
Thesis for the Degree of Licentiate of Engineering

Compiling Grammar-based Speech
Application Components

Björn Bringert

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University

SE-412 96 Göteborg
Sweden

Göteborg, July 2007

Compiling Grammar-based Speech Application Components
Björn Bringert

c© Björn Bringert, 2007

Technical report no. 40L
ISSN 1652–876X
Department of Computer Science and Engineering
Language Technology Research Group

Department of Computer Science and Engineering
Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31–772 1000

Printed at Chalmers, Göteborg, Sweden, 2007

Abstract

It is easy to imagine machines that can communicate using spoken natural lan-
guage. Constructing such machines is more difficult. The available methods
for development of interactive speech applications are costly, and current re-
search is mainly focused on producing more sophisticated systems, rather than
on making it easier to build them.

This thesis describes how components used in interactive speech applica-
tions can be automatically derived from natural language grammars written in
Grammatical Framework (GF). By using techniques borrowed from the field
of programming language implementation, we can generate speech recognition
language models, multimodal fusion and fission components, and support code
for abstract syntax transformations.

By automatically generating these components, we can reduce duplicated
work, ensure consistency, make it easier to build multilingual systems, improve
linguistic quality, enable re-use across system domains, and make systems more
portable.

i

ii

Table of Contents

Acknowledgments vii

Introduction 1
1 Interactive Speech Applications 1

1.1 Problems . 3
2 This work . 4

2.1 Advantages . 4
2.2 Limitations . 7

3 Grammatical Framework . 7
3.1 An Example . 8

4 Paper I: Speech Recognition Grammar Compilation in Gram-
matical Framework . 10
4.1 An Example . 10
4.2 Contribution . 10
4.3 Publication . 12

5 Paper II: Multimodal Dialogue System Grammars 12
5.1 An Example . 13
5.2 Contribution . 14
5.3 Publication . 14

6 Paper III: A Pattern for Almost Compositional Functions 14
6.1 An Example . 15
6.2 Contribution . 15
6.3 Publication . 15

7 Related Work . 16
7.1 GF in Interactive Speech Applications 16
7.2 Compiler-like Grammar Development 16
7.3 Interactive Development Environments for Dialogue Sys-

tems . 17
8 Future work . 17

Paper I: Speech Recognition Grammar Compilation in Grammat-
ical Framework 25
1 Introduction . 25
2 Speech Recognition Grammars 26
3 Grammatical Framework . 27

3.1 The Resource Grammar Library 27
3.2 An Example GF Grammar 27

iii

4 Generating Context-free Grammars 28
4.1 Algorithm . 28
4.2 Discussion . 32

5 Finite-State Models . 32
5.1 Algorithm . 32
5.2 Discussion . 33

6 Semantic Interpretation . 33
6.1 Algorithm . 34
6.2 Discussion . 34

7 Related Work . 34
7.1 Unification Grammar Compilation 34
7.2 Generating SLMs from GF Grammars 35

8 Results . 35
9 Conclusions . 36

Paper II: Multimodal Dialogue System Grammars 43
1 Introduction . 43
2 The Grammatical Framework and multilingual grammars 44
3 Extending multilinguality to multimodality 47
4 Proof-of-concept implementation 47

4.1 Transport network . 48
4.2 Multimodal input . 48
4.3 Multimodal output . 51

5 Related Work . 53
6 Conclusion . 53

Paper III: A Pattern for Almost Compositional Functions 59
1 Introduction . 59

1.1 Some motivating problems 59
1.2 The solution . 60
1.3 Article overview . 60

2 Abstract Syntax and Algebraic Data Types 61
3 Compositional Functions . 61

3.1 Monadic compositional functions 62
3.2 Generalizing composOp, composM and composFold 63

4 Systems of Data Types . 65
4.1 Several algebraic data types 65
4.2 Categories and trees . 65
4.3 Compositional operations 66
4.4 A library of compositional operations 67
4.5 Migrating existing programs 67
4.6 Examples . 68
4.7 Properties of compositional operations 70

5 Almost Compositional Functions and the Visitor Design Pattern 71
5.1 Abstract syntax representation 71
5.2 ComposVisitor . 72

iv

5.3 Using ComposVisitor . 72
6 Language and Tool Support for Compositional Operations 74
7 Related Work . 75

7.1 Scrap Your Boilerplate . 75
7.2 The Tree set constructor 80
7.3 Related work in object-oriented programming 82
7.4 Nanopass framework for compiler education 82

8 Future Work . 82
8.1 Automatic generation of compos for existing types 82
8.2 Applications in natural language processing 83
8.3 Tree types and generic programming 83

9 Conclusions . 83

v

vi

Acknowledgments

First and foremost, I would like to thank my supervisor Aarne Ranta for his
superb support, constantly interesting discussions, and for getting me involved
in language technology research to begin with. I would also like to thank the
members of my PhD committee, Bengt Nordström, Koen Claessen, and Robin
Cooper, the current and former PhD students in the language technology re-
search group, Harald Hammarström, Markus Forsberg, Håkan Burden, Peter
Ljunglöf, Kristofer Johannisson, and Janna Khegai, the other local members of
the TALK project, David Hjelm, Staffan Larsson, Stina Ericsson, Rebecca Jon-
son, Jessica Villing, Ann-Charlotte Forslund, Andreas Wallentin, and Mikael
Sandin, and all members of the Department of Computer Science and Engi-
neering. Angela, thank you for your love, and for sharing your wisdom about
what it is to be a PhD student. I would not be here today without you. In
order to make the reader continue past this page, there are more acknowledg-
ments in the included papers. This work has been partly funded by the EU
TALK project, IST-507802, and Library-Based Grammar Engineering, Swedish
Research Council project dnr 2005-4211.

Björn Bringert Göteborg
July 2007

vii

viii

Introduction

This thesis shows how Grammatical Framework (GF) grammars can be used to
simplify development of interactive speech applications. This chapter provides
some background on interactive speech applications and introduces the three
articles which make up the bulk of the thesis. The three articles describe how
GF grammars can be used for speech recognition grammars, multimodality and
semantic transfer.

The articles are presented in the context of interactive speech applications
since this is an area where they can be used together. There are also other ap-
plications of these results, which is perhaps most readily apparent in the third
article, where most of the examples are from programming language implemen-
tation rather than natural language processing.

1 Interactive Speech Applications

What do we mean by interactive speech applications? By interactive, we mean
that the system gets input from a user, and delivers timely output as a result
of user input. There is some relation between the input and output. A single
task may be accomplished using one or more input/output interactions. We
are mainly concerned with speech applications, that is, applications which get
speech input from the user, and deliver speech output to the user. In the case of a
speech translator, one user produces the input, and another receives the output.
An interactive speech application may also be multimodal, that is, it may use
multiple modes of communication, or modalities. Gestures and drawings are
possible examples of modalities other than speech. Both the user input and the
system output can be multimodal. Systems which are not multimodal are called
unimodal.

Interactive speech applications have long been a staple of science fiction.
Figures 1 and 2 illustrate two such applications: a speech translator, and a
dialogue system. Interactive speech applications are already in limited commer-
cial use. Examples of such applications include phone-based travel reservation
systems and speech-enabled phrase books. However, interactive speech appli-
cations have yet to have a significant impact on everyday life. There are three
major problems with current interactive speech applications:

1. They are not natural enough.

2. They are not usable enough.

1

2 Introduction

Figure 1. A speech translator, from the Uncle Scrooge story “Planet-planering”
(English title “Scrooge’s Space Show”) (Branca et al. 1987). Louie says “We
are friends! Release the prisoner!”, though in the original English version he
says “Our uncle is a mega-merchant come to trade with you guys!”. c©Disney.
Located with help from Sivebæk, Willot and Jensen (2007).

Figure 2. A dialogue system, from the Uncle Scrooge story “Operation Ha-
jön” (English title “Operation Gootchy-goo”) (Strobl and Steere 1985). Uncle
Scrooge says: “Stop babbling about the weather! I want to know if everything is
proceeding according to plan!”. Smedly, the computer, responds “Right! Well,
let me see. . . ”, quite like a GoDiS (Larsson 2002) dialogue system would. c©Walt
Disney Productions. Located with help from Sivebæk, Willot and Jensen (2007).

1. Interactive Speech Applications 3

3. They are not cheap enough.

According to Pieraccini (2005), academic dialogue system research is largely
focused on the problem of naturalness, whereas industrial dialogue system de-
velopment is more concerned with usability. Waibel (2004) considers high devel-
opment cost and limited domains to be the major problems in speech translation
research.

There are many applications where the current state of the art means that
it is not possible to build systems that are natural or usable enough. However,
there are also many applications which could benefit from use of even the current
state of interactive speech technology, but where it is not economically viable,
because of the high cost of implementing the systems.

1.1 Problems

The problems of naturalness, usability and cost are large and complex. This
thesis deals with the following sub-problems:

Duplicated work In current practise, multiple components are developed semi-
independently, with much duplicated effort. For example, speech recognition
grammars and semantic interpretation components both need to take into
account the linguistic and domain-specific coverage of the system.

Consistency Because of the lack of abstraction mechanisms and consistency
checks, it is difficult to modify a system which uses multiple hand-written
components. The problem is multiplied when the system is multilingual.
The developer then has to modify each of the components, such as speech
recognition grammars and semantic interpretation, manually for each lan-
guage. A simple change may require touching many parts of the system, and
there are no automatic consistency checks.

Localization With hand-written components, it is about as difficult to add
support for a new language as it is to write the grammar, semantic interpre-
tation, and generation components for the first language.

Linguistic quality Because of the lack of powerful language description tools,
achieving high syntactic and morphological quality of the system output
and the input language models can be costly. This is more pronounced for
languages with a richer morphology than English, since current methods are
often developed with English in mind.

Domain portability Components implemented for a given application do-
main can often not be easily reused in other domains.

Platform portability Systems implemented for a given platform (speech rec-
ognizer, operating system, programming language, etc.) can often not be
used on other platforms.

4 Introduction

2 This work

Interactive speech applications are still often written in low-level, platform-
specific languages, which require much duplicated work throughout the system.
Our aim is to make construction of interactive speech applications easier by
compiling high-level specifications to the low-level code used in the running sys-
tem. GF is “the working programmer’s grammar formalism”. In this spirit, the
approach that we have taken is to use techniques borrowed from programming
language implementation to automatically generate system components from
grammars.

In the early days of computer programming, programs were written in ma-
chine code or assembly languages, very low-level languages which give the pro-
grammer full control, but make programs hard to write, limited to a single
machine architecture, and difficult to maintain. Today, programs are written in
high-level languages which give less control, but make programs easier to write,
portable across different machines and operating systems, and easier to main-
tain. Programs written in high-level languages are compiled to code in low-level
languages, which can be run by machines.

The approach to development of interactive speech applications which we
describe here is grammar-based, since we use high-level grammars to define ma-
jor parts of the functionality. Several different components used in interactive
speech applications can be generated automatically from the grammars. The
systems which we generate are rule-based, rather than statistical. In an ex-
periment by Rayner et al. (2005a), a rule-based speech understanding system
was found to outperform a statistical one, and the advantage of the rule-based
system increased with the users’ familiarity with the system.

In our description of the components which we generate, we consider inter-
active speech applications which can be implemented as pipelines. The system
receives input, which is processed step by step, and in the end output is pro-
duced. A multimodal dialogue system may have components such as speech
recognition, multimodal fusion, semantic interpretation, dialogue management,
domain resources, output generation, linearization, multimodal fission, speech
synthesis. Figure 3 shows a schematic view of such a system. In a speech trans-
lator, the dialogue management and domain resources may be replaced by a
semantic transfer component, as shown in Figure 4. Larger systems, such as the
Spoken Language Translator (Rayner et al. 2000), are more complex with more
components and a architecture which is not a simple pipeline. The individual
components that we generate can be used in more complex architectures, as has
been done in experimental dialogue systems (Ericsson et al. 2006) which use the
GoDiS (Larsson 2002) implementation of issue-based dialogue management.

2.1 Advantages

This work addresses the problems listed in Section 1.1 in the following ways:

Duplicated work The duplicated work involved in developing multiple com-

2. This work 5

Speech input

Other input

Recognized speech

Multimodal input

Input semantics

Output semantics

Multimodal output

Other output

Output text

Speech output

User

Speech recognizer

Multimodal fusion

Semantic interpretation

Output realizer

Multimodal fission

User

Speech synthesizer

Dialogue manager Domain resources

Figure 3. Architecture of a grammar-based multimodal dialogue system. In a
unimodal system, there would be no multimodal fission and fusion components.

6 Introduction

Speech input

Recognized speech

Input semantics

Output semantics

Output text

Speech output

User

Speech recognizer

Semantic interpretation

Transfer engine

Output realizer

Speech synthesizer

User

Figure 4. Architecture of a grammar-based speech translator. Compared to
Figure 3, there is no multimodality, and the dialogue manager and domain
resources have been replaced by a semantic transfer engine.

3. Grammatical Framework 7

ponents is avoided by generating all the components from a single declarative
source, a GF grammar.

Consistency The strong typing of the GF language enforces consistency be-
tween the abstract syntax and the concrete syntaxes for each language. This
makes it easier to keep the semantics and the implementations for different
languages in sync.

Localization GF’s support for multilingual grammars and the common in-
terface implemented by all grammars in the GF resource grammar library
makes it easy to translate a system to a new language.

Linguistic quality GF’s powerful constructs and the multilingual resource
grammar library allows for high morphological and syntactic quality at a
low cost.

Domain portability A large portion of the grammar implementation effort
is in the resource grammar library. This library can be re-used in multiple
domains, instead of being re-implemented for each new application.

Platform portability In our approach, a GF grammar is used as the canonical
representation which the developer works with, and components in many
formats can be generated automatically from this representation.

2.2 Limitations
The goal is not to mainly allow more sophisticated applications, but rather to
reduce the development cost of medium complexity applications. Just like high-
level programming languages take away some of the control that the assembly
language programmer has, generating system components from grammars places
some limits on how systems can be implemented. These limits of course depend
on how sophisticated the generation is.

Taken together, the components that we generate fit best in systems with
pipeline architectures like the one shown in Figure 3. However, the individual
components could also be used as parts of systems with other architectures. For
example, a hybrid system could use our components to attempt a deep analysis,
and fall back to a separate surface analysis when that fails.

3 Grammatical Framework
We use Grammatical Framework (GF) as the source language for our component
generation. This section gives a short introduction to GF, with a small example
grammar for a dialogue system.

Grammatical Framework (Ranta 2004) is a type theoretic grammar formal-
ism based on Martin-Löf (1984) type theory. GF makes a distinction between
abstract syntax and concrete syntax, corresponding to Curry’s (1961) division
of grammar into tectogrammar and phenogrammar.

8 Introduction

abstract Pizza = {
cat Input;Order;Number;Size;Topping; [Topping]{1};
fun order : Order→ Input;

pizza : Number→ Size→ [Topping]→ Order;
one, two : Number;
small , large : Size;
cheese, ham : Topping;

cat Output;
fun price : Order→ Int→ Output;
}

Figure 5. Pizza.gf: A GF abstract syntax module.

The abstract syntax declares what can be said in the language. The con-
crete syntax describes how to say it. This is done by associating a concrete
representation with each construct in the abstract syntax. In the simplest case,
this concrete representation is a record containing a single string field. Records,
tables and enumerations can be used to implement more complex representa-
tions, for example with gender agreement between nouns and adjectives. The
process of generating a concrete syntax term from a term in the abstract syntax
is called linearization.

One of GF’s strong points is multilinguality. The division of grammar into
abstract and concrete syntax means that it is easy to have multiple concrete syn-
taxes for one abstract syntax. This makes it possible to implement multilingual
grammars. In order to avoid re-implementing the domain-independent linguistic
details of a language for each new application grammar, the GF resource gram-
mar library has been created. It implements the morphological and syntactic
details of a number of languages, and presents a language-independent API to
the application grammar writer. This significantly reduces the effort involved
in translating grammars (Perera and Ranta 2007).

3.1 An Example

As an example of a GF grammar for an interactive speech application, Figure 5
and Figure 6 show the abstract and English concrete syntax for a small pizza
ordering dialogue system. The Input category contains user input, such as “two
large pizzas with ham and cheese”, which corresponds to the abstract syntax
term order (pizza two large [ham, cheese]). The Output category describes
system output, for example “two large pizzas with ham and cheese cost 7 euros”,
for the abstract syntax term price (pizza two large [ham, cheese]) 7.

This concrete syntax module uses the new Resource Grammar API with
overloading (Ranta 2006). Each function mkX constructs terms in the re-
source grammar category X. For example, the linearization category of the
Order category is the resource grammar category NP. This means that an order

3. Grammatical Framework 9

concrete PizzaEng of Pizza = open SyntaxEng,ParadigmsEng in {
flags startcat = Input;
lincat Input = Utt;

Order = NP;
Number = Det;
Size = AP;
Topping = NP;
[Topping] = NP;

lin order o = mkUtt o;
pizza n s ts = mkNP n (mkCN (mkCN s pizza_N)

(mkAdv with_Prep ts));
one = mkDet n1_Numeral ;
two = mkDet n2_Numeral ;
small = mkAP small_A;
large = mkAP large_A;
cheese = mkNP massQuant cheese_N ;
ham = mkNP massQuant ham_N ;
BaseTopping t = t ;
ConsTopping t ts = mkNP and_Conj t ts;

lincat Output = Utt;
lin price o p = mkUtt (mkCl o (mkV2 cost_V)

(mkNP (mkNum p) euro_N));
oper pizza_N = mkN “pizza”;

small_A = mkA “small”;
large_A = variants{mkA “large”;mkA “big”};
cheese_N = mkN “cheese”;
ham_N = mkN “ham”;
cost_V = mkV “cost”;
euro_N = mkN “euro”;

}

Figure 6. PizzaEng.gf: English concrete syntax for the abstract syntax in
Figure 5.

