanic and Parsingages 41—-70. Centre for Cognitive
Science, Edinburgh.

Version: Final (Public) Distribution: Public

IST-507802 TALK D:1.2a 19/01/05 Page 31/31

Seki, H., Matsumara, T., Fujii, M., and Kasami, T. (1991).®@ultiple context-free grammarsheoretical
Computer Scien¢eé8:191-229.

Steedman, M. (1985). Dependency and coordination in thema of Dutch and EnglishLanguage
61:523-568.

Steedman, M. (1986). Combinators and grammars. In OehrleB&h, E., and Wheeler, D., editors,
Categorial Grammars and Natural Language Structumgsges 417-442. Foris, Dordrecht.

Teitelbaum, T. and Reps, T. (1981). The Cornell ProgramI@giter: a syntax-directed programming
environment.Communications of the ACN24(9):563-573.

Vijay-Shanker, K., Weir, D., and Joshi, A. (1987). Chardgzieg structural descriptions produced by
various grammatical formalisms. Bbth Meeting of the Association for Computational Lingasst

Version: Final (Public) Distribution: Public

