Almost Compositional Functions

Bjorn Bringert and Aarne Ranta
{bringert,aarne}@cs.chalmers.se

Department of Computer Science and Engineering

Chalmers University of Technology
and Goteborg University

2006-06-14 Almost Compositional Functions

The problem: Boring tree traversals

An abstract syntax tree type:

data Exp = EAbs String Exp | EApp Exp EXxp
| EVar String | EAdd Exp Exp
| EMul Exp Exp | EInt Int

Add “X” to all variable names:

rename :: ExXp —-> EXp

Boring code
rename e = case e of
EAbs x a -> EAbs (x ++ "X") (rename a)
EVar x -> EVar (x ++ "X")

2006-06-14 Almost Compositional Functions 2

The solution: Abstraction

Apply a function to the children of all nodes:

composOp ::

composOp
EAbs x
EApp a
EAdd a
EMul a

(Exp -> Exp) —-> Exp -> EXp
f e = case e of
a —> EAbs x (f a)
b -> EApp (f a) (f b)
b -> EAdd (f a) (£ Db)
b -> EMul (f a) (f Db)

-> e

Exam_ple: Renaming

rename =< :

rename e
FEAbs x

2006-06-14

Exp -> Exp
= case e of
b -> EAbs (x ++ "X") (rename b)

Almost Compositional Functions

Some other examples

* Substitute a term for a variable.
* Syntactic desugaring.
* Constant folding (e.g. replace 2 + 5 with 7).

2006-06-14 Almost Compositional Functions

Making the problem more difficult

We often have more than one syntactic category:

data Stm = SDecl Typ Var
| SAss Var Exp
| SBlock [Stm]
| SReturn Exp
data Exp = EStm Stm
| EAdd Exp Exp
| EVar Var
| EInt Int
data Var = V String

data Typ = T int | T float

2006-06-14 Almost Compositional Functions

Masochist's rename

renameVar :: Var -—-> Var
renameVar (V x) =V (x ++ "X")

2006-06-14 Almost Compositional Functions

Abstract Syntax with GADTs

Dummy types for categories:
data Stm; data Exp; data Var; data Typ

The family of syntax tree types:

data Tree :: * -> * where
SDecl :: Tree Typ —-> Tree Var -> Tree Stm
SASS :: Tree Var —-> Tree Exp —-> Tree Stm
SBlock :: [Tree Stm] -> Tree Stm
SReturn :: Tree Exp —> Tree Stm
EStm :: Tree Stm -> Tree EXpP
EAdd :: Tree Exp -> Tree Exp -> Tree EXp
EVar :: Tree Var -> Tree EXp
EInt :: Int -> Tree EXpP
V :: String —-> Tree Var
T int :: Tree Typ; T float :: Tree Typ

2006-06-14 Almost Compositional Functions

GADT composOp

A function which can be applied to any syntax tree.

Tree a -> Tree a)

SDecl
SAsSS

(£ typ) (£ var)
(f var) (£ exp)
SBlock (map f stms)
SReturn (f exp)

EAAd (f expl) (f exp?2)
EStm (f stm)
EVar (f wvar)

composOp (forall a.
-> Tree ¢ —> Tree c

composOp £ t = case t of
SDecl typ var ->
SASS var exp ->
SBlock stms ->
SReturn exp ->
EAdd expl exp2 —->
EStm stm ->
EVar var ->
—->

20006-06-14

t

Almost Compositional Functions

A slightly shorter rename

rename :: Tree ¢ —-> Tree cC
rename t = case t of
V X => V (x ++ "X")

2006-06-14 Almost Compositional Functions

Generalizing composOp

* Only simple tree transformations so far.

* Maybe we need to return something else?

* Maybe we need some state?

* Maybe we want to beep once in a while?

* We can make other composOp-like functions.

2006-06-14 Almost Compositional Functions

Compositional folding

When the function does not change the tree:

Result for leaves Combine child results
e -
composOpFold :: b -> (b -> b -> Db)
-> (forall a. Tree a -> b) -> Tree c -> D

Example: Free variables

free :: Exp -> [String]
free e = case e of
EAbs x b -> delete x (free Db)
EVar x -> [X]
-> composOpFold [] union free e

2006-06-14 Almost Compositional Functions

11

Monadic composOp

When the action changes the tree:

composOpM :: Monad m =>
(forall a. Tree a -> m (Tree a))
-> Tree ¢ -> m (Tree c)

When the action doesn't change the tree:

composOpM :: Monad m =>
(forall a. Tree a -> m ())
-> Tree ¢ -> m ()

2006-06-14 Almost Compositional Functions

12

Examples of composOpM

Example: Beep on assignment

warnAssign :: Tree c -> I0 ()
warnAssign t = case t of
SASS -> putChar (chr 7)

—-> composOpM warnAssign t

Other examples: fresh variables names, failure

2006-06-14 Almost Compositional Functions

13

Most general composOp

We can express all the composOp* functions
with:

The operations of an applicative functor,
Conor McBride and Ross Paterson,
Applicative Programming with Effects.

cCompos (forall a. a -> m a)
-> | (forall a b. m (a -=> b) -=> m a -> m b)
-> (forall a. Tree a -> m (Tree a))
-> Tree ¢ -> m (Tree c)

2006-06-14 Almost Compositional Functions

14

Java: Boring traversal code

 Example: Build a symbol table

class BuildSymTab 1mplements Stm.Visitor<SymTab> {
public Stm visit (SDecl d, SymTab tab) {
tab.put (d.var , d.typ)
return d;

}

2006-06-14 Almost Compositional Functions

15

Java: ComposVisitor

e A visitor which visits all the children and
reconstructs each node:

public class ComposVisitor<A> 1mplements

Stm.Visitor<Stm, A>, o
I Handles all

public Stm visit (SAss p, A arg) { categories
Var var = p.var .accept(this, arg);
Exp exp = p.exp .accept(this, arg);
return new SAss(var , exp);

2006-06-14 Almost Compositional Functions

16

Java: Using ComposVisitor

Extend ComposVisitor, override interesting cases.
Example: Build a symbol table

class BuildSymTab extends ComposVisitor<SymTab> ({
public Stm visit (SDecl d, SymTab tab) {
tab.put(d.var , d.typ)
return d; } }

Example: Convert increments to assignments

class Desugar extends ComposVisitor<Object> {
public Stm visit (SInc i, Object arg) {
Exp rhs = new EAdd(new Evar(i.var), new EInt(l));
return new SAss(i.var , rhs); } }

2006-06-14 Almost Compositional Functions 17

BNFC support for composQOp

* The BNF Converter produces abstract syntax,
lexer, parser and pretty printer from a BNF
grammar.

* \We have extended BNFC:

- There is a new Haskell GADT back-end, which
generates abstract syntax with composOp*
functions.

- The Java 1.5 back-end now generates a
ComposVisitor.

2006-06-14 Almost Compositional Functions 18

Natural Language Applications

* \We can use composOp to translate between
languages which use different structures for the
same concept:

/ English A : Swedish h
| Transfer |
~ Pred Man (Kicked Pig) <~ » Pred Man (Kicked Pig)
| $ | | ¢ \
 “The man kicked the pig.” “Mannen sparkade grisen.”
€ | | | 4
Transfer
" Prec Pig (Kicked Bucket) <~ » Pred Pig Died h
\ ¢ \ \ ¢ \
“The pig kicked the bucket.” | “Grisen dog” y
)

- N

2006-06-14 Almost Compositional Functions 19

Kicking the bucket: Grammar

Abstract syntax

English
concrete syntax

20006-06-14

<

cat
fun

/Vlin

S; NP,; VP;

Pred NP -> VP -> S;

Man NP;

Pig : NP;

Bucket NP;

Died VP;

Kicked NP —-> VP;

Ate NP —-> VP;

Pred X v = {s = X.s ++ vy.s};

Man = {s = ["the man"]};
Pig = {s = ["the pig"]};
Bucket = {s = ["the bucket"]};
Died = {s = "died"};

Kicked x = {s = "kicked" ++ x.s};
Ate x = {s = "ate" ++ x.s};

Almost Compositional Functions

Kicking the bucket: Transfer
data Cat : Type where {NP:Cat; S:Cat; VP:Cat}

data Tree : Cat -> Type where
Pred : Tree NP —-> Tree VP —-> Tree S

Generated Man : Tree NP
from the Pig : Tree NP
grammar .
Bgcket : Tree NP Create composOp
Died : Tree VP automagically
Kicked : Tree NP -> Tree VP
Ate : Tree NP -> Tree VP
derive Compos Tree Might be hidden in the future
translate : (C : Cat) -> Tree C -> Tree C
translate t = case t of

Kicked Bucket -> Died
—> composOp |? ? compos Tree ? |[translate t

2006-06-14 Almost Compositional Functions 21

Related Work

e Scrap Your Boi
by Ralf Lamme

- More general,

erplate,
and Simon Peyton Jones

ess intuitive.

- Requires a type cast operator.
- SYB: normal types, strange functions.
- composOp: lift types to GADT, normal functions.

e Tree Sets,

by Kent Peterson and Dan Synek

* Applicative Programming with Effects, Conor
McBride and Ross Paterson.

20006-06-14

Almost Compositional Functions

22

Future Work

* Generate traversal functions for existing
Haskell types automatically.

* Try some more natural language examples.
* Implement in other programming languages”?

2006-06-14 Almost Compositional Functions

23

Conclusions

* Makes writing and maintaining tree processing
programs easier.

- Reduces amount of boilerplate code.

- When adding new constructors, only functions that
care about them need to be changed.

* Works in multiple programming languages.
* |ntegrated into BNFC.

2006-06-14 Almost Compositional Functions 24

