
2006-06-14 Almost Compositional Functions 1

Almost Compositional Functions

Björn Bringert and Aarne Ranta
{bringert,aarne}@cs.chalmers.se

Department of Computer Science and Engineering

Chalmers University of Technology
and Göteborg University

2006-06-14 Almost Compositional Functions 2

The problem: Boring tree traversals

rename :: Exp -> Exp
rename e = case e of
 EAbs x a -> EAbs (x ++ "X") (rename a)
 EApp a b -> EApp (rename a) (rename b)
 EVar x -> EVar (x ++ "X")
 EAdd a b -> EAdd (rename a) (rename b)
 EMul a b -> EMul (rename a) (rename b)
 _ -> e

Boring code

data Exp = EAbs String Exp | EApp Exp Exp
 | EVar String | EAdd Exp Exp
 | EMul Exp Exp | EInt Int

An abstract syntax tree type:

Add “X” to all variable names:

2006-06-14 Almost Compositional Functions 3

The solution: Abstraction

composOp :: (Exp -> Exp) -> Exp -> Exp
composOp f e = case e of
 EAbs x a -> EAbs x (f a)
 EApp a b -> EApp (f a) (f b)
 EAdd a b -> EAdd (f a) (f b)
 EMul a b -> EMul (f a) (f b)
 _ -> e

Boring code

rename :: Exp -> Exp
rename e = case e of
 EAbs x b -> EAbs (x ++ "X") (rename b)
 EVar x -> EVar (x ++ "X")
 _ -> composOp rename e

Example: Renaming

Apply a function to the children of all nodes:

2006-06-14 Almost Compositional Functions 4

Some other examples

● Substitute a term for a variable.
● Syntactic desugaring.
● Constant folding (e.g. replace 2 + 5 with 7).

2006-06-14 Almost Compositional Functions 5

Making the problem more difficult

data Stm = SDecl Typ Var
 | SAss Var Exp
 | SBlock [Stm]
 | SReturn Exp

data Exp = EStm Stm
 | EAdd Exp Exp
 | EVar Var
 | EInt Int

data Var = V String

data Typ = T_int | T_float

We often have more than one syntactic category:

2006-06-14 Almost Compositional Functions 6

Masochist's rename

renameStm :: Stm -> Stm
renameStm s = case s of
 SDecl t v -> SDecl t (renameVar v)
 SAss v e -> SAss (renameVar v) (renameExp e)
 SBlock ss -> SBlock (map renameStm ss)
 SReturn e -> SReturn (renameExp e)

renameExp :: Exp -> Exp
renameExp e = case e of
 EAdd e1 e2 -> EAdd (renameExp e1) (renameExp e2)
 EStm s -> EStm (renameStm s)
 EVar v -> EVar (renameVar v)

renameVar :: Var -> Var
renameVar (V x) = V (x ++ "X")

2006-06-14 Almost Compositional Functions 7

Abstract Syntax with GADTs

data Tree :: * -> * where
 SDecl :: Tree Typ -> Tree Var -> Tree Stm
 SAss :: Tree Var -> Tree Exp -> Tree Stm
 SBlock :: [Tree Stm] -> Tree Stm
 SReturn :: Tree Exp -> Tree Stm
 EStm :: Tree Stm -> Tree Exp
 EAdd :: Tree Exp -> Tree Exp -> Tree Exp
 EVar :: Tree Var -> Tree Exp
 EInt :: Int -> Tree Exp
 V :: String -> Tree Var
 T_int :: Tree Typ; T_float :: Tree Typ

data Stm; data Exp; data Var; data Typ

Dummy types for categories:

The family of syntax tree types:

2006-06-14 Almost Compositional Functions 8

GADT composOp

composOp :: (forall a. Tree a -> Tree a)
 -> Tree c -> Tree c

composOp f t = case t of
 SDecl typ var -> SDecl (f typ) (f var)
 SAss var exp -> SAss (f var) (f exp)
 SBlock stms -> SBlock (map f stms)
 SReturn exp -> SReturn (f exp)
 EAdd exp1 exp2 -> EAdd (f exp1) (f exp2)
 EStm stm -> EStm (f stm)
 EVar var -> EVar (f var)
 _ -> t

A function which can be applied to any syntax tree.

2006-06-14 Almost Compositional Functions 9

A slightly shorter rename

rename :: Tree c -> Tree c
rename t = case t of
 V x -> V (x ++ "X")
 _ -> composOp rename t

2006-06-14 Almost Compositional Functions 10

Generalizing composOp

● Only simple tree transformations so far.
● Maybe we need to return something else?
● Maybe we need some state?
● Maybe we want to beep once in a while?
● We can make other composOp-like functions.

2006-06-14 Almost Compositional Functions 11

Compositional folding

composOpFold :: b -> (b -> b -> b)
 -> (forall a. Tree a -> b) -> Tree c -> b

Result for leaves Combine child results

free :: Exp -> [String]
free e = case e of
 EAbs x b -> delete x (free b)
 EVar x -> [x]
 _ -> composOpFold [] union free e

When the function does not change the tree:

Example: Free variables

2006-06-14 Almost Compositional Functions 12

Monadic composOp

composOpM :: Monad m =>
 (forall a. Tree a -> m (Tree a))
 -> Tree c -> m (Tree c)

composOpM_ :: Monad m =>
 (forall a. Tree a -> m ())
 -> Tree c -> m ()

When the action doesn't change the tree:

When the action changes the tree:

2006-06-14 Almost Compositional Functions 13

Examples of composOpM

warnAssign :: Tree c -> IO ()
warnAssign t = case t of
 SAss _ _ -> putChar (chr 7)
 _ -> composOpM_ warnAssign t

Example: Beep on assignment

Other examples: fresh variables names, failure

2006-06-14 Almost Compositional Functions 14

Most general composOp

 compos :: (forall a. a -> m a)
 -> (forall a b. m (a -> b) -> m a -> m b)
 -> (forall a. Tree a -> m (Tree a))
 -> Tree c -> m (Tree c)

We can express all the composOp* functions
with:

The operations of an applicative functor,
Conor McBride and Ross Paterson,
Applicative Programming with Effects.