10 Introduction

is represented by a noun phrase in this concrete syntax. The mkNP function
is overloaded, and the version of it that is used in the linearization of pizza
takes two arguments, one of type Det (determiner, the linearization category
of Number) and one of type CN (common noun, here constructed from another
common noun and an adverbial phrase). In the linearization of cheese, a ver-
sion of mkNP is used that takes a determiner and a noun as arguments. The
linearization of ConsTopping, one of the two constructors in the [Topping] cat-
egory, uses a third version of mkNP that takes a conjunction and two noun
phrases as arguments.

Another noteworthy feature is that the linearization of large uses variants,
to allow alternative ways to express a given input. This is used extensively in
realistic dialogue system grammars, to handle variation in how input can be
expressed without complicating the semantics.

Figure 7 shows the German concrete syntax for the abstract syntax in Fig-
ure 5. Note that the only difference compared to the English concrete syntax in
Figure 6 is that it imports German resource grammar modules, and specifies the
German application-specific words. GF’s parameterized modules (Ranta 2007)
can be used to create a shared implementation of the language independent
part, but that has not been done here.

4 Paper I: Speech Recognition Grammar Com-
pilation in Grammatical Framework

Speech recognizers use speech recognition grammars (also known as language
models) to limit the input language in order to achieve acceptable recogni-
tion performance. In the paper “Speech Recognition Grammar Compilation in
Grammatical Framework”, we show how speech recognition grammars in sev-
eral commonly used context-free and finite-state formalisms can be generated
from GF grammars. We also describe generation of semantic interpretation code
which can be embedded in speech recognition grammars.

4.1 An Example

For the Input category in the example grammar in Figure 5 and Figure 6, we
can generate the finite-state model shown in Figure 8. Finite-state models such
as this one are used to guide the HTK speech recognizer.

4.2 Contribution

I wrote the paper myself, and I implemented the various grammar translations
it describes.

4. Paper I: Speech Recognition Grammar Compilation in Grammatical Framework11

concrete PizzaGer of Pizza = open SyntaxGer,ParadigmsGer in {
flags startcat = Input;
lincat Input = Utt;

Order = NP;
Number = Det;
Size = AP;
Topping = NP;
[Topping] = NP;

lin order o = mkUtt o;
pizza n s ts = mkNP n (mkCN (mkCN s pizza_N)

(mkAdv with_Prep ts));
one = mkDet n1_Numeral ;
two = mkDet n2_Numeral ;
small = mkAP small_A;
large = mkAP large_A;
cheese = mkNP massQuant cheese_N ;
ham = mkNP massQuant ham_N ;
BaseTopping t = t ;
ConsTopping t ts = mkNP and_Conj t ts;

lincat Output = Utt;
lin price o p = mkUtt (mkCl o (mkV2 cost_V)

(mkNP (mkNum p) euro_N));
oper pizza_N = mkN “Pizza” “Pizzas” feminine;

small_A = mkA “klein”;
large_A = mkA “groß” “größer” “größte”;
cheese_N = mkN “Käse” “Käse” masculine;
ham_N = mkN “Schinken”;
cost_V = mkV “kostet”;
euro_N = mkN “Euro” “Euros” masculine;

}

Figure 7. PizzaGer.gf: German concrete syntax for the abstract syntax in
Figure 5.

12 Introduction

cheese

and

ham

with

one

small

large

big

pizzas

pizza

two

small

large

big

Figure 8. Finite-state language model generated from the English concrete
syntax in Figure 6.

4.3 Publication

This paper was presented at SPEECHGRAM 2007, Workshop on Grammar-
Based Approaches to Spoken Language Processing, Prague, Czech Republic,
June 29, 2007.

5 Paper II: Multimodal Dialogue System Gram-
mars

The paper “Multimodal Dialogue System Grammars” describes how GF gram-
mars can be used to handle multimodality, that is, information presented using
multiple modes of communication. Multimodal systems can for example com-
bine speech and pointing gestures for input, or speech and graphics for output.
Multimodal fusion, the integration of information from multiple modalities into
a single semantic representation, and multimodal fission, the conversion of a sin-
gle semantic representation into information in multiple modalities, are handled
by using GF’s facilities for parsing and linearization, respectively.

5. Paper II: Multimodal Dialogue System Grammars 13

concrete PizzaDraw of Pizza = {
lin

order o = o;
pizza n s ts = {s = call2 “scale” s.s (call2 “replicate” n.s

(call2 “above” ts.s (image “pizza”)))};
one = {s = “1”};
two = {s = “2”};
small = {s = “0.5”};
large = {s = “1.0”};
cheese = {s = image “cheese”};
ham = {s = image “ham”};
BaseTopping t = {s = t .s };
ConsTopping t ts = {s = call2 “above” t .s ts.s };

oper
call0 : Str→ Str = λf → f ++ “(” ++ “)”;
call1 : Str→ Str→ Str = λf → λx → f ++ “(” ++ x ++ “)”;
call2 : Str→ Str→ Str→ Str =

λf → λx → λy → f ++ “(” ++ x ++ “,” ++ y ++ “)”;
image : Str→ Str = λx → call1 “image” (“\"” + x + “\"”);

}

Figure 9. PizzaDraw.gf: A concrete syntax which generates drawing instruc-
tions from pizza orders.

5.1 An Example

We can extend the example grammar from Section 3 to make a multimodal
application. For example, we can write another concrete syntax which gener-
ates drawing instructions instead of utterances in natural language. We refer
to this as parallel multimodality, since the complete information is presented in-
dependently in each of the modalities. Figure 9 shows a concrete syntax which
generates instructions in a simple drawing language. This can be used to draw
graphical representations of pizza orders. Figure 10 shows the graphical repre-
sentation of the order “two large pizzas with ham and cheese”. The abstract
syntax representation of this order is order (pizza two large [ham, cheese]) and
from this, the PizzaDraw concrete syntax generates the drawing instructions:
scale (1.0, replicate (2, above (above (image (“ham”), image (“cheese”)), image
(“pizza”)))).

Another possible multimodal extension would be to allow spoken pizza orders
to contain non-speech parts. For example, we could allow the user to say “I want
a large pizza with cheese and that”, accompanied by a click on a picture of some
topping. This is what we call integrated multimodality.

14 Introduction

Figure 10. A graphical representation of the pizza order order (pizza two
large [ham, cheese]), drawn using instructions generated by the concrete syntax
in Figure 9.

5.2 Contribution

I designed and implemented the demonstration system, including the grammars,
and wrote the sections about the proof-of-concept implementation and related
work.

5.3 Publication

This paper was presented at DIALOR’05, Ninth Workshop on the Semantics
and Pragmatics of Dialogue, Nancy, France, June 9-11 2005.

6 Paper III: A Pattern for Almost Composi-
tional Functions

The paper “A Pattern for Almost Compositional Functions” introduces a method
for simplifying a common class of functions over rich tree-like data types, such as
abstract syntax trees in compilers or natural language applications. The method
uses a type-specific traversal function, which can be automatically generated
from the definition of the data type. This method helps reduce the amount of
repetitive traversal code in programs which process rich tree structures.

Dialogue managers and semantic transfer engines process the abstract syntax
representation of the input in various ways. There is a significant set of such
transformations what are only concerned with some of the constructs in the
often quite rich abstract syntax. This paper describes a way to express such
transformations succinctly.

6. Paper III: A Pattern for Almost Compositional Functions 15

uniqueToppings :: Tree a → Tree a
uniqueToppings t = case t of

pizza n s ts → pizza n s (nub ts)
→ composOp uniqueToppings t

Figure 11. Haskell-like pseudo-code for an abstract syntax transformation
function which removes duplicate toppings from terms in the abstract syntax in
Figure 5. The nub function removes duplicate elements from a list.

6.1 An Example

Figure 11 shows a small example function which transforms abstract syntax
terms. It goes through the term, removing any duplicate toppings in pizza or-
ders. For example, the order pizza two large [ham, cheese, ham] (“two large
pizzas with ham and cheese and ham”) is transformed to pizza two large
[ham, cheese] (“two large pizzas with ham and cheese”). The composOp func-
tion, which is the topic of this paper, is used to avoid specifying what the func-
tion does for terms other than pizza orders. In this small example, not a lot of
code is saved, but in a realistic system with many abstract syntax constructors,
the code savings can be very large.

6.2 Contribution

Aarne Ranta used a first version of composOp in the GF implementation. He
then generalized this to constructive type theory and wrote a first version of
the paper, describing the single data-type Haskell versions of composOp and
composM , and a type family version of composOp in Agda.

I extended this first version to the full paper included here. Aarne’s original
paper represents about one fifth of the text of the final version. My contributions
include support for composOp over type families in extended Haskell, the general
compos function, the library of functions which use compos, the Java Visitor
version of the pattern, the description of the relationship to applicative functors,
including some identities with proofs, and descriptions of the relationships to
generic programming in Haskell, tree types in type theory, traversals in object-
oriented programming and the Nanopass framework.

6.3 Publication

This thesis includes a somewhat extended version of a paper presented at ICFP
2006, the 11th ACM SIGPLAN International Conference on Functional Pro-
gramming, Portland, Oregon, September 18-20, 2006.

16 Introduction

7 Related Work

7.1 GF in Interactive Speech Applications

In addition to the work presented in this thesis, there are several other possi-
bilities for using GF grammars in interactive speech applications.

• The main GF implementation has a Haskell API1 which can be used for
parsing and linearization in natural language applications.

• The Embedded GF Interpreter (Bringert 2005) can be used for parsing and
linearization in Java programs, and as an OAA (Martin et al. 1999) agent.
Several experimental dialogue systems have been developed (Ericsson et al.
2006) using this interpreter along with the speech-recognition grammar
generation described in this thesis.

• Peter Ljunglöf has implemented a Prolog library2 for parsing with GF
grammars.

• Jonson (2006) shows how to generate statistical language models for dia-
logue systems from GF grammars, instead of the grammar-based models
that we generate.

7.2 Compiler-like Grammar Development

The Regulus grammar compiler (Rayner et al. 2006b) generates speech recogni-
tion grammars, with the possibility of embedding basic semantic interpretation,
from unification grammars. Regulus has been used in several interactive speech
applications, including the MedSLT (Bouillon et al. 2005; Rayner et al. 2006a)
speech translator, and the Clarissa (Rayner et al. 2005b,c) dialogue system.

UNIANCE (Bos 2002) is another system for compiling unification grammars
to speech recognition grammars. It includes interpretation code for composi-
tional semantics in the generated grammars.

The SGStudio (Wang and Acero 2005) grammar authoring tool uses a hybrid
model for development of speech recognition language models and semantic
interpretation. A library of parameterized grammars are used for slot-filling,
while a statistical model handles the non-slot-filling parts of user input.

ARIADNE (Denecke 2002) is a dialogue system architecture for rapid proto-
typing. To build a dialogue system, the developer creates an ontology, parsing
grammars, generation templates, database conversion rules, and a description
of the services offered by the system. In ARIADNE, the developer writes a set
of declarative specifications which together are used in a fixed dialogue system
architecture, whereas we generate a number of components, which can be used
separately, from a specification in a single formalism. Compared to ARIADNE,
we lack the generic dialogue management and database interface components.
1 See http://www.cs.chalmers.se/~aarne/GF/src/GF/Embed/EmbedAPI.hs
2 See http://www.ling.gu.se/~peb/software.html

8. Future work 17

On the other hand, we have support for multimodality, and GF is more linguis-
tically expressive than the context-free grammars and output templates that
ARIADNE uses.

7.3 Interactive Development Environments for Dialogue
Systems

There has been substantial work in graphical tools for semi-automatic con-
struction for dialogue systems. One example is the CSLU Rapid Application
Developer (McTear 1999), which has support for multilinguality (Cole et al.
1999). The Application Generation Platform (AGP) (Hamerich et al. 2004)
can generate multilingual and multimodal interfaces to existing databases semi-
automatically. DUDE (Lemon and Liu 2006) is an environment for dialogue
system development where the user can semi-automatically construct a dialogue
system based on a Business Process Model. DUDE generates GF grammars and
makes use of the work described in this thesis to generate speech recognition
grammars for the Nuance and HTK speech recognizers. DiaMant (Fliedner and
Bobbert 2003) is a GUI tool for rapid development of dialogue systems based
on finite state dialogue models, extended with variables. Variant Transduction
(Alshawi and Douglas 2001) is an example-based approach to rapid spoken lan-
guage interface development. Interaction Builder (Katsurada et al. 2005) is a
GUI tool for constructing web-based multimodal applications.

These tools all use graphical user interfaces to construct complete dialogue
systems, whereas we use a grammar formalism as the user interface, and create
general components which can also be used in other kinds of interactive speech
applications, such as speech translators.

8 Future work
The overall goal is to make it easier to develop grammar-based interactive appli-
cations by generating as much as possible from GF grammars. These are some
areas that could be explored further:

• Generation of dialogue management from GF grammars, along the lines
of Ranta’s and Cooper’s (2004) work relating dialogue systems to proof
editors.

• Investigation of platforms for deployment of complete generated systems.
One promising candidate is XHTML+Voice (Axelsson et al. 2004), which
allows web-based multimodal systems which can be accessed by users with-
out requiring installation.

• A programming language for abstract syntax term transformations, which
could be used to implement application specific functionality.

• Compilation of GF linearization rules to components usable in mainstream
programming languages.

18 Introduction

• Robust parsing algorithms for GF grammars. This would allow us to take
advantage of the possibility of generating statistical language models from
GF grammars (Jonson 2006).

• Development of realistic demonstration systems using our methods.

References
Hiyan Alshawi and Shona Douglas. Variant transduction: a method for rapid

development of interactive spoken interfaces. In Proceedings of the Second
SIGdial Workshop on Discourse and Dialogue, pages 1–9, Morristown, NJ,
USA, 2001. Association for Computational Linguistics. URL http://portal.
acm.org/citation.cfm?id=1118080.

Jonny Axelsson, Chris Cross, Jim Ferrans, Gerald McCobb, T. V. Raman, and
Les Wilson. XHTML+Voice profile 1.2. Specification, VoiceXML Forum,
2004. URL http://www.voicexml.org/specs/multimodal/x+v/12/.

Johan Bos. Compilation of unification grammars with compositional semantics
to speech recognition packages. In Proceedings of the 19th international con-
ference on Computational linguistics, pages 1–7, Morristown, NJ, USA, 2002.
Association for Computational Linguistics. URL http://portal.acm.org/
citation.cfm?id=1072323.

P. Bouillon, M. Rayner, N. Chatzichrisafis, B. A. Hockey, M. Santaholma,
M. Starlander, H. Isahara, K. Kanzaki, and Y. Nakao. A generic Multi-
Lingual Open Source Platform for Limited-Domain Medical Speech Trans-
lation. pages 5–58, May 2005. URL http://www.issco.unige.ch/pub/
MedSLT_demo_EAMT05_final.pdf.

Daniel Branca, Patsy Trench, and Dave Angus. Planet-planering. Kalle Anka
& C:o, 1987(31), July 1987. ISSN 0345-6048. Disney story code D 8560.

Björn Bringert. Embedded Grammars. Master’s thesis, Chalmers University
of Technology, Göteborg, Sweden, February 2005. URL http://www.cs.
chalmers.se/~bringert/publ/exjobb/embedded-grammars.pdf.

Ronald A. Cole, Ben Serridge, John-Paul Hosom, Andrew Cronk, and
Ed Kaiser. A Platform for Multilingual Research in Spoken Dialogue
Systems. In Proceedings of the Workshop on Multi-Lingual Interoperabil-
ity in Speech Technology (MIST), pages 43–48, Leusden, The Netherlands,
September 1999. URL http://www.cslu.ogi.edu/people/hosom/pubs/
cole_MIST-platform_1999.pdf.

Haskell B. Curry. Some Logical Aspects of Grammatical Structure. In Roman O.
Jakobson, editor, Structure of Language and its Mathematical Aspects, volume
12 of Symposia on Applied Mathematics, pages 56–68. American Mathemati-
cal Society, Providence, 1961.

REFERENCES 19

Matthias Denecke. Rapid prototyping for spoken dialogue systems. In Proceed-
ings of the 19th international conference on Computational linguistics, pages
1–7, Morristown, NJ, USA, 2002. Association for Computational Linguistics.
URL http://portal.acm.org/citation.cfm?id=1072375.

Stina Ericsson, Gabriel Amores, Björn Bringert, Håkan Burden, Ann C.
Forslund, David Hjelm, Rebecca Jonson, Staffan Larsson, Peter Ljunglöf,
Pilar Manchón, David Milward, Guillermo Pérez, and Mikael Sandin. Soft-
ware illustrating a unified approach to multimodality and multilinguality
in the in-home domain. Technical Report 1.6, TALK Project, 2006. URL
http://www.talk-project.org/.

Gerhard Fliedner and Daniel Bobbert. DiaMant: A Tool for Rapidly Devel-
oping Spoken Dialogue Systems. In Proceedings of the 7th Workshop on
the Semantics and Pragmatics of Dialogue (DiaBruck), Wallerfangen, Ger-
many, 2003. URL http://www.coli.uni-saarland.de/conf/diabruck/
submission_finals/abstracts/320/demo_320.pdf.

Stefan Hamerich, Volker Schubert, Volker Schless, Ricardo de Córdoba,
José M. Pardo, Luis F. D’haro, Basilis Kladis, Otilia Kocsis, and Stefan
Igel. Semi-Automatic Generation of Dialogue Applications in the GEM-
INI Project. In Michael Strube and Candy Sidner, editors, Proceedings of
the 5th SIGdial Workshop on Discourse and Dialogue, pages 31–34, Cam-
bridge, Massachusetts, USA, 2004. Association for Computational Linguis-
tics. URL http://acl.ldc.upenn.edu/hlt-naacl2004/sigdial04/pdf/
hamerich.pdf.

Rebecca Jonson. Generating Statistical Language Models from Interpretation
Grammars in Dialogue Systems. In Proceedings of EACL’06, 2006. URL
http://citeseer.ist.psu.edu/jonson06generating.html.

K. Katsurada, H. Adachi, K. Sato, H. Yamada, and T. Nitta. Interaction builder:
A rapid prototyping tool for developing web-based MMI applications. IEICE
Trans Inf Syst, E88-D(11):2461–2467, 2005. doi: 10.1093/ietisy/e88-d.11.
2461. URL http://dx.doi.org/10.1093/ietisy/e88-d.11.2461.

