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Abstract
This paper introduces a pattern for almost compositional functions
over recursive data types, and over families of mutually recursive
data types. Here “almost compositional” means that for a number
of the constructors in the type(s), the result of the function depends
only on the constructor and the results of calling the function
on the constructor’s arguments. The pattern consists of a generic
part constructed once for each data type or family of data types,
and a task-specific part. The generic part contains the code for
the predictable compositional cases, leaving the interesting work
to the task-specific part. Examples of the pattern implemented in
dependent type theory with inductive families, in Haskell with
generalized algebraic data types and rank-2 polymorphism, and in
Java using a variant of the Visitor design pattern are given. The
relationship to the “Scrap Your Boilerplate” approach to generic
programming, and to general tree types in dependent type theory
are also investigated.

Categories and Subject Descriptors D1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D3.3 [Program-
ming Languages]: Language Constructs and Features—Patterns

General Terms Languages, Design

Keywords Traversal, Abstract syntax, Haskell, Java, Visitor pat-
tern, Dependent type theory

1. Introduction
This paper addresses the issue of repetitive code when defining
operations over rich data structures. To give concrete examples
of what we would like to be able to do, we start by giving some
motivating problems.

1.1 Some motivating problems
Suppose you have an abstract syntax definition with many syntactic
types such as statement, expression, and variable.

1. Write a function that renames all variables in a program by
prepending an underscore to their names. Do this with a case
expression that has just two branches: one for the variables,
another for the rest.

[copyright notice will appear here]

2. Write a function that constructs a symbol table containing all
variables declared in a program, and the type of each variable.
Do this with a case expression that has just two branches: one
for declarations, another for the rest.

3. Write a function which gives fresh names to all variables in
a program. Do this using only three cases: one for variable
bindings, another for variable uses, and a third for the rest.

One problem when writing recursive functions which need to
traverse rich data structures is that the straightforward way to write
them involves large amounts of traversal code which tends to be
repeated in each function. There are several problems with this:

• The repeated traversals are probably implemented using copy-
and-paste or retyping, both of which are error-prone and can
lead to maintenance problems.

• When we add a constructor to the data type, we need to change
all functions that traverse the data type, many of which may not
need any specific behavior for the new constructor.

• Repeated traversal code obscures the interesting cases where
the functions do their real work.

• Forcing complete traversal code for the whole family of data
types when implementing even the simplest function could en-
courage a less modular programming style where multiple op-
erations are collected in a single function.

1.2 The solution
The pattern which we present in this paper allows the programmer
to solve problems such as the above in a (hopefully) intuitive way.
First we write the traversal code once and for all for our data type
or family of data types. We then reuse this component to succinctly
express the operations which we want to define.

1.3 Article overview
We first present the simple case of a single recursive algebraic data
type, and show examples of using the pattern for this case, with
examples in plain Haskell 98 [12]. After that, we generalize this to
the more complex case of a family of data types, and show how the
pattern can be used in dependent type theory and Haskell with gen-
eralized algebraic data types and rank-2 polymorphism. We go on
to express the same pattern in Java with parametric polymorphism,
using a variant of the Visitor design pattern. In the following sec-
tion, we briefly describe some tools which can be used to automate
the process of writing the necessary support code for the data type
at hand. Finally, we discuss some related work in generic program-
ming, type theory and object-oriented programming, and provide
some conclusions.
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2. Abstract Syntax and Algebraic Data Types
Algebraic data types provide a natural way to implement the ab-
stract syntax in a compiler. To give an example, the following type
in Haskell gives the abstract syntax of lambda calculus with ab-
stractions, applications, and variables. For more information about
using algebraic data types to represent abstract syntax for program-
ming languages, see for example Appel’s text books on compiler
construction [2].

data Exp = EAbs String Exp
| EApp Exp Exp
| EVar String

Pattern matching is the technique for defining functions on
algebraic data types. These functions are typically recursive. An
example is a function that renames all the variables in an expression
by prepending an underscore to their names:

rename :: Exp -> Exp
rename e = case e of

EAbs x b -> EAbs ("_" ++ x) (rename b)
EApp c a -> EApp (rename c) (rename a)
EVar x -> EVar ("_" ++ x)