2006-06-14 Almost Compositional Functions 15

Java: Boring traversal code

class BuildSymTab implements Stm.Visitor<SymTab> {
 public Stm visit(SDecl d, SymTab tab) {
 tab.put(d.var_, d.typ_);
 return d;
 }
 public Stm visit(SAss p, Map<Var,Typ> arg) {
 Var var_ = p.var_.accept(this, arg);
 Exp exp_ = p.exp_.accept(this, arg);
 return new SAss(var_, exp_);
 }
 ... lots of similar cases ...
}

● Example: Build a symbol table

2006-06-14 Almost Compositional Functions 16

Java: ComposVisitor

public class ComposVisitor<A> implements
 Stm.Visitor<Stm,A>, ... {

 public Stm visit(SAss p, A arg) {
 Var var_ = p.var_.accept(this, arg);
 Exp exp_ = p.exp_.accept(this, arg);
 return new SAss(var_, exp_);
 }
 ...
}

● A visitor which visits all the children and
reconstructs each node:

Handles all
categories

2006-06-14 Almost Compositional Functions 17

Java: Using ComposVisitor

Extend ComposVisitor, override interesting cases.

Example: Build a symbol table

Example: Convert increments to assignments

class BuildSymTab extends ComposVisitor<SymTab> {
 public Stm visit(SDecl d, SymTab tab) {
 tab.put(d.var_, d.typ_);
 return d; } }

class Desugar extends ComposVisitor<Object> {
 public Stm visit(SInc i, Object arg) {
 Exp rhs = new EAdd(new Evar(i.var_), new EInt(1));
 return new SAss(i.var_, rhs); } }

2006-06-14 Almost Compositional Functions 18

BNFC support for composOp

● The BNF Converter produces abstract syntax,
lexer, parser and pretty printer from a BNF
grammar.

● We have extended BNFC:
– There is a new Haskell GADT back-end, which

generates abstract syntax with composOp*
functions.

– The Java 1.5 back-end now generates a
ComposVisitor.

2006-06-14 Almost Compositional Functions 19

Natural Language Applications

● We can use composOp to translate between
languages which use different structures for the
same concept:

Swedish

“The man kicked the pig.”

“The pig kicked the bucket.”

Pred Man (Kicked Pig)Pred Man (Kicked Pig)

Pred Pig (Kicked Bucket) Pred Pig Died

“Mannen sparkade grisen.”

“Grisen dog”

English
Transfer

Transfer

2006-06-14 Almost Compositional Functions 20

Kicking the bucket: Grammar
cat S; NP; VP;
fun Pred : NP -> VP -> S;
 Man : NP;
 Pig : NP;
 Bucket : NP;
 Died : VP;
 Kicked : NP -> VP;
 Ate : NP -> VP;

lin Pred x y = {s = x.s ++ y.s};
 Man = {s = ["the man"]};
 Pig = {s = ["the pig"]};
 Bucket = {s = ["the bucket"]};
 Died = {s = "died"};
 Kicked x = {s = "kicked" ++ x.s};
 Ate x = {s = "ate" ++ x.s};

Abstract syntax

English
concrete syntax

2006-06-14 Almost Compositional Functions 21

Kicking the bucket: Transfer

translate : (C : Cat) -> Tree C -> Tree C
translate _ t = case t of

Kicked Bucket -> Died
_ -> composOp ? ? compos_Tree ? translate t

data Cat : Type where {NP:Cat; S:Cat; VP:Cat}

data Tree : Cat -> Type where
 Pred : Tree NP -> Tree VP -> Tree S
 Man : Tree NP
 Pig : Tree NP
 Bucket : Tree NP
 Died : Tree VP
 Kicked : Tree NP -> Tree VP
 Ate : Tree NP -> Tree VP
derive Compos Tree Might be hidden in the future

Create composOp
automagically

Generated
from the
grammar

2006-06-14 Almost Compositional Functions 22

Related Work

● Scrap Your Boilerplate,
by Ralf Lämmel and Simon Peyton Jones
– More general, less intuitive.
– Requires a type cast operator.
– SYB: normal types, strange functions.
– composOp: lift types to GADT, normal functions.

● Tree Sets,
by Kent Peterson and Dan Synek

● Applicative Programming with Effects, Conor
McBride and Ross Paterson.

2006-06-14 Almost Compositional Functions 23

Future Work

● Generate traversal functions for existing
Haskell types automatically.

● Try some more natural language examples.
● Implement in other programming languages?

2006-06-14 Almost Compositional Functions 24

Conclusions

● Makes writing and maintaining tree processing
programs easier.
– Reduces amount of boilerplate code.
– When adding new constructors, only functions that

care about them need to be changed.
● Works in multiple programming languages.
● Integrated into BNFC.