Staffan Larsson. Issue-based Dialogue Management. PhD thesis, Göteborg Uni-
versity, 2002.

Oliver Lemon and Xingkun Liu. DUDE: a Dialogue and Understanding De-
velopment Environment, mapping Business Process Models to Information
State Update dialogue systems. In EACL 2006, 11st Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics, 2006. URL
http://homepages.inf.ed.ac.uk/olemon/dude-final.pdf.

David L. Martin, Adam J. Cheyer, and Douglas B. Moran. The
open agent architecture: A framework for building distributed soft-
ware systems. Applied Artificial Intelligence, 13(1-2):91–128, 1999.

20 Introduction

URL http://www.scopus.com/scopus/record/display.url?view=
extended&origin=resultslist&eid=2-s2.0-0032805927.

Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Naples, 1984.

Michael F. McTear. Software to support research and development of spoken
dialogue systems. In Proceedings of Eurospeech’99, Budapest, Hungary, 1999.
URL http://citeseer.ist.psu.edu/548113.html.

Nadine Perera and Aarne Ranta. An Experiment in Dialogue System Local-
ization with the GF Resource Grammar Library. In SPEECHGRAM 2007,
2007.

Roberto Pieraccini and Juan Huerta. Where do we go from here? Research
and commercial spoken dialog systems. In Proceedings of the 6th SIGdial
Workshop on Discourse and Dialogue, Lisbon, Portugal, September 2005.
URL http://www.sigdial.org/workshops/workshop6/proceedings/pdf/
65-SigDial2005_8.pdf.

Aarne Ranta. Grammatical Framework: A Type-Theoretical Grammar For-
malism. Journal of Functional Programming, 14(2):145–189, March 2004.
ISSN 0956-7968. doi: 10.1017/S0956796803004738. URL http://portal.
acm.org/citation.cfm?id=967507.

Aarne Ranta. Grammars as software libraries. Manuscript, 2006. URL http:
//www.cs.chalmers.se/~aarne/articles/grammars-libraries.pdf.

Aarne Ranta. Modular Grammar Engineering in GF. To appear in Research
on Language and Computation, 2007. URL http://www.cs.chalmers.se/
~aarne/articles/multieng3.pdf.

Aarne Ranta and Robin Cooper. Dialogue Systems as Proof Editors. Journal of
Logic, Language and Information, 13(2):225–240, 2004. ISSN 0925-8531. doi:
10.1023/B:JLLI.0000024736.34644.48. URL http://dx.doi.org/10.1023/
B:JLLI.0000024736.34644.48.

Manny Rayner, David Carter, Pierrette Bouillon, Vassilis Digalakis, and Mats
Wirén, editors. The Spoken Language Translator. Studies in Natural Lan-
guage Processing. November 2000. doi: 10.2277/0521770777. URL http:
//dx.doi.org/10.2277/0521770777.

Manny Rayner, Pierrette Bouillon, Nikos Chatzichrisafis, Beth A. Hockey,
Marianne Santaholma, Marianne Starlander, Hitoshi Isahara, Kyoko Kan-
zaki, and Yukie Nakao. A Methodology for Comparing Grammar-
Based and Robust Approaches to Speech Understanding. In Proceed-
ings of Interspeech 2005, 2005a. URL http://www.issco.unige.ch/pub/
RaynerEAInterspeech2005.pdf.

REFERENCES 21

Manny Rayner, Beth A. Hockey, Nikos Chatzichrisafis, Kim Farrell, and Jean-
Michel Renders. A voice enabled procedure browser for the International
Space Station. In ACL ’05: Proceedings of the ACL 2005 on Interactive
poster and demonstration sessions, pages 29–32, Morristown, NJ, USA, 2005b.
Association for Computational Linguistics. URL http://portal.acm.org/
citation.cfm?id=1225761.

Manny Rayner, Beth A. Hockey, Jean-Michel Renders, Nikos Chatzichrisafis,
and Kim Farrell. Spoken Language Processing in the Clarissa Procedure
Browser. Technical report, International Computer Science Institute, Berke-
ley, California, April 2005c. URL ftp://ftp.icsi.berkeley.edu/pub/
techreports/2005/tr-05-005.pdf.

Manny Rayner, Pierrette Bouillon, Nikos Chatzichrisafis, Marianne Santa-
holma, Marianne Starlander, Beth A. Hockey, Yukie Nakao, Hitoshi Isa-
hara, and Kyoko Kanzaki. MedSLT: A Limited-Domain Unidirectional
Grammar-Based Medical Speech Translator. In Proceedings of the First
International Workshop on Medical Speech Translation, pages 40–43, New
York, New York, 2006a. Association for Computational Linguistics. URL
http://acl.ldc.upenn.edu//W/W06/W06-3707.pdf.

Manny Rayner, Beth A. Hockey, and Pierrette Bouillon. Putting Linguistics into
Speech Recognition: The Regulus Grammar Compiler. CSLI Publications,
Ventura Hall, Stanford University, Stanford, CA 94305, USA, July 2006b.
ISBN 1575865262.

Anders Christian Sivebæk, François Willot, and Lars Jensen. IRC conversation,
March 2007. irc://irc.inducks.org:6667/dcml.

Tony Strobl and Steve Steere. Operation Hajön. Musse Pigg & C:o, 1985(5),
May 1985. ISSN 0349-1463. Disney story code S 81111.

Alex Waibel. Speech Translation: Past, Present and Future.
In INTERSPEECH-2004, pages 353–356, October 2004. URL
http://scholar.google.com/scholar?q=cache:data.cstr.ed.ac.uk/
internal/library/proceedings/2004/icslp2004/contents/TuB_pdf/
Spec3801o/Spec3801o.1_p1342.pdf.

Ye-Yi Wang and Alex Acero. SGStudio: Rapid Semantic Grammar Develop-
ment for Spoken Language Understanding. In Proceedings of the Interspeech
Conference, Lisbon, Portugal, September 2005. URL http://research.
microsoft.com/srg/papers/2005-yeyiwang-eurospeech.pdf.

22 Introduction

Paper I Speech Recognition Grammar
Compilation in Grammatical
Framework

SPEECHGRAM 2007, Prague

Speech Recognition Grammar Compilation in
Grammatical Framework

Björn Bringert
Department of Computer Science and Engineering

Chalmers University of Technology and Göteborg University
SE-412 96 Göteborg, Sweden
bringert@cs.chalmers.se

Abstract
This paper describes how grammar-based language models for speech

recognition systems can be generated from Grammatical Framework (GF)
grammars. Context-free grammars and finite-state models can be gener-
ated in several formats: GSL, SRGS, JSGF, and HTK SLF. In addition,
semantic interpretation code can be embedded in the generated context-
free grammars. This enables rapid development of portable, multilingual
and easily modifiable speech recognition applications.

1 Introduction
Speech recognition grammars are used for guiding speech recognizers in many
applications. However, there are a number of problems associated with writing
grammars in the low-level, system-specific formats required by speech recog-
nizers. This work addresses these problems by generating speech recognition
grammars and semantic interpretation components from grammars written in
Grammatical Framework (GF), a high-level, type-theoretical grammar formal-
ism. Compared to existing work on compiling unification grammars, such as
Regulus (Rayner et al. 2006), our work uses a type-theoretical grammar formal-
ism with a focus on multilinguality and modular grammar development, and
supports multiple speech recognition grammar formalisms, including finite-state
models.

We first outline some existing problems in the development and maintenance
of speech recognition grammars, and describe how our work attempts to address
these problems. In the following two sections we introduce speech recognition
grammars and Grammatical Framework. The bulk of the paper then describes
how we generate context-free speech recognition grammars, finite-state language
models and semantic interpretation code from GF grammars. We conclude by
giving references to a number of experimental dialogue systems which already
use our grammar compiler for generating speech recognition grammars.

25

26 Bringert

Expressivity Speech recognition grammars are written in simple formalisms
which do not have the powerful constructs of high-level grammar formalisms.
This makes speech recognition grammar writing labor-intensive and error prone,
especially for languages with more inflection and agreement than English.

This is solved by using a high-level grammar formalism with powerful con-
structs and a grammar library which implements the domain-independent lin-
guistic details.

Duplicated work When speech recognition grammars are written directly
in the low-level format required by the speech recognizer, other parts of the
system, such as semantic interpretation components, must often be constructed
separately.

This duplicated work can be avoided by generating all the components from
a single declarative source, such as a GF grammar.

Consistency Because of the lack of abstraction mechanisms and consistency
checks, it is difficult to modify a system which uses hand-written speech recogni-
tion grammars. The problem is multiplied when the system is multilingual. The
developer has to modify the speech recognition grammar and the semantic inter-
pretation component manually for each language. A simple change may require
touching many parts of the grammar, and there are no automatic consistency
checks.

The strong typing of the GF language enforces consistency between the
semantics and the concrete representation in each language.

Localization With hand-written grammars, it is about as difficult to add
support for a new language as it is to write the grammar and semantic inter-
pretation for the first language.

GF’s support for multilingual grammars and the common interface imple-
mented by all grammars in the GF resource grammar library makes it easier to
translate a grammar to a new language.

Portability A grammar in any given speech recognition grammar format can-
not be used with a speech recognizer which uses another format.

In our approach, a GF grammar is used as the canonical representation which
the developer works with, and speech recognition grammars in many formats
can be generated automatically from this representation.

2 Speech Recognition Grammars

To achieve acceptable accuracy, speech recognition software is guided by a lan-
guage model which defines the language which can be recognized. A language
model may also assign different probabilities to different strings in the language.
A language model can either be a statistical language model (SLM), such as an

Speech Recognition Grammar Compilation in Grammatical Framework 27

n-gram model, or a grammar-based language model, for example a context-free
grammar (CFG) or a finite-state automaton (FSA). In this paper, we use the
term speech recognition grammar (SRG) to refer to all grammar-based language
models, including context-free grammars, regular grammars and finite-state au-
tomata.

3 Grammatical Framework

Grammatical Framework (GF) (Ranta 2004) is a grammar formalism based on
constructive type theory. In GF, an abstract syntax defines a semantic rep-
resentation. A concrete syntax declares how terms in an abstract syntax are
linearized, that is, how they are mapped to concrete representations. GF gram-
mars can be made multilingual by having multiple concrete syntaxes for a single
abstract syntax.

3.1 The Resource Grammar Library

The GF Resource Grammar Library (Ranta et al. 2006) currently implements
the morphological and syntactic details of 10 languages. This library is intended
to make it possible to write grammars without caring about the linguistic details
of particular languages. It is inspired by library-based software engineering,
where complex functionality is implemented in reusable software libraries with
simple interfaces.

The resource grammar library is used through GF’s facility for grammar
composition, where the abstract syntax of one grammar is used in the imple-
mentation of the concrete syntax of another grammar. Thus, an application
grammar writer who uses a resource grammar uses its abstract syntax terms to
implement the linearizations in the application grammar.

The resource grammars for the different languages implement a common in-
terface, i.e. they all have a common abstract syntax. This means that grammars
which are implemented using resource grammars can be easily localized to other
languages. Localization normally consists of translating the application-specific
lexical items, and adjusting any linearizations which turn out to be unidiomatic
in the language in question. For example, when the GoTGoDiS (Ericsson et al.
2006) application was localized to Finnish, only 3 out of 180 linearization rules
had to be changed.

3.2 An Example GF Grammar

Figure 1 contains a small example GF abstract syntax. Figure 2 defines an
English concrete syntax for it, using the resource grammar library. We will use
this grammar when we show examples of speech recognition grammar generation
later.

In the abstract syntax, cat judgements introduce syntactic categories, and
fun judgements declare constructors in those categories. For example, the items

28 Bringert

abstract Food = {
cat Order; Items; Item;Number;Size;
fun order : Items→ Order;

and : Items→ Items→ Items;
items : Item→ Number→ Size→ Items;
pizza, beer : Item;
one, two : Number;
small , large : Size;

}

Figure 1. Food.gf: A GF abstract syntax module.

constructor makes an Items term from an Item, a Number and a Size. The term
items pizza two small is an example of a term in this abstract syntax.

In the concrete syntax, a lincat judgement declares the type of the con-
crete terms generated from the abstract syntax terms in a given category. The
linearization of each constructor is declared with a lin judgement. In the con-
crete syntax in Figure 2, library functions from the English resource grammar
are used for the linearizations, but it is also possible to write concrete syn-
tax terms directly. The linearization of the term items pizza two small is
{s = “two small pizzas”}, a record containing a single string field.

By changing the imports and the four lexical items, this grammar can be
translated to any other language for which there is a resource grammar. For
example, in the German version, we replace (regN “beer”) with (reg2N “Bier”
“Biere” neuter) and so on. The functions regN and reg2N implement paradigms
for regular English and German nouns, respectively. This replacement can be
formalized using GF’s parameterized modules, which lets one write a common
implementation that can be instantiated with the language-specific parts. Note
that the application grammar does not deal with details such as agreement, as
this is taken care of by the resource grammar.

4 Generating Context-free Grammars

4.1 Algorithm

GF grammars are converted to context-free speech recognition grammars in a
number of steps. An overview of the compilation pipeline is show in Figure 3.
The figure also includes compilation to finite-state automata, as described in
Section 5. Each step of the compilation is described in more detail in the
sections below.

Conversion to CFG The GF grammar is first converted into a context-free
grammar annotated with functions and profiles, as described by Ljunglöf (2004).

Speech Recognition Grammar Compilation in Grammatical Framework 29

concrete FoodEng of Food = open SyntaxEng,ParadigmsEng in {
flags startcat = Order;
lincat Order = Utt; Items = NP;

Item = CN;Number = Det;
Size = AP;

lin order x = mkUtt x ;
and x y = mkNP and_Conj x y ;
items x n s = mkNP n (mkCN s x);
pizza = mkCN (regN “pizza”);
beer = mkCN (regN “beer”);
one = mkDet n1_Numeral ;
two = mkDet n2_Numeral ;
small = mkAP (regA “small”);
large = mkAP (regA “large”);

}

Figure 2. FoodEng.gf: English concrete syntax for the abstract syntax in
Figure 1.

Cycle elimination All directly and indirectly cyclic productions are removed,
since they cannot be handled gracefully by the subsequent left-recursion elim-
ination. Such productions do not contribute to the coverage to the grammar,
only to the set of possible semantic results.

Bottom-up filtering Productions whose right-hand sides use categories for
which there are no productions are removed, since these will never match any
input.

Top-down filtering Only productions for categories which can be reached
from the start category are kept. This is mainly used to remove parts of the
grammar which are unused because of the choice of start category. One example
where this is useful is when a speech recognition grammar is generated from a
multimodal grammar (Bringert et al. 2005). In this case, the start category is
different from the start category used by the parser, in that its linearization
only contains the speech component of the input. Top-down filtering then has
the effect of excluding the non-speech modalities from the speech recognition
grammar.

The bottom-up and top-down filtering steps are iterated until a fixed point
is reached, since both these steps may produce new filtering opportunities.

Left-recursion elimination All direct and indirect left-recursion is removed
using the LCLR transform described by Moore (2000). We have modified the

30 Bringert

GF grammar

CFG conversion

Cycle elimination

Bottom-up filtering

Top-down filtering

Left-recursion
elimination

Identical category
elimination

EBNF compaction

SRGS/JSGF/GSL

Regular
approximation

FSA compilation

Minimization

SLF

Figure 3. Grammar compilation pipeline.

Speech Recognition Grammar Compilation in Grammatical Framework 31

LCLR transform to avoid adding productions which use a category A−X when
there are no productions for A−X.

Identical category elimination In this step, the categories are grouped into
equivalence classes by their right-hand sides and semantic annotations. The
categories A1 . . . An in each class are replaced by a single category A1+. . .+ An

throughout the grammar, discarding any duplicate productions. This has the
effect of replacing all categories which have identical sets of productions with
a single category. Concrete syntax parameters which do not affect inflection is
one source of such redundancy; the LCLR transform is another.

EBNF compaction The resulting context-free grammar is compacted into
an Extended Backus-Naur Form (EBNF) representation. This reduces the size
and improves the readability of the final grammar. The compaction is done by,
for each category, grouping all the productions which have the same semantic
interpretation, and the same sequence of non-terminals on their right-hand sides,
ignoring any terminals. The productions in each group are merged into one
EBNF production, where the terminal sequences between the non-terminals are
converted to regular expressions which are the unions of the original terminal
sequences. These regular expressions are then minimized.

Conversion to output format The resulting non-left-recursive grammar is
converted to SRGS, JSGF or Nuance GSL format.

A fragment of a SRGS ABNF grammar generated from the GF grammar
in Figure 2 is shown below. The left-recursive and rule was removed from
the grammar before compilation, as the left-recursion elimination step makes it
difficult to read the generated grammar. The fragment shown here is for the
singular part of the items rule.

$FE1 = $FE6 $FE9 $FE4;
$FE6 = one;
$FE9 = large | small;
$FE4 = beer | pizza;

The corresponding fragment generated from the German version of the gram-
mar is more complex, since the numeral and the adjective must agree with the
gender of the noun.

$FG1 = $FG10 $FG13 $FG6 | $FG9 $FG12 $FG4;
$FG9 = eine;
$FG10 = ein;
$FG12 = große | kleine;
$FG13 = großes | kleines;
$FG4 = Pizza;
$FG6 = Bier;

32 Bringert

4.2 Discussion

The generated grammar is an overgenerating approximation of the original GF
grammar. This is inevitable, since the GF formalism is stronger than context-
free grammars, for example through its support for reduplication. GF’s support
for dependently typed and higher-order abstract syntax is also not yet carried
over to the generated speech recognition grammars. This could be handled
in a subsequent semantic interpretation step. However, that requires that the
speech recognizer considers multiple hypotheses, since some may be discarded
by the semantic interpretation. Currently, if the abstract syntax types are
only dependent on finite types, the grammar can be expanded to remove the
dependencies. This appears to be sufficient for many realistic applications.

In some cases, empty productions in the generated grammar could cause
problems for the cycle and left-recursion elimination, though we have yet to
encounter this in practice. Empty productions can be removed by transforming
the grammar, though this has not yet been implemented.