3. Compositional Functions
Many functions used in compilers are compositional, in the sense
that the result for a complex argument is constructed from the
results for its parts. The rename function is an example of this.
The essence of compositional functions is defined by the following
higher-order function:

composOp :: (Exp -> Exp) -> Exp -> Exp
composOp f e = case e of

EAbs x b -> EAbs x (f b)
EApp c a -> EApp (f c) (f a)
_ -> e

Its power lies in that it can be used when defining other func-
tions, to take care of cases which are just compositional. Such is
the EApp case in rename, which we thus omit by writing:

rename :: Exp -> Exp
rename e = case e of

EAbs x b -> EAbs ("_" ++ x) (rename b)
EVar x -> EVar ("_" ++ x)
_ -> composOp rename e

In general, an abstract syntax has many more constructors, and
this pattern saves much more work. For instance, in the implemen-
tation of GF [19], the Exp type has 30 constructors, and composOp
is used over 20 times, typically covering 90 % of all cases.

A major restriction of composOp is that its return type is Exp.
How do we use it if we want to return something else? If we simply
want to compute some result using the abstract syntax tree, without
modifying the tree, we can use composOpFold:

composOpFold :: b -> (b -> b -> b)
-> (Exp -> b) -> Exp -> b

composOpFold zero combine f e =
case e of

EAbs x b -> f b
EApp c a -> f c ‘combine‘ f a
_ -> zero

The first argument is the value that is returned for leaf nodes,
the second is a function used to combine the results for children of
nodes with more than one child, and the third is a function which is
applied to all the children of the given node.

Using composOpFold we can now, for example, write a func-
tion which gets the names of all free variables in an expression:

free :: Exp -> [String]
free e = case e of

EAbs x b -> delete x (free b)
EVar x -> [x]
_ -> composOpFold [] union free e

3.1 Monadic compositional functions
When defining a compiler in Haskell, it is convenient to use monads
instead of plain functions, to deal with errors, state, etc. To this end,
we generalize composOp to a monadic variant:

composOpM :: Monad m =>
(Exp -> m Exp) -> Exp -> m Exp

composOpM f e = case e of
EAbs x b -> return EAbs ‘ap‘ return x ‘ap‘ f b
EApp c a -> return EApp ‘ap‘ f c ‘ap‘ f a
_ -> return e

Here we are using the Monad type class and the ap function
from the Haskell 98 libraries [12]:

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
return :: a -> m a

ap :: (Monad m) => m (a -> b) -> m a -> m b

We can define the ordinary composOp as a special case. Using
the Identity monad [11], we write:

composOp :: (Exp -> Exp) -> Exp -> Exp
composOp f =

runIdentity . composOpM (Identity . f)

If we want to maintain some state across the computation over
the tree, we can use use composOpM with a state monad [11]. In
the example below, we will use a state monad State with these
operations:

readState :: State s s
updateState :: (s -> s) -> State s ()
writeState :: s -> State s ()
runState :: s -> State s a -> (a,s)

Now we can, for example, write a function that gives fresh
names of the form n, where n is an integer, to all bound vari-
ables in an expression. Here the state is an infinite supply of fresh
variable names, and we pass a table of the new names for the bound
variables to the recursive calls.

fresh :: Exp -> Exp
fresh = fst . runState names . f []

where
names = ["_" ++ show n | n <- [0..]]
f vs t = case t of

EAbs x b -> do
y:fs <- readState
writeState fs
liftM (EAbs y) (f ((x,y):vs) b)

EVar x ->
return (EVar (fromMaybe x (lookup x vs)))

_ -> composOpM (f vs) t
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3.2 Generalizing composOpM and composOpFold

We can generalize composOpM and composOpFold to a single
function compos. It is basically the same as composOpM but it takes
the return and ap functions as arguments:

compos :: (forall a. a -> m a)
-> (forall a b. m (a -> b) -> m a -> m b)
-> (Exp -> m Exp) -> Exp -> m Exp

compos return ap f e = case e of
EAbs x b -> return EAbs ‘ap‘ return x ‘ap‘ f b
EApp g h -> return EApp ‘ap‘ f g ‘ap‘ f h
_ -> return e

We define composOpM and composOpFold in terms of compos:

composOpM :: Monad m =>
(Exp -> m Exp) -> Exp -> m Exp

composOpM = compos return ap

newtype C b a = C { unC :: b }
composOpFold :: b -> (b -> b -> b)

-> (Exp -> b) -> Exp -> b
composOpFold z c f =

unC . compos (\_ -> C z)
(\(C x) (C y) -> C (c x y)) (C . f)

The definition of composOpFold requires a dummy type C
which is used to throw away the tree result, keeping the b result
which we are interested in.

3.3 Compositional operations and applicative functors
The first two arguments of compos have the same types as the
operations of an applicative functor, as introduced by McBride and
Paterson [16]. Applicative functors are more general than monads,
in the sense that while all monads are applicative functors, not
all applicative functors are monads. Applicative functors have two
operations, pure and *, which correspond to the return and ap
operations of a Monad:

class Applicative f where
pure :: a -> f a
(*) :: f (a -> b) -> f a -> f b

The operations must satisfy these laws:

Identity pure id * u = u

Composition pure (.) * u * v * w = u * (v * w)

Homomorphism pure f * pure x = pure (f x)

Interchange u * pure x = pure (\f -> f x) * u

We could use these laws to prove properties of our composi-
tional operations. For example, we would like compos not to mod-
ify the tree on its own, i.e. that:

compos pure (*) pure t = pure t

3.4 More examples for the functional language
These are some more examples of operations we could implement
for our small functional language using the general functions de-
fined above:

1. Count the number of free occurrences of a given variable in a
term.

2. Perform capture-avoiding substitution of a term for a variable.
This could use the fresh function from Section 3.1.

3. Reduce all β-redexes where the abstracted variable occurs free
exactly once in the body of the abstraction. This can be imple-
mented using the previous two operations.

The implementation of these functions are left as an exercise to
the reader.

4. Systems of Data Types
For many languages, the abstract syntax is not just one data type,
but many, which are often defined by mutual induction. An exam-
ple is the following simple imperative language with statements,
expressions, variables, and types. In this language, statements that
return values (for example assignments or maybe blocks that end
with a return statement) can be used as expressions.

data Stm = SDecl Typ Var
| SAss Var Exp
| SBlock [Stm]
| SReturn Exp

data Exp = EStm Stm
| EAdd Exp Exp
| EVar Var
| EInt Int

data Var = V String

data Typ = T_int | T_float

Now we cannot any longer easily define general composOp
functions, as some of the recursive calls must be done on terms
which have different types than the value on which the function
was called. Implementing operations such as α-conversion on this
kind of family of data types quickly becomes very laborious.

4.1 Categories and trees
An alternative to separate mutual data types for abstract syntax is
to define just one type Tree, whose constructors take Trees as
arguments:

data Tree = SDecl Tree Tree
| SAss Tree Tree
| SBlock [Tree]
| SReturn Tree
| EStm Tree
| EAdd Tree Tree
| EVar Tree
| EInt Int
| V String
| T_int
| T_float

This approach, however, does not constrain the combinations
enough for our liking: there are many Trees that are even syntacti-
cally nonsense. This is essentially the representation one would use
in a dynamically typed language.

A solution to this problem is provided by dependent types.
Instead of a constant type Tree, we define an inductive family
Tree c, indexed on a category, c. The category is just a label to
distinguish between different types of trees. We must now leave
standard Haskell and use a Haskell-like language with dependent
types and inductive families. Agda [5] is one such language. What
one would define in Agda is an enumerated type:

data Cat = Stm | Exp | Var | Typ
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followed by an idata (inductive data type, or in this case an
inductive family of data types) definition of Tree, indexed on Cat.
We omit the Agda definitions of the Tree family and the compos
function as they are virtually identical to the Haskell versions
shown below, except that in Agda the index for Tree is a value
of type Cat, whereas in Haskell the index is a dummy data type.

We can also do our exercise with the limited form of dependent
types provided by Haskell since GHC 6.4: Generalized Algebraic
Data Types (GADTs) [13]. We cannot quite define a type of cate-
gories, but we can define a set of dummy data types:

data Stm; data Exp; data Var; data Typ

To define the inductive family of trees, we write, in this exten-
sion of Haskell:

data Tree :: * -> * where
SDecl :: Tree Typ -> Tree Var -> Tree Stm
SAss :: Tree Var -> Tree Exp -> Tree Stm
SBlock :: [Tree Stm] -> Tree Stm
SReturn :: Tree Exp -> Tree Stm
EStm :: Tree Stm -> Tree Exp
EAdd :: Tree Exp -> Tree Exp -> Tree Exp
EVar :: Tree Var -> Tree Exp
EInt :: Int -> Tree Exp
V :: String -> Tree Var
T_int :: Tree Typ
T_float :: Tree Typ

In Haskell we cannot restrict the types used as indices in the
Tree family, which makes it entirely possible to construct types
such as Tree String. However, since there are no constructors of
this type, ⊥ is the only element in it.