For some grammars, the initial CFG generation can generate a very large
number of productions. While the resulting speech recognition grammars are of
a reasonable size, the large intermediate grammars can cause memory problems.
Further optimization is needed to address this problem.

5 Finite-State Models

5.1 Algorithm

Some speech recognition systems use finite-state automata rather than context-
free grammars as language models. GF grammars can be compiled to finite-
state automata using the procedure shown in Figure 3. The initial part of
the compilation to a finite-state model is shared with the context-free SRG
compilation, and is described in Section 4.

Regular approximation The context-free grammar is approximated with a
regular grammar, using the algorithm described by Mohri and Nederhof (2001).

Compilation to finite-state automata The regular grammar is transformed
into a set of non-deterministic finite automata (NFA) using a modified version of
the make_fa algorithm described by Nederhof (2000). For realistic grammars,
applying the original make_fa algorithm to the whole grammar generates a very
large automaton, since a copy of the sub-automaton corresponding to a given
category is made for every use of the category.

Instead, one automaton is generated for each category in the regular gram-
mar. All categories which are not in the same mutually recursive set as the
category for which the automaton is generated are treated as terminal symbols.
This results in a set of automata with edges labeled with either terminal symbols
or the names of other automata.

Speech Recognition Grammar Compilation in Grammatical Framework 33

If desired, the set of automata can be converted into a single automaton
by substituting each category-labeled edge with a copy of the corresponding
automaton. Note that this always terminates, since the sub-automata do not
have edges labeled with the categories from the same mutually recursive set.

Minimization Each of the automata is turned into a minimal deterministic
finite automaton (DFA) by using Brzozowski’s (1962) algorithm, which mini-
mizes the automaton by performing two determinizations and reversals.

Conversion to output format The resulting finite automaton can be output
in HTK Standard Lattice Format (SLF). SLF supports sub-lattices, which allows
us to convert our set of automata directly into a set of lattices. Since SLF uses
labeled nodes, rather than labeled edges, we move the labels to the nodes. This is
done by first introducing a new labeled node for each edge, and then eliminating
all internal unlabeled nodes. Figure 4 shows the SLF model generated from the
example grammar. For clarity, the sub-lattices have been inlined.

and one

two

pizzas

beers

pizza

beersmall

large

small

large

ENDSTART

Figure 4. SLF model generated from the grammar in Figure 2.

5.2 Discussion
Finite-state models are even more restrictive than context-free grammars. This
problem is handled by approximating the context-free grammar with an over-
generating finite-state automaton. This may lead to failure in a subsequent
parsing step, which, as in the context-free case, is acceptable if the recognizer
can return all hypotheses.

6 Semantic Interpretation
Semantic interpretation can be done as a separate parsing step after speech
recognition, or it can be done with semantic information embedded in the speech
recognition grammar. The latter approach resembles the semantic actions used

34 Bringert

by parser generators for programming languages. One formalism for semantic
interpretation is the proposed Semantic Interpretation for Speech Recognition
(SISR) standard. SISR tags are pieces of ECMAScript code embedded in the
speech recognition grammar.

6.1 Algorithm
The GF system can include SISR tags when generating speech recognitions
grammars in SRGS and JSGF format. The SISR tags are generated from the
semantic information in the annotated CFG (Ljunglöf 2004). The result of the
semantic interpretation is an abstract syntax term.

The left-recursion elimination step makes it somewhat challenging to pro-
duce correct abstract syntax trees. We have extended Moore’s (2000) LCLR

transform to preserve the semantic interpretation. The LCLR transform intro-
duces new categories of the form A−X where X is a proper left corner of a
category A. The new category A−X can be understood as “the category A, but
missing an initial X”. Thus the semantic interpretation for a production in A−X
is the semantic interpretation for the original A-production, abstracted (in the
λ-calculus sense) over the semantic interpretation of the missing X. Conversely,
where-ever a category A−X is used, its result is applied to the interpretation of
the occurrence of X.

6.2 Discussion
As discussed in Section 4.2, the semantic interpretation code could be used to
implement the non-context-free features of GF, but this is not yet done.

The slot-filling mechanism in the GSL format could also be used to build se-
mantic representations, by returning program code which can then be executed.
The UNIANCE grammar compiler (Bos 2002) uses that approach.

7 Related Work

7.1 Unification Grammar Compilation
Compilation of unification grammars to speech recognition grammars is well
described in the literature (Moore 1999; Dowding et al. 2001). Regulus (Rayner
et al. 2006) is perhaps the most ambitious such system. Like GF, Regulus
uses a general grammar for each language, which is specialized to a domain-
specific one. Ljunglöf (Ljunglöf 2007a) relates GF and Regulus by showing
how to convert GF grammars to Regulus grammars. We carry compositional
semantic interpretation through left-recursion elimination using the same idea
as the UNIANCE grammar compiler (Bos 2002), though our version handles
both direct and indirect left-recursion.

The main difference between our work and the existing compilers is that we
work with type-theoretical grammars rather than unification grammars. While
the existing work focuses on GSL as the output language, we also support

Speech Recognition Grammar Compilation in Grammatical Framework 35

a number of other formats, including finite-state models. By using the GF
resource grammars, speech recognition language models can be produced for
more languages than with previous systems. One shortcoming of our system is
that it does not yet have support for weighted grammars.

7.2 Generating SLMs from GF Grammars

Jonson (2006) has shown that in addition to generating grammar-based lan-
guage models, GF can be used to build statistical language models (SLMs).
It was found that compared to our grammar-based approach, use of generated
SLMs improved the recognition performance for out-of-grammar utterances sig-
nificantly.

8 Results

Speech recognition grammars generated from GF grammars have already been
used in a number of research dialogue systems.

GOTTIS (Bringert et al. 2005; Ericsson et al. 2006), an experimental multi-
modal and multilingual dialogue system for public transportation queries, uses
GF grammars for parsing multimodal input. For speech recognition, it uses
GSL grammars generated from the speech modality part of the GF grammars.

DJ-GoDiS, GoDiS-deLUX, and GoTGoDiS (Ericsson et al. 2006) are three
applications which use GF grammars for speech recognition and parsing together
with the GoDiS implementation of issue-based dialogue management (Larsson
2002). GoTGoDiS has been translated to 7 languages using the GF resource
grammar library, with each new translation taking less than one day (Ericsson
et al. 2006).

The DICO (Villing and Larsson 2006) dialogue system for trucks has recently
been modified to use GF grammars for speech recognition and parsing (Ljunglöf
2007b).

DUDE (Lemon and Liu 2006) and its extension REALL-DUDE (Lemon
et al. 2006b) are environments where non-experts can develop dialogue systems
based on Business Process Models describing the applications. From keywords,
prompts and answer sets defined by the developer, the system generates a GF
grammar. This grammar is used for parsing input, and for generating a language
model in SLF or GSL format.

The Voice Programming system by Georgila and Lemon (Georgila and Lemon
2006; Lemon et al. 2006a) uses an SLF language model generated from a GF
grammar.

Perera and Ranta (2007) have studied how GF grammars can be used for
localization of dialogue systems. A GF grammar was developed and localized
to 4 other languages in significantly less time than an equivalent GSL grammar.
They also found the GSL grammar generated by GF to be much smaller than
the hand-written GSL grammar.

36 Bringert

9 Conclusions

We have shown how GF grammars can be compiled to several common speech
recognition grammar formats. This has helped decrease development time, im-
prove modifiability, aid localization and enable portability in a number of ex-
perimental dialogue systems.

Several systems developed in the TALK and DICO projects use the same
GF grammars for speech recognition, parsing and multimodal fusion (Ericsson
et al. 2006). Using the same grammar for multiple system components reduces
development and modification costs, and makes it easier to maintain
consistency within the system.

The feasibility of rapid localization of dialogue systems which use GF
grammars has been demonstrated in the GoTGoDiS (Ericsson et al. 2006) sys-
tem, and in experiments by Perera and Ranta (2007).

Using speech recognition grammars generated by GF makes it easy to sup-
port different speech recognizers. For example, by using the GF grammar
compiler, the DUDE (Lemon and Liu 2006) system can support both the ATK
and Nuance recognizers.

Implementations of the methods described in this paper are freely available
as part of the GF distribution1.

Acknowledgments

Aarne Ranta, Peter Ljunglöf, Rebecca Jonson, David Hjelm, Ann-Charlotte
Forslund, Håkan Burden, Xingkun Liu, Oliver Lemon, and the anonymous ref-
erees have contributed valuable comments on the grammar compiler implemen-
tation and/or this article. We would like to thank Nuance Communications,
Inc., OptimSys, s.r.o., and Opera Software ASA for software licenses and tech-
nical support. The code in this paper has been typeset using lhs2TeX, with
help from Andres Löh. This work has been partly funded by the EU TALK
project, IST-507802.

References
Johan Bos. Compilation of unification grammars with compositional semantics

to speech recognition packages. In Proceedings of the 19th international con-
ference on Computational linguistics, pages 1–7, Morristown, NJ, USA, 2002.
Association for Computational Linguistics. URL http://portal.acm.org/
citation.cfm?id=1072323.

Björn Bringert, Robin Cooper, Peter Ljunglöf, and Aarne Ranta. Multi-
modal Dialogue System Grammars. In Proceedings of DIALOR’05, Ninth
Workshop on the Semantics and Pragmatics of Dialogue, pages 53–60,

1 http://www.cs.chalmers.se/~aarne/GF/

Speech Recognition Grammar Compilation in Grammatical Framework 37

Nancy, France, 2005. URL http://www.cs.chalmers.se/~bringert/publ/
mm-grammars-dialor/mm-grammars-dialor.pdf.

Janusz A. Brzozowski. Canonical regular expressions and minimal state graphs
for definite events. In Mathematical theory of Automata, Volume 12 of MRI
Symposia Series, pages 529–561. Polytechnic Press, Polytechnic Institute of
Brooklyn, N.Y., 1962.

John Dowding, Beth A. Hockey, Jean M. Gawron, and Christopher Culy. Prac-
tical issues in compiling typed unification grammars for speech recognition. In
ACL ’01: Proceedings of the 39th Annual Meeting on Association for Compu-
tational Linguistics, pages 164–171, Morristown, NJ, USA, 2001. Association
for Computational Linguistics. URL http://portal.acm.org/citation.
cfm?id=1073034.

Stina Ericsson, Gabriel Amores, Björn Bringert, Håkan Burden, Ann C.
Forslund, David Hjelm, Rebecca Jonson, Staffan Larsson, Peter Ljunglöf,
Pilar Manchón, David Milward, Guillermo Pérez, and Mikael Sandin. Soft-
ware illustrating a unified approach to multimodality and multilinguality
in the in-home domain. Technical Report 1.6, TALK Project, 2006. URL
http://www.talk-project.org/.

Kallirroi Georgila and Oliver Lemon. Programming by Voice: enhancing adap-
tivity and robustness of spoken dialogue systems. In BRANDIAL’06, Pro-
ceedings of the 10th Workshop on the Semantics and Pragmatics of Dialogue,
pages 199–200, 2006. URL http://www.ling.uni-potsdam.de/brandial/
Proceedings/brandial06_georgila_etal.pdf.

Rebecca Jonson. Generating Statistical Language Models from Interpretation
Grammars in Dialogue Systems. In Proceedings of EACL’06, 2006. URL
http://citeseer.ist.psu.edu/jonson06generating.html.

Staffan Larsson. Issue-based Dialogue Management. PhD thesis, Göteborg Uni-
versity, 2002.

Oliver Lemon and Xingkun Liu. DUDE: a Dialogue and Understanding De-
velopment Environment, mapping Business Process Models to Information
State Update dialogue systems. In EACL 2006, 11st Conference of the Eu-
ropean Chapter of the Association for Computational Linguistics, 2006. URL
http://homepages.inf.ed.ac.uk/olemon/dude-final.pdf.

Oliver Lemon, Kallirroi Georgila, David Milward, and Tommy Herbert. Pro-
gramming Devices and Services. Technical Report 2.3, TALK Project, 2006a.
URL http://www.talk-project.org/.

Oliver Lemon, Xingkun Liu, Daniel Shapiro, and Carl Tollander. Hierarchical
Reinforcement Learning of Dialogue Policies in a development environment
for dialogue systems: REALL-DUDE. In BRANDIAL’06, Proceedings of

38 Bringert

the 10th Workshop on the Semantics and Pragmatics of Dialogue, pages 185–
186, September 2006b. URL http://www.ling.uni-potsdam.de/brandial/
Proceedings/brandial06_lemon_etal.pdf.

Peter Ljunglöf. Expressivity and Complexity of the Grammatical Framework.
PhD thesis, Göteborg University, Göteborg, Sweden, 2004. URL http://
www.ling.gu.se/~peb/pubs/p04-PhD-thesis.pdf.

Peter Ljunglöf. Converting Grammatical Framework to Regulus. In SPEECH-
GRAM 2007, 2007a.

Peter Ljunglöf. Personal communication, March 2007b.

Mehryar Mohri and Mark J. Nederhof. Regular Approximation of Context-Free
Grammars through Transformation. In Jean C. Junqua and Gertjan van
Noord, editors, Robustness in Language and Speech Technology, pages 153–
163. Kluwer Academic Publishers, Dordrecht, 2001. URL http://www.coli.
uni-sb.de/publikationen/softcopies/Mohri:2001:RAC.pdf.

Robert C. Moore. Removing left recursion from context-free grammars. In
Proceedings of the first conference on North American chapter of the Asso-
ciation for Computational Linguistics, pages 249–255, San Francisco, CA,
USA, 2000. Morgan Kaufmann Publishers Inc. URL http://portal.acm.
org/citation.cfm?id=974338.

Robert C. Moore. Using Natural-Language Knowledge Sources in Speech Recog-
nition. In K. M. Ponting, editor, Computational Models of Speech Pattern Pro-
cessing, pages 304–327. Springer, 1999. URL http://research.microsoft.
com/users/bobmoore/nato-asi.pdf.

Mark J. Nederhof. Regular Approximation of CFLs: A Grammatical View. In
Harry Bunt and Anton Nĳholt, editors, Advances in Probabilistic and other
Parsing Technologies, pages 221–241. Kluwer Academic Publishers, 2000.
URL http://www.dcs.st-and.ac.uk/~mjn/publications/2000d.pdf.

Nadine Perera and Aarne Ranta. An Experiment in Dialogue System Local-
ization with the GF Resource Grammar Library. In SPEECHGRAM 2007,
2007.

Aarne Ranta. Grammatical Framework: A Type-Theoretical Grammar For-
malism. Journal of Functional Programming, 14(2):145–189, March 2004.
ISSN 0956-7968. doi: 10.1017/S0956796803004738. URL http://portal.
acm.org/citation.cfm?id=967507.

Aarne Ranta, Ali El Dada, and Janna Khegai. The GF Resource Grammar
Library, June 2006. URL http://www.cs.chalmers.se/~aarne/GF/doc/
resource.pdf.

Speech Recognition Grammar Compilation in Grammatical Framework 39

Manny Rayner, Beth A. Hockey, and Pierrette Bouillon. Putting Linguistics into
Speech Recognition: The Regulus Grammar Compiler. CSLI Publications,
Ventura Hall, Stanford University, Stanford, CA 94305, USA, July 2006. ISBN
1575865262.

Jessica Villing and Staffan Larsson. Dico: A Multimodal Menu-based In-
vehicle Dialogue System. In BRANDIAL’06, Proceedings of the 10th
Workshop on the Semantics and Pragmatics of Dialogue, pages 187–188,
2006. URL http://www.ling.uni-potsdam.de/brandial/Proceedings/
brandial06_villing_etal.pdf.

40 Bringert

Paper II Multimodal Dialogue System
Grammars

DIALOR 2005, Nancy

Multimodal Dialogue System Grammars∗

Björn Bringert, Peter Ljunglöf, Aarne Ranta
Department of Computer Science and Engineering

Chalmers University of Technology
and Göteborg University

{bringert,peb,aarne}@cs.chalmers.se

Robin Cooper
Department of Linguistics

Göteborg University
cooper@ling.gu.se

Abstract

We describe how multimodal grammars for dialogue systems can be
written using the Grammatical Framework (GF) formalism. A proof-of-
concept dialogue system constructed using these techniques is also pre-
sented. The software engineering problem of keeping grammars for dif-
ferent languages, modalities and systems (such as speech recognizers and
parsers) in sync is reduced by the formal relationship between the abstract
and concrete syntaxes, and by generating equivalent grammars from GF
grammars.

1 Introduction
We are interested in building multilingual multimodal grammar-based dialogue
systems which are clearly recognisable to users as the same system even if they
use the system in different languages or in different domains using different
mixes of modalities (e.g. in-house vs in-car, and within the in-house domain
with vs without a screen for visual interaction and touch/click input). We wish
to be able to guarantee that the functionality of the system is the same under
the different conditions.

Our previous experience with building such multilingual dialogue systems
is that there is a software engineering problem keeping the linguistic coverage
in sync for different languages. This problem is compounded by the fact that
for each language it is normally the case that a dialogue system requires more
than one grammar, e.g. one grammar for speech recognition and another for
∗ This project is supported by the EU project TALK (Talk and Look, Tools for Ambient

Linguistic Knowledge), IST-507802

43

44 Bringert, Ljunglöf, Ranta, Cooper

interaction with the dialogue manager. Thus multilingual systems become very
difficult to develop and maintain.

In this paper we will explain the nature of the Grammatical Framework
(GF) and how it may provide us with a solution to this problem. The system
is oriented towards the writing of multilingual and multimodal grammars and
forces the grammar writer to keep a collection of grammars in sync. It does
this by using computer science notions of abstract and concrete syntax. Es-
sentially abstract syntax corresponds to the domain knowledge representation
of the system and several concrete syntaxes characterising both natural lan-
guage representations of the domain and representations in other modalities are
related to a single abstract syntax.

GF has a type checker that forces concrete syntaxes to give complete coverage
of the abstract syntax and thus will immediately tell the grammar writer if the
grammars are not in sync. In addition the framework provides possibilities for
converting from one grammar format to another and for combining grammars
and extracting sub-grammars from larger grammars.