Note that the canonical expressions of syntax trees look just the
same as they did in the case of mutual data types and the universal
tree type. However, their types now have the form Tree c for some
c. If we want, we can give the dummy types different names, for
example Stm , Exp ,Var , and Typ , and use type synonyms to
make the types also look like they did when we had multiple data
types:

type Stm = Tree Stm_; type Exp = Tree Exp_
type Var = Tree Var_; type Typ = Tree Typ_

4.2 Compositional operations
The power of inductive families is shown in the definition of the
function compos. We now define it simultaneously for the whole
syntax, and can then use it to define any tree-traversing programs
concisely.

compos :: (forall a. a -> m a)
-> (forall a b. m (a -> b) -> m a -> m b)
-> (forall a. Tree a -> m (Tree a))
-> Tree c -> m (Tree c)

compos return ap f t = case t of
SDecl x y -> return SDecl ‘ap‘ f x ‘ap‘ f y
SAss x y -> return SAss ‘ap‘ f x ‘ap‘ f y
SBlock xs -> return SBlock ‘ap‘ mapM f xs
SReturn x -> return SReturn ‘ap‘ f x
EAdd x y -> return EAdd ‘ap‘ f x ‘ap‘ f y
EStm x -> return EStm ‘ap‘ f x
EVar x -> return EVar ‘ap‘ f x
_ -> return t

where mapM g =
foldr (ap . ap (return (:)) . g) (return [])

The third argument to compos, the function to apply to the
subtrees, is now a polymorphic function, since it is applied to

subtrees of different types. The mapM function with the unreadable
implementation simply does the same thing as the normal mapM,
but using the given functions. The other composOp* functions are
special cases of compos in the same way as before.

4.3 A library of compositional operations
In order to provide generic implementations of the different func-
tions, we overload compos and define the other operations in terms
of it. See Figure 1 for definitions of the other functions in terms of
the overloaded compos function.

4.4 Examples
4.4.1 Example: Rename variables
Defining a renaming function for the original Haskell definition
with separate data types would be very laborious. But now it is
easy:

rename :: Tree c -> Tree c
rename t = case t of

V x -> V ("_" ++ x)
_ -> composOp rename t

4.4.2 Example: Warnings for assignments
To encourage pure functionality, this function sounds the bell each
time an assignment occurs. Since we are not interested in the
return value of the function, but only in its IO outputs, we use the
function composOpM (like composOpM but without a tree result,
see Figure 1 for its definition).

warnAssign :: Tree c -> IO ()
warnAssign t = case t of

SAss _ _ -> putChar (chr 7)
_ -> composOpM_ warnAssign t

4.4.3 Example: Symbol table construction
This function constructs a variable symbol table by folding over the
syntax tree. Once again, the return value is of no interest. We use
composOpMonoid, which is simply composOpFold specialized to
the Monoid type class [11]. This uses the Monoid instance for lists.

symbols :: Tree c -> [(Tree Var,Tree Typ)]
symbols t = case t of

SDecl typ var -> [(var,typ)]
_ -> composOpMonoid symbols t

4.4.4 Example: Constant folding
We want to replace additions of constants by their result. Here is a
first attempt:

constFold :: Tree c -> Tree c
constFold e = case e of

EAdd (EInt x) (EInt y) -> EInt (x+y)
_ -> composOp constFold e

This works for simple cases, but what about for example 1 +
(2 + 3)? This is an addition of constants, but is not matched by our
pattern above. We have to look at the results of the recursive calls:

constFold’ :: Tree c -> Tree c
constFold’ e = case e of

EAdd x y -> case (constFold’ x, constFold’ y) of
(EInt n, EInt m) -> EInt (n+m)
(x’,y’) -> EAdd x’ y’

_ -> composOp constFold’ e

This illustrates a common pattern used when the recursive calls
can introduce terms which we want to handle.
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{-# OPTIONS_GHC -fglasgow-exts #-}
module ComposOp (Compos(..),composOp,composOpM,composOpM_,composOpMonoid,

composOpMPlus,composOpFold) where

import Control.Monad.Identity
import Data.Monoid

class Compos t where
compos :: (forall a. a -> m a) -> (forall a b. m (a -> b) -> m a -> m b)

-> (forall a. t a -> m (t a)) -> t c -> m (t c)

composOp :: Compos t => (forall a. t a -> t a) -> t c -> t c
composOp f = runIdentity . composOpM (Identity . f)

composOpM :: (Compos t, Monad m) => (forall a. t a -> m (t a)) -> t c -> m (t c)
composOpM = compos return ap

composOpM_ :: (Compos t, Monad m) => (forall a. t a -> m ()) -> t c -> m ()
composOpM_ = composOpFold (return ()) (>>)

composOpMonoid :: (Compos t, Monoid m) => (forall a. t a -> m) -> t c -> m
composOpMonoid = composOpFold mempty mappend

composOpMPlus :: (Compos t, MonadPlus m) => (forall a. t a -> m b) -> t c -> m b
composOpMPlus = composOpFold mzero mplus

composOpFold :: Compos t => b -> (b -> b -> b) -> (forall a. t a -> b) -> t c -> b
composOpFold z c f = unC . compos (\_ -> C z) (\(C x) (C y) -> C (c x y)) (C . f)

newtype C b a = C { unC :: b }

Figure 1. The ComposOp Module

4.4.5 Example: Syntactic sugar
This example shows how easy it is to add syntax constructs as
syntactic sugar, i.e. syntactic constructs that can be eliminated.
Suppose you want to add increment statements. This means a new
branch in the definition of Tree c from Section 4.1:

SIncr :: Tree Var -> Tree Stm

Increments are eliminated by translation to assignments as fol-
lows:

elimIncr :: Tree c -> Tree c
elimIncr t = case t of

SIncr v -> SAss v (EAdd (EVar v) (EInt 1))
_ -> composOp elimIncr t

4.4.6 More examples for the imperative language
Here are some more examples which can benefit from being im-
plemented using the almost compositional function pattern. Their
implementations are again left as exercises to the reader.

1. α-conversion of x to y without caring about captures.

2. α-conversion avoiding captures.

3. Substitution of a variable by an expression, avoiding capture.

4. Optimizations: constant propagation, remove addition with 0,
remove unused assignments.

5. Line counter: assume each declaration and assignment is one
line.

6. Symbol table with failure if the variable is already declared.

7. Type checker: report on ill-typed expressions and assignments,
and undeclared variables.

8. Type-annotating type checker: introduce new constructors for
typed addition and typed variables, and translate all addition
and variable expressions in a program to these forms.

5. Almost Compositional Functions and the
Visitor Design Pattern

The Visitor design pattern [7] is a pattern used in object-oriented
programming to define an operation for each of the concrete ele-
ments of an object hierarchy. We will show how an adaptation of
the Visitor pattern can be used to define almost compositional func-
tions in object-oriented languages, in a manner quite similar to that
shown above for languages with algebraic data types and pattern
matching.

First we present the object hierarchies corresponding to the
algebraic data types. Each object hierarchy has a generic Visitor
interface. We then show a concrete visitor that corresponds to the
composOp function.

5.1 Data representation
We use a standard encoding of abstract syntax trees in Java [3],
along with the support code for a type-parametrized version of
Visitor design pattern. For each algebraic data type in the Haskell
version, we have an abstract base class in the Java representation:

public abstract class Stm {
public abstract <R,A> R accept(Visitor<R,A> v,

A arg);
public interface Visitor <R,A> {
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public R visit(SDecl p, A arg);
public R visit(SAss p, A arg);
public R visit(SBlock p, A arg);
public R visit(SReturn p, A arg);
public R visit(SInc p, A arg);

}
}

The base class contains an interface for visitors with methods
for visiting each of the inheriting classes. It also specifies that each
inheriting class must have a method for accepting the visitor. This
method dispatches the call to the correct method in the visitor.

For each data constructor in the algebraic data type, we have a
concrete class which inherits from the abstract base class:

public class SDecl extends Stm {
public final Typ typ_; public final Var var_;
public SDecl(Typ p1, Var p2) { typ_ = p1;

var_ = p2; }
public <R,A> R accept(Visitor<R,A> v, A arg) {

return v.visit(this, arg);
}

}

The Visitor interface can be used to define operations on all the
concrete classes in one or more of the hierarchies (when defining an
operation on more than one hierarchy, the visitor implements mul-
tiple Visitor interfaces). This corresponds to the initial examples of
pattern matching on all of the constructors, as shown in Section 2.
It suffers from the same problem: lots of repetitive traversal code.