2 The Grammatical Framework and multilin-
gual grammars

The main idea of Grammatical Framework (GF) is the separation of abstract
and concrete syntax. The abstract part of a grammar defines a set of abstract
syntactic structures, called abstract terms or trees; and the concrete part defines
a relation between abstract structures and concrete structures.

As an example of a GF representation, the following abstract syntax tree
represents a possible user input in our example dialogue system.

GoFromTo (PStop Chalmers) (PStop Valand)

The English concrete syntax relates the query to the string

“I want to go from Chalmers to Valand”

The Swedish concrete syntax relates it to the string

“Jag vill åka från Chalmers till Valand”

The strings are generated from the tree in a compositional rule-to-rule fashion.
The generation rules are automatically inverted to parsing rules.

The abstract theory of Grammatical Framework (Ranta 2004) is a version
of dependent type theory, similar to LF (Harper et al. 1993), ALF (Magnusson
and Nordström 1994) and COQ (Coq). What GF adds to the logical framework
is the possibility of defining concrete syntax. The expressiveness of the concrete
syntax has developed into a functional programming language, similar to a
restricted version of programming languages like Haskell (Peyton Jones 2003)
and ML (Milner et al. 1997).

Multimodal Dialogue System Grammars 45

Abstract linguistic description Language specific details
(inflection, word order)

Figure 1. Higher-level language descriptions

Abstract linguistic description

Language 1

. . .

Language n

Figure 2. Multilingual grammars

The separation between abstract and concrete syntax was suggested for lin-
guistics in (Curry 1961), using the terms “tectogrammatical” and “phenogram-
matical” structure. Since the distinction has not been systematically exploited
in many well-known grammar formalisms, let us summarize its main advantages.

Higher-level language descriptions The grammar writer has a greater
freedom in describing the syntax for a language. As illustrated in figure 1, when
describing the abstract syntax he/she can choose not to take certain language
specific details into account, such as inflection and word order. Abstracting away
smaller details can make the grammars simpler, both to read and understand,
and to create and maintain.

Multilingual grammar writing It is possible to define several different con-
crete syntax mappings for one particular abstract syntax. The abstract syntax
could e.g. give a high-level description of a family of similar languages, and each
concrete mapping gives a specific language instance, as shown in figure 2.
This kind of multilingual grammar can be used as a model for interlingual
translation between languages. But we do not have to restrict ourselves to only
multilingual grammars; different concrete syntaxes can be given for different
modalities. As an example, consider a grammar for displaying time table infor-
mation. We can have one concrete syntax for writing the information as plain
text, but we could also present the information in the form of a table output as a
LATEX file or in Excel format, and a third possibility is to output the information
in a format suitable for speech synthesis.

Several descriptional levels Having only two descriptional levels is not a
restriction; this can be generalized to as many levels as is wanted, by equating

46 Bringert, Ljunglöf, Ranta, Cooper

Semantics Syntax Morphology Phonology

Figure 3. Several descriptional levels

Controlled syntax Resource syntax Object language

Figure 4. Using resource grammars

the concrete syntax of one grammar level with the abstract syntax of another
level. As an example we could have a spoken dialogue system with a semantical,
a syntactical, a morphological and a phonological level. As illustrated in fig-
ure 3, this system has to define three mappings; i) a mapping from semantical
descriptions to syntax trees; ii) a mapping from syntax trees to sequences of
lexical tokens; and iii) a mapping from lexical tokens to lists of phonemes.
This formulation makes grammars similar to transducers (Karttunen et al. 1996;
Mohri 1997) which are mostly used in morphological analysis, but have been
generalized to dialogue systems by (Lager and Kronlid 2004).

Grammar composition A multi-level grammar as described above can be
viewed as a “black box”, where the intermediate levels are unknown to the user.
Then we are back in our first view as a grammar specifying an abstract and a
concrete level together with a mapping. In this way we can talk about grammar
composition, where the composition G2 ◦G1 of two grammars is possible if the
abstract syntax of G2 is equal to the concrete syntax of G1.

If the grammar formalism supports this, a composition of several grammars
can be pre-compiled into a compact and efficient grammar which doesn’t have to
mention the intermediate domains and structures. This is the case for e.g. finite
state transducers, but also for GF as has been shown by (Ranta 2005).

Resource grammars The possibility of separate compilation of grammar
compositions opens up for writing resource grammars (Ranta 2005). A resource
grammar is a fairly complete linguistic description of a specific language. Many
applications do not need the full power of a language, but instead want to use a
more well-behaved subset, which is often called a controlled language. Now, if we
already have a resource grammar, we do not even have to write a concrete syntax
for the desired controlled language, but instead we can specify the language by
mapping structures in the controlled language into structures in the resource
grammar, as shown in figure 4.

Multimodal Dialogue System Grammars 47

3 Extending multilinguality to multimodality

Parallel multimodality Parallel multimodality is a straightforward instance
of multilinguality. It means that the concrete syntaxes associated with an ab-
stract syntax are not just different natural languages, but different representa-
tion modalities, encoded by language-like notations such as graphic representa-
tion formalisms. An example of parallel multimodality is given below when a
route is described, in parallel, by speech and by a line drawn on a map. Both
descriptions convey the full information alone, without support from the other.

This raises the dialogue management issue of whether all information should
be presented in all modalities. For example, in the implementation described
below all stops are indicated on the graphical presentation of a route whereas
in the natural language presentation only stops where the user must change
are presented. Because GF permits the suppression of information in concrete
syntax, this issue can be treated on the level of grammar instead of dialogue
management.

Integrated multimodality Integrated multimodality means that one con-
crete syntax representation is a combination of modalities. For instance, the
spoken utterance “I want to go from here to here” can be combined with two
pointing gestures corresponding to the two “here”s. It is the two modalities in
combination that convey the full information: the utterance alone or the clicks
alone are not enough.

How to define integrated multimodality with a grammar is less obvious than
parallel multimodality. In brief, different modality “channels” are stored in
different fields of a record, and it is the combination of the different fields that
is sent to the dialogue system parser.

4 Proof-of-concept implementation

We have implemented a multimodal route planning system for public transport
networks. The example system uses the Göteborg tram/bus network, but it can
easily be adapted to other networks. User input is handled by a grammar with
integrated speech and map click modalities. The system uses a grammar with
parallel speech and map drawing modalities. The user and system grammars are
split up into a number of modules in order to simplify reuse and modification.

The system is also multilingual, and can be used in both English and Swedish.
For every English concrete module shown below, there is a corresponding Swedish
module. The system answers in the same language as the user made the query
in.

In addition to the grammars shown below, the application consists of a
number of agents which communicate using OAA (Martin et al. 1999). The
grammars are used by the Embedded GF Interpreter (Bringert 2005) to parse
user input and generate system output.

48 Bringert, Ljunglöf, Ranta, Cooper

4.1 Transport network
The transport network is represented by a set of modules which are used in
both the query and answer grammars. Since the transport network is described
in a separate set of modules, the Göteborg transport network may be replaced
easily. We use cat judgements to declare categories in the abstract syntax.

abstract Transport = {
cat

Stop;
}

The Göteborg transport network grammar extends the generic grammar with
constructors for the stops. Constructors for abstract syntax terms are declared
using fun judgements.

abstract Gbg = Transport ∗∗ {
fun

Angered : Stop;
AxelDahlstromsTorg : Stop;
Bergsjon : Stop;
...

}

4.2 Multimodal input
User input is done with integrated speech and click modalities. The user may
use speech only, or speech combined with clicks on the map. Clicks are expected
when the user makes a query containing “here”.

Common declarations The QueryBase module contains declarations com-
mon to all input modalities. The Query category is used to represent the se-
quentialization of the multimodal input into a single value. The Input category
contains the actual user queries, which will have multimodal representations.
The Click category is also declared here, since it is used by both the click modal-
ity and the speech modality, as shown below.

abstract QueryBase = {
cat

Query;
Input;
Click;

fun
QInput : Input→ Query;

}

Since QueryBase is language neutral and common to the different modalities,
it has a single concrete syntax. In a concrete module, lincat judgements are

Multimodal Dialogue System Grammars 49

used to declare the linearization type of a category, i.e. the type of the concrete
representations of values in the category. Note that different categories may have
different linearization types. The concrete representation of abstract syntax
terms is declared by lin judgements for each constructor in the abstract syntax.

Values in the Input category, which are intended to be multimodal, have
records with one field per modality as their concrete representation. The s1
field contains the speech input, and the s2 field contains the click input. Terms
constructed using the QInput constructor, that is sequentialized multimodal
queries, are represented as the concatenation of the representations of the indi-
vidual modalities, separated by a semicolon.

concrete QueryBaseCnc of QueryBase = {
lincat

Query = {s : Str};
Input = {s1 : Str; s2 : Str};
Click = {s : Str};

lin
QInput i = {s = i .s1 ++ “;” ++ i .s2 };

}

Click modality Click terms contain a list of stops that the click might refer
to:

abstract Click = QueryBase ∗∗ {
cat

StopList;
fun

CStops : StopList→ Click;
NoStop : StopList;
OneStop : String→ StopList;
ManyStops : String→ StopList→ StopList;

}

The same concrete syntax is used for clicks in all languages:

concrete ClickCnc of Click = QueryBaseCnc ∗∗ {
lincat

StopList = {s : Str};
lin

CStops xs = {s = “[” ++ xs.s ++ “]”};
NoStop = {s = “”};
OneStop x = {s = x .s };
ManyStops x xs = {s = x .s ++ “,” ++ xs.s };

}

50 Bringert, Ljunglöf, Ranta, Cooper

Speech modality The Query module adds basic user queries and a way to
use a click to indicate a place.

abstract Query = QueryBase ∗∗ {
cat

Place;
fun

GoFromTo : Place→ Place→ Input;
GoToFrom : Place→ Place→ Input;
PClick : Click→ Place;

}

This module has a concrete syntax using English speech. Like terms in the
Query category, Place terms are linearized to records with two fields, one for
each modality.

concrete QueryEng of Query = QueryBaseCnc ∗∗ {
lincat

Place = {s1 : Str; s2 : Str};
lin

GoFromTo x y = {
s1 = [“i want to go from”] ++ x .s1 ++ “to” ++ y .s1 ;
s2 = x .s2 ++ y .s2
};
GoToFrom x y = {

s1 = [“i want to go to”] ++ x .s1 ++ “from” ++ y .s1 ;
s2 = x .s2 ++ y .s2
};
PClick c = {s1 = “here”; s2 = c.s };

}

Indexicality To refer to her current location, the user can use “here” without
a click, or omit either origin or destination. The system is assumed to know
where the user is located. Since “here” may be used with or without a click,
inputs with two occurrences of “here” and only one click are ambiguous. A
query might also be ambiguous even if it can be parsed unambiguously, since
one click can correspond to multiple stops when the stops are close to each other
on the map.

These are the abstract syntax declarations for this feature (in the Query
module):

fun
PHere : Place;
ComeFrom : Place→ Input;
GoTo : Place→ Input;

Multimodal Dialogue System Grammars 51

The English concrete syntax for this is added to the QueryEng module. Note
that the click (s2) field of the linearization of an indexical “here” is empty, since
there is no click.

lin
PHere = {s1 = “here”; s2 = []};
ComeFrom x = {

s1 = [“i want to come from”] ++ x .s1 ;
s2 = x .s2
};
GoTo x = {

s1 = [“i want to go to”] ++ x .s1 ;
s2 = x .s2
};

Tying it all together The TransportQuery module ties together the transport
network, speech modality and click modality modules.

abstract TransportQuery = Transport,Query,Click ∗∗ {
fun

PStop : Stop→ Place;
}

4.3 Multimodal output
The system’s answers to the user’s queries are presented with speech and draw-
ings on the map. This is an example of parallel multimodality as the speech
and the map drawings are independent. The information presented in the two
modalities is however not identical, as the spoken output only contains infor-
mation about where to change trams/buses. The map output shows the entire
path, including intermediate stops.

Abstract syntax for routes The abstract syntax for answers (routes) con-
tains the information needed by all the concrete syntaxes. All concrete syntaxes
might not use all of the information. A route is a non-empty list of legs, and a
leg consists of a line and a list of at least two stops.

abstract Route = Transport ∗∗ {
cat

Route;
Leg;
Line;
Stops;

fun
Then : Leg→ Route→ Route;

52 Bringert, Ljunglöf, Ranta, Cooper

OneLeg : Leg→ Route;
LineLeg : Line→ Stops→ Leg;
NamedLine : String→ Line;
ConsStop : Stop→ Stops→ Stops;
TwoStops : Stop→ Stop→ Stops;

}

Concrete syntax for drawing routes The map drawing language contains
sequences of labeled edges to be drawn on the map. The string

drawEdge (6, [Chalmers, Vasaplatsen]); drawEdge (2, [Vasaplatsen,
Gronsakstorget, Brunnsparken]);

is an example of a string in the map drawing language described by the RouteMap
concrete syntax. The TransportLabels module extended by this module is a sim-
ple concrete syntax for stops.

concrete RouteMap of Route = TransportLabels ∗∗ {
lincat

Route, Leg, Line,Stops = {s : Str};
lin

Then l r = {s = l .s ++ “;” ++ r .s };
OneLeg l = {s = l .s ++ “;”};
LineLeg l ss =
{s = “drawEdge” ++ “(” ++ l .s ++ “,” ++ “[” ++ ss.s ++ “]” ++ “)”};

NamedLine n = {s = n.s };
ConsStop s ss = {s = s.s ++ “,” ++ ss.s };
TwoStops x y = {s = x .s ++ “,” ++ y .s };

}

English concrete syntax for routes In the English concrete syntax we wish
to list only the first and last stops of each leg of the route. The TransportNames
module gives English representations of the stop names by replacing all non-
English letters with the corresponding English ones in order to give the speech
recognizer a fair chance.

concrete RouteEng of Route = TransportNames ∗∗ {
lincat

Route, Leg, Line = {s : Str};
Stops = {start : Str; end : Str};

lin
Then l r = {s = l .s ++ “.” ++ r .s };
OneLeg l = {s = l .s ++ “.”};
LineLeg l ss =
{s = “Take” ++ l .s ++ “from” ++ ss.start ++ “to” ++ ss.end };

Multimodal Dialogue System Grammars 53

NamedLine n = {s = n.s };
ConsStop s ss = {start = s.s; end = ss.end };
TwoStops s1 s2 = {start = s1 .s; end = s2 .s };

}

5 Related Work

Johnston (1998) describes an approach to multimodal parsing where chart pars-
ing is extended to multiple dimensions and unification is used to integrate infor-
mation from different modalities. The approach described in this paper achieves
a similar result by using records along with the existing unification mechanism
for resolving discontinuous constituents. The main advantages of our approach
are that it supports both parsing and generation, and that it does not require
extending the existing formalism.

6 Conclusion

GF provides a solution to the problems named in the introduction to this pa-
per. Abstract syntax can be used to characterise the linguistic functionality of
a system in an abstract language and modality independent way. The system
forces the programmer to define concrete syntaxes which completely cover the
abstract syntax. In this way, the system forces the programmer to keep all the
concrete syntaxes in sync. In addition, since GF is oriented towards creating
grammars from other grammars, our philosophy is that it should not be neces-
sary for a grammar writer to have to create by hand any equivalent grammars
in different formats. For example, if the grammar for the speech recogniser
is to be the same as that used for interaction with dialogue management but
the grammars are needed in different formats, then there should be a compiler
which takes the grammar from one format to the other. Thus, for example, we
have a compiler which converts a GF grammar to Nuance’s format for speech
recognition grammars. The idea of generating context-free speech recognition
grammars from grammars in a higher-level formalism has been described by
Dowding et al. (2001), and implemented in the Regulus system (Rayner et al.
2003).

Another reason for using GF grammars has to do with the use of resource
grammars and cascades of levels of representation as described in section 2.
This allows for the hiding of grammatical detail from language and the pre-
cise implementation of modal interaction for other modalities. This enables
the dialogue system developer to reuse previous grammar or modal interaction
implementations without herself having to reprogram the details for each new
dialogue system. Thus the dialogue engineer need not be a grammar engineer
or an expert in multimodal interfaces.

54 Bringert, Ljunglöf, Ranta, Cooper

References
Björn Bringert. Embedded Grammars. Master’s thesis, Chalmers University

of Technology, Göteborg, Sweden, February 2005. URL http://www.cs.
chalmers.se/~bringert/publ/exjobb/embedded-grammars.pdf.

Coq. The Coq Proof Assistant Reference Manual. The Coq Development Team,
1999. Available at http://pauillac.inria.fr/coq/

Haskell B. Curry. Some Logical Aspects of Grammatical Structure. In Roman O.
Jakobson, editor, Structure of Language and its Mathematical Aspects, volume
12 of Symposia on Applied Mathematics, pages 56–68. American Mathemati-
cal Society, Providence, 1961.

John Dowding, Beth A. Hockey, Jean M. Gawron, and Christopher Culy. Prac-
tical issues in compiling typed unification grammars for speech recognition. In
ACL ’01: Proceedings of the 39th Annual Meeting on Association for Compu-
tational Linguistics, pages 164–171, Morristown, NJ, USA, 2001. Association
for Computational Linguistics. URL http://portal.acm.org/citation.
cfm?id=1073034.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for defining
logics. J. ACM, 40(1):143–184, January 1993. ISSN 0004-5411. doi: 10.1145/
138027.138060. URL http://portal.acm.org/citation.cfm?id=138060.

Michael Johnston. Unification-based multimodal parsing. In Proceedings of the
36th annual meeting on Association for Computational Linguistics, pages 624–
630, Morristown, NJ, USA, 1998. Association for Computational Linguistics.
URL http://portal.acm.org/citation.cfm?id=980949.

Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefenstette, and Anne Schiller.
Regular expressions for language engineering. Natural Language Engineering,
2(4):305–328, 1996.

Torbjörn Lager and Fredrik Kronlid. The Current platform: Building conver-
sational agents in Oz. In 2nd International Mozart/Oz Conference, October
2004.

Lena Magnusson and Bengt Nordström. The Alf proof editor and its proof
engine, volume 806 of Lecture Notes in Computer Science, pages 213–237.
Springer, 1994. doi: 10.1007/3-540-58085-9_78. URL http://dx.doi.org/
10.1007/3-540-58085-9_78.