5.2 ComposVisitor

We can create a class which does all of the traversal and tree
rebuilding. This corresponds to the composOp function from the
Hakell implementation.

public class ComposVisitor<A> implements
Stm.Visitor<Stm,A>, Exp.Visitor<Exp,A>,
Var.Visitor<Var,A>, Typ.Visitor<Typ,A> {

public Stm visit(SDecl p, A arg) {
Typ typ_ = p.typ_.accept(this, arg);
Var var_ = p.var_.accept(this, arg);
return new SDecl(typ_, var_);

}

// ...
}

The ComposVisitor class implements all the Visitor inter-
faces in the abstract syntax, and can thus visit all of the construc-
tors in all of the types. Each visit() method visits the children of
the current node, and then constructs a new node with the results
returned from these visits.

The code above could be optimized to eliminate the reconstruc-
tion overhead when the recursive calls do not modify the subtrees.
For example, if all the objects which are being traversed are im-
mutable, unnecessary copying could be avoided by doing a pointer
comparison between the old and the new child. If all the children
are the same as the old, we do not need to construct a new parent.

5.3 Using ComposVisitor

While the composOp function takes a function as a parameter, and
applies that function to each node in the tree, the ComposVisitor
class in itself is pretty much just a complicated implementation of
the identity function. Its power comes from the fact that we can
override individual visit() methods.

When using the standard Visitor pattern, adding new operations
is easy, but adding new elements to the object hierarchy is difficult,
since it requires changing the code for all the operations. Having
a ComposVisitor changes this as we can add a new element, and
only have to change the Visitor interface, the ComposVisitor,
and any operations which need to have special behavior for the new
class.

The Java code below implements the desugaring example from
Section 4.4.5 where increments are replaced by addition and as-
signment. Note that in Java we only need the interesting case, all
the other cases are taken care of by the parent class.

class Desugar extends ComposVisitor<Object> {
public Stm visit(SInc i, Object arg) {

Exp rhs = new EAdd(new EVar (i.var_),
new EInt(1));

return new SAss(i.var_, rhs);
}

}

Stm desugar(Stm stm) {
return stm.accept(new Desugar(), null);

}

The Object argument to the visit() method is a dummy since
this visitor does not need any extra arguments. The desugar()
method at the end is just a wrapper used to hide the details of
getting the visitor to visit the statement, and passing in the dummy
argument.

This being an imperative language, we don’t have to do anything
special to be able to thread a state though the computation. Here is
the symbol table construction function from Section 4.4.3 in Java:

class BuildSymTab extends ComposVisitor<Object> {
Map<Var,Typ> symTab = new HashMap<Var,Typ>();

public Stm visit(SDecl d, Object arg) {
symTab.put(d.var_, d.typ_);
return d;

}
}

Map<Var,Typ> symbolTable(Stm stm) {
BuildSymTab v = new BuildSymTab();
stm.accept(v, null);
return v.symTab;

}

You may wonder why this function was implemented as a state-
ful computation instead of as a fold like in the Haskell version.
Creating a visitor which corresponds to composOpFold would be
less elegant in Java, since we would have to pass a combining func-
tion and a base case value to the visitor. This could be done by
adding abstract methods in the visitor, but in most cases the stateful
implementation is probably more idiomatic in Java.

Our final Java example is the example from Section 3, where we
compute the set of free variables in a term in the small functional
language introduced in Section 2.

class Free extends ComposVisitor<Set<String>> {
public Exp visit(EAbs e, Set<String> vs) {

Set<String> xs = new TreeSet<String>();
e.exp_.accept(this, xs);
xs.remove(e.ident_);
vs.addAll(xs);
return e;

}
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public Exp visit(EVar e, Set<String> vs) {
vs.add(e.ident_);
return e;

}
}

Set<String> freeVars(Exp exp) {
Set<String> vs = new TreeSet<String>();
exp.accept(new Free(), vs);
return vs;

}

Here we make use of the possibility of passing an extra argu-
ment to the visit() methods. The argument is a set to which the
visit() method adds all the free variables in the visited term.

6. Language and Tool Support for Compositional
Operations

A drawback of using the method we have described is that one
needs to define the compos function for each type or type fam-
ily. Another problem when working in Haskell is that the current
version of GHC does not support type class derivation for GADTs,
which means that we often also have to write instances for the com-
mon built-in type classes, such as Eq, Ord and Show.