David L. Martin, Adam J. Cheyer, and Douglas B. Moran. The
open agent architecture: A framework for building distributed soft-
ware systems. Applied Artificial Intelligence, 13(1-2):91–128, 1999.
URL http://www.scopus.com/scopus/record/display.url?view=
extended&origin=resultslist&eid=2-s2.0-0032805927.

Multimodal Dialogue System Grammars 55

Robin Milner, Mads Tofte, Robert Harper, and David Macqueen. The Definition
of Standard ML - Revised. The MIT Press, May 1997. ISBN 0262631814.

Mehryar Mohri. Finite-state transducers in language and speech processing.
Computational Linguistics, 23(2):269–312, 1997.

Simon Peyton Jones. The Haskell 98 Language. Journal of Functional Program-
ming, 13(1), 2003.

A. Ranta. Modular Grammar Engineering in GF. Research in Language and
Computation, 2005. To appear.

Aarne Ranta. Grammatical Framework: A Type-Theoretical Grammar For-
malism. Journal of Functional Programming, 14(2):145–189, March 2004.
ISSN 0956-7968. doi: 10.1017/S0956796803004738. URL http://portal.
acm.org/citation.cfm?id=967507.

Manny Rayner, Beth A. Hockey, and John Dowding. An open source environ-
ment for compiling typed unification grammars into speech recognisers. In
EACL ’03: Proceedings of the tenth conference on European chapter of the
Association for Computational Linguistics, pages 223–226, Morristown, NJ,
USA, 2003. Association for Computational Linguistics. ISBN 1111567890.
URL http://portal.acm.org/citation.cfm?id=1067790.

56 Bringert, Ljunglöf, Ranta, Cooper

Paper III A Pattern for Almost
Compositional Functions

ICFP 2006, Portland

A Pattern for Almost Compositional Functions

Björn Bringert and Aarne Ranta
Department of Computer Science and Engineering

Chalmers University of Technology and Göteborg University
{bringert,aarne}@cs.chalmers.se

Abstract
This paper introduces a pattern for almost compositional functions

over recursive data types, and over families of mutually recursive data
types. Here “almost compositional” means that for a number of the con-
structors in the type(s), the result of the function depends only on the
constructor and the results of calling the function on the constructor’s ar-
guments. The pattern consists of a generic part constructed once for each
data type or family of data types, and a task-specific part. The generic
part contains the code for the predictable compositional cases, leaving the
interesting work to the task-specific part. Examples of the pattern imple-
mented in dependent type theory with inductive families, in Haskell with
generalized algebraic data types and rank-2 polymorphism, and in Java
using a variant of the Visitor design pattern are given. The relationship
to the “Scrap Your Boilerplate” approach to generic programming, and
to general tree types in dependent type theory are also investigated.

1 Introduction
This paper addresses the issue of repetitive code in operations on rich data
structures. To give concrete examples of what we would like to be able to do,
we start by giving some motivating problems.

1.1 Some motivating problems
Suppose that you have an abstract syntax definition with many syntactic types
such as statement, expression, and variable.

1. Write a function that renames all variables in a program by prepending
an underscore to their names. Do this with a case expression that has just
two branches: one for the variables, another for the rest.

2. Write a function that constructs a symbol table containing all variables
declared in a program, and the type of each variable. Do this with a case
expression that has just two branches: one for declarations, another for
the rest.

59

60 Bringert, Ranta

3. Write a function which gives fresh names to all variables in a program. Do
this using only three cases: one for variable bindings, another for variable
uses, and a third for the rest.

One problem when writing recursive functions which need to traverse rich
data structures is that the straightforward way to write them involves large
amounts of traversal code which tends to be repeated in each function. There
are several problems with this:

• The repeated traversals are probably implemented using copy-and-paste
or retyping, both of which are error-prone and can lead to maintenance
problems.

• When we add a constructor to the data type, we need to change all func-
tions that traverse the data type, many of which may not need any specific
behavior for the new constructor.

• Repeated traversal code obscures the interesting cases where the functions
do their real work.

• The need for complete traversal code for the whole family of data types in
every function could encourage a less modular programming style where
multiple operations are collected in a single function.

1.2 The solution

The pattern which we present in this paper allows the programmer to solve
problems such as the above in a (hopefully) intuitive way. First we write the
traversal code once and for all for our data type or family of data types. We
then reuse this component to succinctly express the operations which we want
to define.

1.3 Article overview

We first present the simple case of a single recursive algebraic data type, and
show examples of using the pattern for this case, with examples in plain Haskell
98 (Peyton Jones 2003a). After that, we generalize this to the more com-
plex case of a family of data types, and show how the pattern can be used
in dependent type theory (Martin-Löf 1984; Nordström et al. 1990) with in-
ductive families (Dybjer 1994) and in Haskell with generalized algebraic data
types (Peyton Jones et al. 2006; Augustsson and Petersson 1994) and rank-2
polymorphism. We then prove some properties of our compositional operations,
using the laws for applicative functors (McBride and Paterson 2007). We go on
to express the pattern in Java (Gosling et al. 2005) with parametric polymor-
phism (Bracha et al. 1998), using a variant of the Visitor design pattern (Gamma
et al. 1995). In the following section, we briefly describe some tools which can be
used to automate the process of writing the necessary support code for a given

A Pattern for Almost Compositional Functions 61

data type. Finally, we discuss some related work in generic programming, type
theory, object-oriented programming and compiler construction, and provide
some conclusions.

2 Abstract Syntax and Algebraic Data Types
Algebraic data types provide a natural way to implement the abstract syntax in
a compiler. To give an example, the following Haskell type defines the abstract
syntax of lambda calculus with abstractions, applications, and variables. For
more information about using algebraic data types to represent abstract syn-
tax for programming languages, see for example Appel’s (1997) text books on
compiler construction.

data Exp = EAbs String Exp | EApp Exp Exp | EVar String

Pattern matching is the technique for defining functions on algebraic data
types. These functions are typically recursive. An example is a function that
renames all the variables in an expression by prepending an underscore to their
names:

rename :: Exp→ Exp
rename e = case e of

EAbs x b → EAbs ("_" ++ x) (rename b)
EApp c a → EApp (rename c) (rename a)
EVar x → EVar ("_" ++ x)

3 Compositional Functions
Many functions used in compilers are compositional, in the sense that the result
for a complex argument is constructed from the results for its parts. The rename
function is an example of this. The essence of compositional functions is defined
by the following higher-order function:

composOp :: (Exp→ Exp)→ Exp→ Exp
composOp f e = case e of

EAbs x b → EAbs x (f b)
EApp c a → EApp (f c) (f a)

→ e

Its power lies in that it can be used when defining other functions, to take care
of cases which are just compositional. Such is the EApp case in rename, which
we thus omit by writing:

rename :: Exp→ Exp
rename e = case e of

62 Bringert, Ranta

EAbs x b → EAbs ("_" ++ x) (rename b)
EVar x → EVar ("_" ++ x)

→ composOp rename e

In general, an abstract syntax has many more constructors, and this pattern
saves much more work. For instance, in the implementation of GF (Ranta
2004), the Exp type has 30 constructors, and composOp is used in more than 20
functions, typically covering 90 % of all cases.

A major restriction of composOp is that its return type is Exp. How do we
use it if we want to return something else? If we simply want to compute some
result using the abstract syntax tree, without modifying the tree, we can use
composFold :

composFold :: Monoid o ⇒ (Exp→ o)→ Exp→ o
composFold f e = case e of

EAbs x b → f b
EApp c a → f c ⊕ f a

→ ∅

This function takes an argument which maps terms to a monoid, and combines
the results. The Monoid class requires an identity element ∅, which we return for
leaf nodes, and an associative operation (⊕), which we use to combine results
from nodes with more than one child.

class Monoid a where
∅ :: a
(⊕) :: a → a → a

Using composFold we can now, for example, write a function which gets the
names of all free variables in an expression:

free :: Exp→ Set String
free e = case e of

EAbs x b → free b \ {x}
EVar x → {x}

→ composFold free e

This example uses a Set type with the operations \, {·}, ∅ and ∪, with a Monoid
instance such that ∅ = ∅ and (⊕) = ∪.

3.1 Monadic compositional functions
When defining a compiler in Haskell, it is convenient to use monads instead
of plain functions, to deal with errors, state, etc. To this end, we generalize
composOp to a monadic variant:

composM :: Monad m ⇒ (Exp→ m Exp)→ Exp→ m Exp
composM f e = case e of

A Pattern for Almost Compositional Functions 63

EAbs x b → return EAbs ‘ap‘ return x ‘ap‘ f b
EApp c a → return EApp ‘ap‘ f c ‘ap‘ f a

→ return e

Here we are using the Monad type class and the ap function from the Haskell
98 Libraries (Peyton Jones 2003b):

class Monad m where
(>>=) :: m a → (a → m b)→ m b
return :: a → m a

ap :: Monad m ⇒ m (a → b)→ m a → m b
ap mf mx = mf >>= λf → mx >>= λx → return (f x)

If we want to maintain some state across the computation over the tree, we
can use composM with a state monad (Jones 1995). In the example below, we
will use a state monad State with these operations:

readState :: State s s
writeState :: s → State s ()
runState :: s → State s a → (a, s)

Now we can, for example, write a function that gives fresh names of the form
"_n", where n is an integer, to all bound variables in an expression. Here the
state is an infinite supply of fresh variable names, and we pass a table of the
new names for the bound variables to the recursive calls.

fresh :: Exp→ Exp
fresh = fst ◦ runState names ◦ f []

where names = ["_" ++ show n | n ← [0 . .]]
f :: [(String,String)]→ Exp→ State [String] Exp
f vs t = case t of

EAbs x b → do x ′ : ns ← readState
writeState ns
let vs ′ = (x , x ′) : vs
return (EAbs x ′) ‘ap‘ f vs ′ b

EVar x → do let x ′ = lookup′ x x vs
return (EVar x ′)

→ composM (f vs) t
lookup′ :: Eq a ⇒ b → a → [(a, b)]→ b
lookup′ def [] = def
lookup′ def k ((x , y) : xs) = if x ≡ k then y else lookup′ def k xs

3.2 Generalizing composOp, composM and composFold

McBride and Paterson (McBride and Paterson 2007) introduce applicative func-
tors, which generalize monads. An applicative functor has two operations, pure
and �, corresponding to the return and ap operations of a Monad.

64 Bringert, Ranta

class Applicative f where
pure :: a → f a
(�) :: f (a → b)→ f a → f b

Since the composM function only uses return and ap, it actually works on
all applicative functors, not just on monads. We call this generalized version
compos:

compos :: Applicative f ⇒ (Exp→ f Exp)→ Exp→ f Exp
compos f e = case e of

EAbs x b → pure EAbs � pure x � f b
EApp g h → pure EApp � f g � f h

→ pure e

By using wrapper types with appropriate Applicative instances, we can now
define composOp, composM and composFold in terms of compos:

composOp :: (Exp→ Exp)→ Exp→ Exp
composOp f = runIdentity ◦ compos (Identity ◦ f)
newtype Identity a = Identity {runIdentity :: a }
instance Applicative Identity where

pure = Identity
Identity f � Identity x = Identity (f x)

composM :: Monad m ⇒ (Exp→ m Exp)→ Exp→ m Exp
composM f = unwrapMonad ◦ compos (WrapMonad ◦ f)
newtype WrappedMonad m a = WrapMonad{unwrapMonad :: m a }
instance Monad m ⇒ Applicative (WrappedMonad m) where

pure = WrapMonad ◦ return
WrapMonad f � WrapMonad v = WrapMonad (f ‘ap‘ v)

composFold :: Monoid o ⇒ (Exp→ o)→ Exp→ o
composFold f = getConst ◦ compos (Const ◦ f)
newtype Const a b = Const {getConst :: a }
instance Monoid m ⇒ Applicative (Const m) where

pure = Const ∅
Const f � Const v = Const (f ⊕ v)

Further operators, such as composM_ below can be defined by using other
wrapper types.

composM_ :: Monad m ⇒ (Exp→ m ())→ Exp→ m ()
composM_ f = unwrapMonad_ ◦ composFold (WrapMonad_ ◦ f)
newtype WrappedMonad_ m = WrapMonad_{unwrapMonad_ :: m ()}
instance Monad m ⇒ Monoid (WrappedMonad_ m) where
∅ = WrapMonad_ (return ())
WrapMonad_ x ⊕WrapMonad_ y = WrapMonad_ (x >> y)

A Pattern for Almost Compositional Functions 65

4 Systems of Data Types

4.1 Several algebraic data types
For many languages, the abstract syntax is not just one data type, but many,
which are often defined by mutual induction. An example is the following simple
imperative language with statements, expressions, variables, and types. In this
language, statements that return values (for example assignments or maybe
blocks that end with a return statement) can be used as expressions.

data Stm = SDecl Typ Var | SAss Var Exp | SBlock [Stm] | SReturn Exp

data Exp = EStm Stm | EAdd Exp Exp | EVar Var | EInt Int

data Var = V String

data Typ = TInt | TFloat

Now we cannot any longer easily define general composOp functions, as some
of the recursive calls must be done on terms which have different types than
the value on which the function was called. Implementing operations such as
α-conversion on this kind of family of data types quickly becomes very laborious.

4.2 Categories and trees
An alternative to separate mutual data types for abstract syntax is to define
just one type Tree, whose constructors take Trees as arguments:

data Tree = SDecl Tree Tree
| SAss Tree Tree
| SBlock [Tree]
| SReturn Tree
| EStm Tree
| EAdd Tree Tree
| EVar Tree
| EInt Int
| V String
| TInt
| TFloat

This is essentially the representation one would use in a dynamically typed
language. It does not, however, constrain the combinations enough for our
liking: there are many Trees that are even syntactically nonsense.

A solution to this problem is provided by dependent types (Martin-Löf 1984;
Nordström et al. 1990). Instead of a constant type Tree, we define an inductive
family (Dybjer 1994) Tree c, indexed by a category c. The category is just a
label to distinguish between different types of trees. We must now leave standard
Haskell and use a Haskell-like language with dependent types and inductive
families. Agda (Coquand 2000) is one such language. What one would define
in Agda is an enumerated type:

66 Bringert, Ranta

data Cat = Stm | Exp | Var | Typ

followed by an idata (inductive data type, or in this case an inductive family
of data types) definition of Tree, indexed on Cat. We omit the Agda definitions
of the Tree family and the compos function as they are virtually identical to the
Haskell versions shown below, except that in Agda the index for Tree is a value
of type Cat, whereas in Haskell the index is a dummy data type.

We can also do our exercise with the limited form of dependent types pro-
vided by Haskell since GHC 6.4: Generalized Algebraic Data Types (GADTs)
(Peyton Jones et al. 2006; Augustsson and Petersson 1994). We cannot quite
define a type of categories, but we can define a set of dummy data types:

data Stm
data Exp
data Var
data Typ

To define the inductive family of trees, we write, in this extension of Haskell:

data Tree :: ∗ → ∗ where
SDecl :: Tree Typ→ Tree Var→ Tree Stm
SAss :: Tree Var→ Tree Exp→ Tree Stm
SBlock :: [Tree Stm]→ Tree Stm
SReturn :: Tree Exp→ Tree Stm
EStm :: Tree Stm→ Tree Exp
EAdd :: Tree Exp→ Tree Exp→ Tree Exp
EVar :: Tree Var→ Tree Exp
EInt :: Int→ Tree Exp
V :: String→ Tree Var
TInt :: Tree Typ
TFloat :: Tree Typ

In Haskell we cannot restrict the types used as indices in the Tree family, which
makes it entirely possible to construct types such as Tree String. However, since
there are no constructors of this type, ⊥ is the only element in it.

4.3 Compositional operations

The power of inductive families is shown in the definition of the function compos.
We now define it simultaneously for the whole syntax, and can then use it to
define tree-traversing programs concisely.

compos :: Applicative f ⇒ (∀a. Tree a → f (Tree a))→ Tree c → f (Tree c)
compos f t = case t of

SDecl x y → pure SDecl � f x � f y
SAss x y → pure SAss � f x � f y
SBlock xs → pure SBlock � traverse f xs

A Pattern for Almost Compositional Functions 67

class Compos t where
compos :: Applicative f ⇒ (∀a. t a → f (t a))→ t c → f (t c)

composOp :: Compos t ⇒ (∀a. t a → t a)→ t c → t c
composOp f = runIdentity ◦ compos (Identity ◦ f)
composFold :: (Monoid o,Compos t)⇒ (∀a. t a → o)→ t c → o
composFold f = getConst ◦ compos (Const ◦ f)
composM :: (Compos t ,Monad m)⇒ (∀a. t a → m (t a))→ t c → m (t c)
composM f = unwrapMonad ◦ compos (WrapMonad ◦ f)
composM_ :: (Compos t ,Monad m)⇒ (∀a. t a → m ())→ t c → m ()
composM_ f = unwrapMonad_ ◦ composFold (WrapMonad_ ◦ f)

Figure 1. The ComposOp module.

SReturn x → pure SReturn � f x
EAdd x y → pure EAdd � f x � f y
EStm x → pure EStm � f x
EVar x → pure EVar � f x

→ pure t

The first compos, the function to apply to the subtrees, is now a polymorphic
function, since it is applied to subtrees of different types. The argument to the
SBlock constructor is a list of statements, which we handle by visiting the list
elements from left to right, using the traverse function (McBride and Paterson
2007), which generalized mapM :

traverse :: Applicative f ⇒ (a → f b)→ [a]→ f [b]
traverse f [] = pure []
traverse f (x : xs) = pure (:) � f x � traverse f xs

The other compos* functions are special cases of compos in the same way as
before.

4.4 A library of compositional operations
In order to provide generic implementations of the different functions, we over-
load compos and define the other operations in terms of it. The code for this is
shown in Figure 1.

4.5 Migrating existing programs
Replacing a family of data types with a GADT does not change the appearance
of the expressions and patterns in the syntax tree types. However, the types now
have the form Tree c for some c. If we want, we can give the dummy types names
other than those of the original categories, for example Stm_, Exp_,Var_, and

68 Bringert, Ranta

Typ_, and use type synonyms to make the types also look like they did when
we had multiple data types:

type Stm = Tree Stm_
type Exp = Tree Exp_
type Var = Tree Var_
type Typ = Tree Typ_

This allows us to modify existing programs to switch from a family of data
types to a GADT, simply by replacing the abstract syntax type definitions. All
existing functions remain valid with the new abstract syntax definition, which
makes it possible to take advantage of our operators when writing new functions,
without being forced to change any existing ones.

4.6 Examples

Example: Rename variables

It would be very laborious to define a renaming function for the original Haskell
definition with separate data types (as shown in Section 4.1). But now it is
easy:

rename :: Tree c → Tree c
rename t = case t of

V x → V ("_" ++ x)
→ composOp rename t

Example: Warnings for assignments

To encourage pure functionality, this function sounds the bell each time an as-
signment occurs. Since we are not interested in the return value of the function,
but only in its IO outputs, we use the function composM_ (like composM but
without a tree result, see Figure 1 for its definition).

warnAssign :: Tree c → IO ()
warnAssign t = case t of

SAss → putChar (chr 7)
→ composM_ warnAssign t

Example: Symbol table construction

This function constructs a variable symbol table by folding over the syntax tree.
Once again, the return value is of no interest. This function uses the Monoid
instance for lists, where the associative operation is ++, and the identity element
is [].

A Pattern for Almost Compositional Functions 69

symbols :: Tree c → [(Tree Var,Tree Typ)]
symbols t = case t of

SDecl typ var → [(var , typ)]
→ composFold symbols t

Example: Constant folding

We want to replace additions of constants by their result. Here is a first attempt:

constFold :: Tree c → Tree c
constFold e = case e of

EAdd (EInt x) (EInt y)→ EInt (x + y)
→ composOp constFold e

This works for simple cases, but what about for example 1 + (2 + 3)? This is
an addition of constants, but is not matched by our pattern above. We have to
look at the results of the recursive calls:

constFold ′ :: Tree c → Tree c
constFold ′ e = case e of

EAdd x y → case (constFold ′ x , constFold ′ y) of
(EInt n,EInt m)→ EInt (n + m)
(x ′, y ′) → EAdd x ′ y ′

→ composOp constFold ′ e

This illustrates a common pattern used when the recursive calls can introduce
terms which we want to handle.

Example: Syntactic sugar

This example shows how easy it is to add syntax constructs as syntactic sugar,
i.e. syntactic constructs that can be eliminated. Suppose that you want to add
increment statements. This means a new branch in the definition of Tree c from
Section 4.2:

SIncr :: Tree Var→ Tree Stm

Increments are eliminated by translation to assignments as follows:

elimIncr :: Tree c → Tree c
elimIncr t = case t of

SIncr v → SAss v (EAdd (EVar v) (EInt 1))
→ composOp elimIncr t

70 Bringert, Ranta

4.7 Properties of compositional operations
The following laws hold for our definitions of the compos* functions:

Identity 1 compos pure = pure
Identity 2 composOp id = id
Identity 3 composFold (λ → ∅) = λ → ∅

In the proofs below, we will make use of the laws for applicative func-
tors (McBride and Paterson 2007):

Identity pure id � u = u
Composition pure (◦) � u � v � w = u � (v � w)
Homomorphism pure f � pure x = pure (f x)
Interchange u � pure x = pure (λf → f x) � u

Below, T refers to some type for which we have defined compos according to
the scheme exemplified in Section 4.3. For example, we would like compos not
to modify the tree on its own, i.e. that:

Theorem 1. For all total values t :: T, compos pure t = pure t .

Proof. The compos function has the general form:

compos f t = case t of
C x1 . . . xn → pure C � g1 x1 � . . . � gn xn

. . .
→ pure t

where each gi is either pure, f , or traverse f , depending on the type of xi .
Since f = pure in the case that we are reasoning about, the functions g1 . . . gn
are either pure or traverse pure.

Lemma 1. For all total ys :: [a], traverse pure ys = pure ys.

Proof. By induction on the structure of ys, using the homomorphism law for
applicative functors.

Using Lemma 1, we see that all the g1 . . . gn functions are pure. Thus, the
constructor cases all have the form:

C x1 . . . xn → pure C � pure x1 � . . . � pure xn

By repeated use of the homomorphism law for applicative functors, we have
that

pure C � pure x1 � . . . � pure xn = pure (C x1 . . . xn)

Thus, for all total t : T, compos pure t = pure t . With the definitions
of composOp and composFold given above, Identity 2 and Identity 3 follow
straightforwardly from Identity 1.

It should also be possible to perform formal reasoning about our composi-
tional operations using dependent type theory with tree sets, as discussed in
Section 7.2.

A Pattern for Almost Compositional Functions 71

5 Almost Compositional Functions and the Vis-
itor Design Pattern

The Visitor design pattern (Gamma et al. 1995) is a pattern used in object-
oriented programming to define an operation for each of the concrete elements of
an object hierarchy. We will show how an adaptation of the Visitor pattern can
be used to define almost compositional functions in object-oriented languages,
in a manner quite similar to that shown above for languages with algebraic data
types and pattern matching.

First we present the object hierarchies corresponding to the algebraic data
types. Each object hierarchy has a generic Visitor interface. We then show a
concrete visitor that corresponds to the composOp function. Our examples are
written in Java (Gosling et al. 2005) with parametric polymorphism (Bracha
et al. 1998).

5.1 Abstract syntax representation

We use a standard encoding of abstract syntax trees in Java (Appel 2002),
along with the support code for a type-parametrized version of the Visitor de-
sign pattern. For each algebraic data type in the Haskell version (as shown in
Section 4.1), we have an abstract base class in the Java representation:

public abstract class Stm {
public abstract〈R,A〉R accept (Visitor〈R,A〉v ,A arg);
public interface Visitor〈R,A〉 {

public R visit (SDecl p,A arg);
public R visit (SAss p,A arg);
public R visit (SBlock p,A arg);
public R visit (SReturn p,A arg);
public R visit (SInc p,A arg);
}

}

The base class contains an interface for visitors with methods for visiting each
of the inheriting classes. It also specifies that each inheriting class must have a
method for accepting the visitor. This method dispatches the call to the correct
method in the visitor.

For each data constructor in the algebraic data type, we have a concrete
class which inherits from the abstract base class:

public class SDecl extends Stm {
public final Typ typ_;
public final Var var_;
public SDecl (Typ p1 ,Var p2){typ_ = p1 ; var_ = p2 ; }
public〈R,A〉R accept (Visitor〈R,A〉v ,A arg){

return v .visit (this, arg);

72 Bringert, Ranta

}
}

The Visitor interface can be used to define operations on all the concrete
classes in one or more of the hierarchies (when defining an operation on more
than one hierarchy, the visitor implements multiple Visitor interfaces). This
corresponds to the initial examples of pattern matching on all of the construc-
tors, as shown in Section 2. It suffers from the same problem: lots of repetitive
traversal code.

5.2 ComposVisitor

We can create a class which does all of the traversal and tree rebuilding. This
corresponds to the composOp function in the Haskell implementation.

public class ComposVisitor〈A〉implements
Stm.Visitor〈Stm,A〉,Exp.Visitor〈Exp,A〉,
Var.Visitor〈Var,A〉,Typ.Visitor〈Typ,A〉 {
public Stm visit (SDecl p,A arg){

Typ typ_ = p.typ_.accept (this, arg);
Var var_ = p.var_.accept (this, arg);
return new SDecl (typ_, var_);
}
// . . .

}

The ComposVisitor class implements all the Visitor interfaces in the abstract
syntax, and can thus visit all of the constructors in all of the types. Each visit
method visits the children of the current node, and then constructs a new node
with the results returned from these visits.

The code above could be optimized to eliminate the reconstruction overhead
when the recursive calls do not modify the subtrees. For example, if all the
objects which are being traversed are immutable, unnecessary copying could be
avoided by doing a pointer comparison between the old and the new child. If
all the children are unchanged, we do not need to construct a new parent.

5.3 Using ComposVisitor

While the composOp function takes a function as a parameter, and applies
that function to each constructor argument, the ComposVisitor class in itself
is essentially a complicated implementation of the identity function. Its power
comes from the fact that we can override individual visit methods.

When using the standard Visitor pattern, adding new operations is easy,
but adding new elements to the object hierarchy is difficult, since it requires
changing the code for all the operations. Having a ComposVisitor changes this,
as we can add a new element, and only have to change the Visitor interface, the

A Pattern for Almost Compositional Functions 73

ComposVisitor, and any operations which need to have special behavior for the
new class.

The Java code below implements the desugaring example from Section 4.6
where increments are replaced by addition and assignment. Note that in Java
we only need the interesting case, all the other cases are taken care of by the
parent class.

class Desugar extends ComposVisitor〈Object〉 {
public Stm visit (SInc i ,Object arg){

Exp rhs = new EAdd (new EVar (i .var_),new EInt (1));
return new SAss (i .var_, rhs);
}

}
Stm desugar (Stm stm){

return stm.accept (new Desugar (),null);
}

The Object argument to the visit method is a dummy since this visitor does not
need any extra arguments. The desugar method at the end is just a wrapper
used to hide the details of getting the visitor to visit the statement, and passing
in the dummy argument.

This being an imperative language, we do not have to do anything special
to be able to thread a state through the computation. Here is the symbol table
construction function from Section 4.6 in Java:

class BuildSymTab extends ComposVisitor〈Object〉 {
Map〈Var,Typ〉symTab = new HashMap〈Var,Typ〉();
public Stm visit (SDecl d ,Object arg){

symTab.put (d .var_, d .typ_);
return d ;
}

}
Map〈Var,Typ〉symbolTable (Stm stm){

BuildSymTab v = new BuildSymTab ();
stm.accept (v ,null);
return v .symTab;
}

You may wonder why this function was implemented as a stateful computation
instead of as a fold like in the Haskell version. Creating a visitor which cor-
responds to composFold would be less elegant in Java, since we would have to
pass a combining function and a base case value to the visitor. This could be
done by adding abstract methods in the visitor, but in most cases the stateful
implementation is probably more idiomatic in Java.

Our final Java example is the example from Section 3, where we compute
the set of free variables in a term in the small functional language introduced
in Section 2.

74 Bringert, Ranta

class Free extends ComposVisitor〈Set〈String〉〉 {
public Exp visit (EAbs e,Set〈String〉vs){

Set〈String〉xs = new TreeSet〈String〉();
e.exp_.accept (this, xs);
xs.remove (e.ident_);
vs.addAll (xs);
return e;
}
public Exp visit (EVar e,Set〈String〉vs){

vs.add (e.ident_);
return e;
}

}
Set〈String〉freeVars (Exp exp){

Set〈String〉vs = new TreeSet〈String〉();
exp.accept (new Free (), vs);
return vs;
}

Here we make use of the possibility of passing an extra argument to the visit
methods. The argument is a set to which the visit method adds all the free
variables in the visited term.

6 Language and Tool Support for Compositional
Operations

A drawback of using the method we have described is that one needs to define the
compos function for each type or type family. Another problem when working in
Haskell is that the current version of GHC does not support type class deriving
for GADTs, which means that we often also have to write instances for the
common built-in type classes, such as Eq, Ord and Show.

To create Compos instances automatically, we could extend the Haskell
compiler to allow deriving instances of Compos. Another possibility would be
to generate the instances using Template Haskell (Sheard and Jones 2002) or
DrIFT (Winstanley et al. 2007), though these tools do not yet support GADTs.

We have added a new back-end to the BNF Converter (BNFC) (Forsberg
and Ranta 2003, 2006) tool which generates a Haskell GADT abstract syntax
type along with instances of Compos, Eq, Ord and Show. We have also extended
the BNFC Java 1.5 back-end to generate the Java abstract syntax representation
shown above, along with the ComposVisitor class. In addition to the abstract
syntax types and traversal components described in this paper, the generated
code also includes a lexer, a parser, and a pretty printer. We can generate all
the Haskell or Java code for our simple imperative language example using the
grammar shown below. It is written in LBNF (Labelled Backus-Naur Form),
the input language for BNFC.

A Pattern for Almost Compositional Functions 75

SDecl. Stm ::= Typ Var ";";
SAss. Stm ::= Var "=" Exp ";";
SBlock. Stm ::= "{" [Stm] "}";
SReturn.Stm ::= "return" Exp ";";
SInc. Stm ::= Var "++" ";";
separator Stm "";
EStm. Exp1 ::= Stm;
EAdd. Exp1 ::= Exp1 "+" Exp2;
EVar. Exp2 ::= Var;
EInt. Exp2 ::= Integer;
EDbl. Exp2 ::= Double;
coercions Exp 2;
V. Var ::= Ident;
TInt. Typ ::= "int";
TDbl. Typ ::= "double";

7 Related Work

7.1 Scrap Your Boilerplate
The part of this work dealing with functional programming languages can be
seen as a light-weight solution to a subset of the problems solved by generic
programming systems. We use traversal operations similar to those in the “Scrap
Your Boilerplate” (SYB) (Lämmel and Peyton Jones 2003) approach. However,
no attempt is made to support completely generic functions such as those in
“Generics for the Masses” (Hinze 2004) or PolyP (Jansson and Jeuring 1997).
In this section we attempt to compare and contrast our work and SYB.

Introduction to Scrap Your Boilerplate

SYB uses generic traversal functions along with a type safe cast operation imple-
mented by the use of type classes. This allows the programmer to extend fully
generic operations with type-specific cases, and use these with various traversal
schemes. Data types must have instances of the Typeable and Data type classes
to be used with SYB.

The original “Scrap Your Boilerplate” paper (Lämmel and Peyton Jones
2003) contains a number of examples, some of which we will show as an intro-
duction and later use for comparison. In the examples, some type synonyms
(GenericT and GenericQ) have been inlined to make the function types more
transparent. The examples work on a family of data types:

data Company = C [Dept] deriving (Typeable,Data)
data Dept = D Name Manager [Unit] deriving (Typeable,Data)
data Unit = PU Employee | DU Dept deriving (Typeable,Data)
data Employee = E Person Salary deriving (Typeable,Data)

76 Bringert, Ranta

data Person = P Name Address deriving (Typeable,Data)
data Salary = S Float deriving (Typeable,Data)
type Manager = Employee
type Name = String
type Address = String

The first example increases the salary of all employees:

increase :: Data a ⇒ Float→ a → a
increase k = everywhere (mkT (incS k))
incS :: Float→ Salary→ Salary
incS k (S s) = S (s ∗ (1 + k))

More advanced traversal schemes are also supported. This example increases
the salary of everyone in a named department:

incrOne :: Data a ⇒ Name→ Float→ a → a
incrOne n k a | isDept n a = increase k a

| otherwise = gmapT (incrOne n k) a
isDept :: Data a ⇒ Name→ a → Bool
isDept n = False ‘mkQ ‘ isDeptD n
isDeptD :: Name→ Dept→ Bool
isDeptD n (D n ′) = n ≡ n ′

SYB also supports queries, that is, functions which compute some result from
the data structure rather than returning a modified structure. This example
computes the sum of the salaries of everyone in the company:

salaryBill :: Company→ Float
salaryBill = everything (+) (0 ‘mkQ ‘ billS)
billS :: Salary→ Float
billS (S f) = f

SYB examples using compositional operations

We will now show the above examples implemented using our compositional
operations. We first lift the family of data types from the previous section into
a GADT:

data Company; data Dept; data Unit
data Employee;data Person;data Salary

type Manager = Employee
type Name = String
type Address = String

data Tree :: ∗ → ∗ where

A Pattern for Almost Compositional Functions 77

C :: [Tree Dept]→ Tree Company
D :: Name→ Tree Manager→ [Tree Unit]→ Tree Dept
PU :: Tree Employee→ Tree Unit
DU :: Tree Dept→ Tree Unit
E :: Tree Person→ Tree Salary→ Tree Employee
P :: Name→ Address→ Tree Person
S :: Float→ Tree Salary

We define compos as in Section 4.3, and use the operations from the library
of compositional operations described in Section 4.4 to implement the examples.

increase :: Float→ Tree c → Tree c
increase k c = case c of

S s → S (s ∗ (1 + k))
→ composOp (increase k) c

Here is the richer traversal example:

incrOne :: Name→ Float→ Tree c → Tree c
incrOne d k c = case c of

D n | n ≡ d → increase k c
→ composOp (incrOne d k) c

Query functions are also easy to implement:

salaryBill :: Tree c → Float
salaryBill c = case c of

S s → s
→ composFold 0 (+) salaryBill c

These examples can all be written as single functions, whereas with SYB they
each consist of two or three functions. With SYB, the type class based system
for type-specific cases forces functions that have specific cases for multiple types
to be split into multiple definitions.

SYB is a powerful system, but for many common uses such as the examples
presented here, we believe that the composOp approach is more intuitive and
easy to use. The drawback is that the data type family has to be lifted to a
GADT, and that the compos function must be implemented. However, this only
needs to be done once, and at least the latter can be automated, either by using
BNFC, or by extending the Haskell compiler to generate instances of Compos
(as is done for SYB).

Using SYB to implement compositional operations

Single data type Above we have shown how to replace simple uses of SYB
with compositional operations. We will now show the opposite, and investigate
to what extent the compositional operations can be reimplemented using SYB.

78 Bringert, Ranta

The renaming example for the simple functional language, as shown in Section 3,
looks very similar when implemented using SYB:

rename :: Exp→ Exp
rename e = case e of

EAbs x b → EAbs ("_" ++ x) (rename b)
EVar x → EVar ("_" ++ x)

→ gmapT (mkT rename) e

For the single data type case, our composOp and composM can be imple-
mented with gmapT and gmapM , composFold is like gmapQ with a built-in
fold, and our compos corresponds to gfoldl . Here are their definitions for the
Exp type:

composOp :: (Exp→ Exp)→ Exp→ Exp
composOp f = gmapT (mkT f)
composM :: Monad m ⇒ (Exp→ m Exp)→ Exp→ m Exp
composM f = gmapM (mkM f)
composFold :: b → (b → b → b)→ (Exp→ b)→ Exp→ b
composFold z c f = foldl c z ◦ gmapQ (mkQ z f)
compos :: (∀a. a → m a)→ (∀a b. m (a → b)→ m a → m b)
→ (Exp→ m Exp)→ Exp→ m Exp

compos r a f e = gfoldl (λx → a x ◦ extM r f) r e

The extM function used above has been generalized to arbitrary unary type
constructors (the extM from SYB requires the type constructor to be in the
Monad class).

Families of data types For the multiple data type case, it is difficult to
use SYB to implement our examples with the desired type. We can implement
functions with a type which is too general or too specific, for example:

rename :: Data a ⇒ a → a
rename = gmapT (rename ‘extT ‘ renameVar)

where renameVar :: Var→ Var
renameVar (V x) = V ("_" ++ x)

renameStm :: Stm→ Stm
renameStm = rename

What we would like to have is a rename function which can be applied to
any abstract syntax tree, but not to things which are not abstract syntax trees.
Using a family of normal Haskell data types, this restriction could be achieved
by the use of a dummy type class:

class Data a ⇒ Tree a
instance Tree Stm

A Pattern for Almost Compositional Functions 79

instance Tree Exp
instance Tree Var
instance Tree Typ

renameTree :: Tree a ⇒ a → a
renameTree = rename

However, we would like the class Tree to be closed, something which is cur-
rently only achievable using hacks such as not exporting the class.

When using composOp, the type restriction is achieved as a side effect of
lifting the family of data types into a GADT. Using a GADT to restrict the
function types when using SYB is currently not practical, since current GHC
versions cannot derive Data and Typeable instances automatically for GADTs.

Using compositional operations to implement SYB

We can also try to implement the SYB functions in terms of our functions. If
we are only interested in our single data type, this works:

gmapT :: Data a ⇒ (∀b. Data b ⇒ b → b)→ a → a
gmapT f = mkT (composOp f)
gmapM :: (Data a,Monad m)⇒ (∀b. Data b ⇒ b → m b)→ a → m a
gmapM f = mkM (composM f)
gmapQ :: Data a ⇒ (∀b. Data b ⇒ b → u)→ a → [u]
gmapQ f = mkQ [] (composFold [] (++) ((:[]) ◦ f))

Of course these functions are no longer truly generic: even though their
types are the same as the SYB versions’, they will only apply the function that
they are given to values in the single data type Exp. Defining gfoldl turns out
to be problematic, since the combining operation that gfoldl requires cannot be
constructed from the operations of an applicative functor.

For the type family case, it does not seem possible to use compositional op-
erations to implement SYB operations. It is even unclear what this would mean,
since type families are implemented in different ways in the two approaches.

Scrap Your Boilerplate conclusions

We consider the main differences between Scrap Your Boilerplate and our com-
positional operations to be that:

• When using SYB, no changes to the data types are required (except some
type class deriving), but the way in which functions over the data types
are written is changed drastically. With compositional operations on the
other hand, the data type family must be lifted to a GADT, while the
style in which functions are written remains more natural.

• SYB functions over multiple data types are too generic, in that they are
not restricted to the type family for which they are intended.

80 Bringert, Ranta

• Our approach is a general pattern which can be translated rather directly
to other programming languages and paradigms.

• Compositional operations directly abstract out the pattern matching, re-
cursion and reconstruction code otherwise written by hand. SYB uses
runtime type representations and type casts, which makes for more gener-
icity, at the expense of transparency and understandability.

7.2 The Tree set constructor

Introduction

Petersson and Synek (1989) introduce a set constructor for tree types into
Martin-Löf’s (1984) intuitionistic type theory. Their tree types are similar to
the inductive families in for example Agda (Coquand 2000), and, for our pur-
poses, to Haskell’s GADTs. The value representation, however, is quite different.
There is only one constructor for trees, and it takes as arguments the type index,
the data constructor and the data constructor arguments.

Tree types are constructed by the following rule:

Tree set formation
A : set B(x) : set[x : A] C(x, y) : set[x : A, y : B(x)]

d(x, y, z) : A[x : A, y : B(x), z : C(x, y)] a : A

Tree(A,B, C, d, a) : set

Here A is the set of names (type indices) of the mutually dependent sets.
B(x) is the set of constructors in the set with name x. C(x, y) is the set of
argument labels (or selector names) for the arguments of the constructor y
in the set with name x. d is a function which assigns types to constructor
arguments: for constructor y in the set with name x, d(x, y, z) is the name of
the set to which the argument with label z belongs. For simplicity, T (a) is used
below, instead of Tree(A,B, C, d, a).

Tree values are constructed using this rule:

Tree value introduction
a : A b : B(a) c(z) : T (d(a, b, z))[z : C(a, b)]

tree(a, b, c) : T (a)

Here a is the name of the set to which the tree belongs. b is the constructor.
c is a function which assigns values to the arguments of the constructor (children
of the node), where c(z) is the value of the argument with label z.

Trees are eliminated using the treerec constant, with the computation rule:

treerec(tree(a, b, c), f)→ f(a, b, c, λz. treerec(c(z), f))

A Pattern for Almost Compositional Functions 81

Relationship to GADTs

As we have seen above, trees are built using the single constructor tree, with
the type, constructor, and constructor arguments as arguments to tree. We can
use this structure to represent GADT values, as long as all children are also
trees. Using the constants l1 . . . as argument labels for all constructors, we can
represent GADT values in the following way:

b t1 . . . tn :: Tree a ≡ tree(a, b, λz. case z of {l1 : t1; . . . ; ln : tn})

For example, the value SDecl TInt (V "foo") :: Tree Stm in our Haskell
representation would be represented as the term shown below. We use ”string”
to stand for some appropriate tree representation of a string.

tree(Stm, SDecl, λx. case x of {
l1 : tree(Typ, TInt, λy. case y of {});
l2 : tree(V ar, V, λy. case y of {l1 : ”foo”})
})

Tree types and compositional operations

We can implement a composOp-equivalent in type theory by using treerec:

composOp(f, t) = treerec(t, λ(a, b, c, c′). tree(a, b, λz. f(c(z))))

What makes this so easy is that all values have the same representation,
and c which contains the child trees is just a function which we can compose
with our function f . With this definition, we can use composOp like in Haskell.
The code below assumes that we have wild card patterns in case expressions,
and that ++ is a concatenation operation for whatever string representation we
have.

rename(t) = treerec(t, λ(a, b, c, c′). case b of {
V : tree(V ar, V, λl. ”_” ++c(l));

: composOp(rename, t)
})

One advantage over the Haskell solution is that we have access to both the
original child values (c in the example above), and the results of the recursive
calls (c′ in the example above) when writing our functions. This would simplify
functions which need to use the results of the recursive calls, for example the
constant folding example in Section 4.6.

82 Bringert, Ranta

7.3 Related work in object-oriented programming

The ComposVisitor class looks deceptively simple, but it combines a number
of features, some of which are already known in the object-oriented program-
ming community. It does however appear that the combination which we have
presented is relatively novel.

• It uses type-parameterized visitor interfaces, which can only be imple-
mented in a few object-oriented languages. Similar parameterized visitor
interfaces can be found in the Loki C++ library (Alexandrescu 2001).

• It is a depth-first traversal combinator whose behavior can be overridden
for each concrete class. A similar effect can be achieved by using the
BottomUp and Identity combinators from Joost Visser’s (2001) work on
visitor combinators, and with the depth-first traversal function in the the
Boost Graph Library (Lee et al. 2002).

• It allows modification of the data structure in a functional and compo-
sitional way. The fact that functional modification is not widely used in
imperative object-oriented programming is probably the main reason why
this area has not been explored further.

7.4 Nanopass framework for compiler education

The idea of structuring compilers as a large number of simple passes is central
to the work on the Nanopass framework for compiler education (Sarkar et al.
2005), a domain-specific language embedded in Scheme. Using the Nanopass
framework, a compiler is implemented as a sequence of transformations be-
tween a number of intermediate languages, each of which is defined using set
of mutually recursive data types. Transformations are implemented by pattern
matching, and a pass expander adds any missing cases, a role similar to that of
our composOp.

One notable feature is that a language can be declared to inherit from an
existing language, with new constructors added or existing ones removed. This
makes it possible to give more accurate types to functions which add or remove
constructions, without having to define completely separate languages which
differ only in the presence of a few constructors.

8 Future Work

8.1 Automatic generation of compos for existing types

Some way of automatically declaring new Compos instances for existing data
types should be developed. At the moment, none of the meta-programming
and generic programming tools which we have looked at support reflection over
GADTs.

A Pattern for Almost Compositional Functions 83

8.2 Applications in natural language processing
While most of the examples in this paper are related to compiler writing, we
think that this technique could also be useful in natural language processing, for
example in rule-based translation. One example of this would be aggregation,
e.g. by transforming sentence conjunction, for example “John walks and Mary
walks”, to noun phrase conjunction, such as “John and Mary walk”. We want
to be able to do this transformation wherever sentences of this form appear in
a phrase, for example in “I know that John walks and Mary walks”. The trans-
formation is done on the level of abstract syntax, and is similar to the ones for
formal languages shown earlier in this paper. Since a natural language grammar
may have a very large number of constructors, using composOp for this kind
of transformation could be very beneficial. We will explore this further in the
Transfer language (Bringert 2006), which is intended for writing functions over
GF (Ranta 2004) abstract syntax terms. The language is dependently typed,
and has support for inductive families and automatic generation of composOp
functions.

8.3 Tree types and generic programming
In “Scrap Your Boilerplate” Reloaded (Hinze et al. 2006), SYB is explained in
terms of a lifting of all types to a GADT. We have already seen that the tree
types of Petersson and Synek (1989) are a very powerful construct which can
be used to represent GADTs and perform generic operations on them. It would
be interesting to see to what extent generic programming systems such as Scrap
Your Boilerplate can be explained using dependent type theory with these tree
types.

9 Conclusions
We have presented a pattern for easily implementing almost compositional op-
erations over rich data structures such as abstract syntax trees.

We have ourselves started to use this pattern for real implementation tasks,
and we feel that it has been very successful. In the compiler for the Transfer
language (Bringert 2006) we use a front-end generated by BNFC (Forsberg and
Ranta 2003, 2006), including a Compos instance for the abstract syntax. The
abstract syntax has 70 constructors, and in the (still very small) compiler the
various compos* functions are currently used in 12 places. The typical function
using compos* pattern matches on between 1 and 5 of the constructors, saving
hundreds of lines of code. Some of the functions include: replacing infix oper-
ator use with function calls, beta reduction, simultaneous substitution, getting
the set of variables bound by a pattern, getting the free variables in an expres-
sion, assigning fresh names to all bound variables, numbering meta-variables,
changing pattern equations to simple declarations using case expressions, and
replacing unused variable bindings in patterns with wild cards. Furthermore,
we have noticed that using compositional operations to implement a compiler

84 Bringert, Ranta

makes it easy to structure it as a sequence of simple steps, without having to
repeat large amounts of traversal code for each step. Modifying the abstract
syntax, for example by adding new constructs to the front-end language, is also
made easier since only the functions which care about this new construct need
to be changed.

Acknowledgments
We would like to thank the following people for their comments on earlier ver-
sions of this work: Thierry Coquand, Bengt Nordström, Patrik Jansson, Josef
Svenningsson, Sibylle Schupp, Marcin Zalewski, Andreas Priesnitz, Markus
Forsberg, Alejandro Russo, Thomas Schilling, the anonymous ICFP referees,
and everyone who offered comments during the talks at the Chalmers CS Win-
ter Meeting, at Galois Connections, and at ICFP 2006. The code in this paper
has been typeset using lhs2TeX, with help from Andres Löh and Jeremy Gib-
bons. This work has been partly funded by the EU TALK project, IST-507802.

References
Andrei Alexandrescu. Modern C++ Design: Generic Programming and De-

sign Patterns Applied. Addison-Wesley Professional, February 2001. ISBN
0201704315.

Andrew W. Appel. Modern Compiler Implementation in Java. Cambridge
University Press, second edition, October 2002. ISBN 052182060X.

Andrew W. Appel. Modern Compiler Implementation in ML. Cambridge Uni-
versity Press, December 1997. ISBN 0521582741.

Lennart Augustsson and Kent Petersson. Silly type families. URL http://www.
cs.pdx.edu/~sheard/papers/silly.pdf. 1994.

Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Mak-
ing the Future Safe for the Past: Adding Genericity to the Java Program-
ming Language. In Craig Chambers, editor, ACM Symposium on Object
Oriented Programming: Systems, Languages, and Applications (OOPSLA),
pages 183–200, Vancouver, BC, 1998. URL http://citeseer.ist.psu.edu/
bracha98making.html.

Björn Bringert. The Transfer programming language, 2006. http://www.cs.
chalmers.se/~aarne/GF/doc/transfer.html.

Catarina Coquand. Agda homepage, 2000. http://www.cs.chalmers.se/
~catarina/agda/.

Peter Dybjer. Inductive families. Formal Aspects of Computing, 6(4):440–465,
July 1994. doi: 10.1007/BF01211308. URL http://dx.doi.org/10.1007/
BF01211308.

A Pattern for Almost Compositional Functions 85

Markus Forsberg and Aarne Ranta. BNF Converter homepage, 2006. http:
//www.cs.chalmers.se/~markus/BNFC/.

Markus Forsberg and Aarne Ranta. The BNF Converter: A High-Level Tool
for Implementing Well-Behaved Programming Languages. In NWPT’02 pro-
ceedings, Proceedings of the Estonian Academy of Sciences, December 2003.
URL http://www.cs.chalmers.se/~markus/BNFC/BNF_Report.ps.gz.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns: elements of reusable object-oriented software. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1995. ISBN 0201633612. URL
http://portal.acm.org/citation.cfm?id=186897.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java Language Spec-
ification. Addison-Wesley Professional, third edition, July 2005. ISBN
0321246780.

Ralf Hinze. Generics for the masses. In ICFP ’04: Proceedings of the ninth ACM
SIGPLAN international conference on Functional programming, volume 39,
pages 236–243. ACM Press, September 2004. doi: 10.1145/1016850.1016882.
URL http://portal.acm.org/citation.cfm?id=1016882.

Ralf Hinze, Andres Löh, and Bruno C. D. S. Oliveira. "Scrap Your Boilerplate"
Reloaded. In Masami Hagiya and Philip Wadler, editors, FLOPS, volume
3945 of Lecture Notes in Computer Science, pages 13–29. Springer, 2006. doi:
10.1007/11737414_3. URL http://dx.doi.org/10.1007/11737414_3.

Patrik Jansson and Johan Jeuring. PolyP - a polytypic programming language
extension. In POPL ’97: Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 470–482, New
York, NY, USA, 1997. ACM Press. ISBN 0897918533. doi: 10.1145/263699.
263763. URL http://dx.doi.org/10.1145/263699.263763.

Mark P. Jones. Functional Programming with Overloading and Higher-Order
Polymorphism. In Advanced Functional Programming, First International
Spring School on Advanced Functional Programming Techniques-Tutorial
Text, pages 97–136, London, UK, 1995. Springer-Verlag. ISBN 3540594515.
URL http://portal.acm.org/citation.cfm?id=734150.

Lie-Quan Lee, Andrew Lumsdaine, and Jeremy G. Siek. The Boost graph library:
user guide and reference manual. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2002. ISBN 0-201-72914-8.

Ralf Lämmel and Simon Peyton Jones. Scrap Your Boilerplate: A Practical
Design Pattern for Generic Programming. In TLDT03, 2003. URL http:
//citeseer.ist.psu.edu/702290.html.

Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Naples, 1984.

86 Bringert, Ranta

Conor McBride and Ross Paterson. Applicative Programming with Effects.
Journal of Functional Programming, 17(5), 2007. URL http://www.soi.
city.ac.uk/~ross/papers/Applicative.html.

Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in Martin-
Löf’s type theory: an introduction. Oxford University Press, 1990. Available
from http://www.cs.chalmers.se/Cs/Research/Logic/book/.

Kent Petersson and Dan Synek. A set constructor for inductive sets in Martin-
Löf’s type theory, volume 389 of Lecture Notes in Computer Science, pages
128–140. Springer, 1989. doi: 10.1007/BFb0018349. URL http://dx.doi.
org/10.1007/BFb0018349.

Simon Peyton Jones. The Haskell 98 Language. Journal of Functional Program-
ming, 13(1), 2003a.

Simon Peyton Jones. The Haskell 98 Libraries. Journal of Functional Program-
ming, 13(1), 2003b.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey
Washburn. Simple unification-based type inference for GADTs. In ICFP
’06: Proceedings of the eleventh ACM SIGPLAN international conference
on Functional programming, pages 50–61, New York, NY, USA, 2006. ACM
Press. ISBN 1595933093. doi: 10.1145/1159803.1159811. URL http:
//dx.doi.org/10.1145/1159803.1159811.

Aarne Ranta. Grammatical Framework: A Type-Theoretical Grammar For-
malism. Journal of Functional Programming, 14(2):145–189, March 2004.
ISSN 0956-7968. doi: 10.1017/S0956796803004738. URL http://portal.
acm.org/citation.cfm?id=967507.

Dipanwita Sarkar, Oscar Waddell, and Kent R. Dybvig. EDUCATIONAL
PEARL: A Nanopass framework for compiler education. Journal of Func-
tional Programming, 15(5):653–667, 2005.

Tim Sheard and Simon P. Jones. Template meta-programming for Haskell. In
Haskell ’02: Proceedings of the ACM SIGPLAN workshop on Haskell, pages
1–16. ACM Press, 2002. ISBN 1581136056. doi: 10.1145/581690.581691. URL
http://portal.acm.org/citation.cfm?id=581691.

Joost Visser. Visitor combination and traversal control. In OOPSLA ’01:
Proceedings of the 16th ACM SIGPLAN conference on Object oriented pro-
gramming, systems, languages, and applications, volume 36, pages 270–282,
New York, NY, USA, November 2001. ACM Press. ISBN 1581133359. doi:
10.1145/504282.504302. URL http://portal.acm.org/citation.cfm?id=
504302.

Noel Winstanley, Malcom Wallace, and John Meacham. The DrIFT homepage,
2007. http://repetae.net/~john/computer/haskell/DrIFT/.