To create Compos instances automatically, we could extend
the Haskell compiler to allow deriving instances of Compos. An-
other possibility would be to generate the instances using Template
Haskell [20] or DrIFT [22], though these tools do not yet support
GADTs.

We have added a new back-end to the BNF Converter (BNFC)
[17, 6] tool which generates a Haskell GADT abstract syntax
type along with instances of Compos, Eq, Ord and Show. We
have also extended the BNFC Java 1.5 back-end to generate the
Java abstract syntax representation shown above, along with the
ComposVisitor class. In addition to the abstract syntax types and
traversal components described in this paper, the generated code
also includes a lexer, a parser, and a pretty printer. We can generate
all the Haskell or Java code for our simple imperative language
example using the grammar shown below. It is written in LBNF
(Labelled Backus-Naur Form), the input language for BNFC.

SDecl. Stm ::= Typ Var ";" ;
SAss. Stm ::= Var "=" Exp ";" ;
SBlock. Stm ::= "{" [Stm] "}" ;
SReturn. Stm ::= "return" Exp ";" ;
SInc. Stm ::= Var "++" ";" ;
separator Stm "" ;

EStm. Exp1 ::= Stm ;
EAdd. Exp1 ::= Exp1 "+" Exp2 ;
EVar. Exp2 ::= Var ;
EInt. Exp2 ::= Integer ;
EDbl. Exp2 ::= Double ;
coercions Exp 2 ;

V. Var ::= Ident ;

TInt. Typ ::= "int";
TDbl. Typ ::= "double";

7. Related Work
7.1 Scrap Your Boilerplate
The part of this work dealing with functional programming lan-
guages can be seen as a light-weight solution to a subset of the

problems solved by generic programming systems. We use traver-
sal operations similar to those in the “Scrap Your Boilerplate”
(SYB) [14] approach. However, no attempt is made to support
completely generic functions such as those in “Generics for the
Masses” [8] or PolyP [10]. In this section we attempt to compare
and contrast our work and SYB.

7.1.1 Introduction to Scrap Your Boilerplate
SYB uses generic traversal functions along with a type safe cast
operation implemented by the use of type classes. This allows the
programmer to extend fully generic operations with type-specific
cases, and use these in various traversal schemes. Data types must
have instances of the Typeable and Data type classes to be used
with SYB. Figure 2 lists the SYB type classes and functions which
we will use below.

The original “Scrap Your Boilerplate” paper [14] contains a
number of examples, some of which we will show as an introduc-
tion and later use for comparison. In the examples, some type syn-
onyms (GenericT and GenericQ) have been inlined to make the
function types more transparent. The examples work on a family of
data types:

data Company = C [Dept]
deriving (Typeable,Data)

data Dept = D Name Manager [Unit]
deriving (Typeable,Data)

data Unit = PU Employee | DU Dept
deriving (Typeable,Data)

data Employee = E Person Salary
deriving (Typeable,Data)

data Person = P Name Address
deriving (Typeable,Data)

data Salary = S Float
deriving (Typeable,Data)

type Manager = Employee
type Name = String
type Address = String

The first example increases the salary of all employees:

increase :: Data a => Float -> a -> a
increase k = everywhere (mkT (incS k))

incS :: Float -> Salary -> Salary
incS k (S s) = S (s * (1+k))

More advanced traversal schemes are also supported. This ex-
ample increases the salary of everyone in a named department:

incrOne :: Data a => Name -> Float -> a -> a
incrOne n k a | isDept n a = increase k a

| otherwise = gmapT (incrOne n k) a

isDept :: Data a => Name -> a -> Bool
isDept n = False ‘mkQ‘ isDeptD n

isDeptD :: Name -> Dept -> Bool
isDeptD n (D n’ _ _) = n==n’

SYB also supports queries, that is, functions which compute
some result from the data structure rather than returning a modi-
fied structure. This example computes the sum of the salaries of
everyone in the company:

salaryBill :: Company -> Float
salaryBill = everything (+) (0 ‘mkQ‘ billS)
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class Typeable a where
-- Takes a value of type a and returns a concrete representation of that type.
typeOf :: a -> TypeRep

class Typeable a => Data a where
-- Left-associative fold operation for constructor applications
gfoldl :: (forall a b. Data a => c (a -> b) -> a -> c b) -> (forall g. g -> c g) -> a -> c a
-- A generic monadic transformation that maps over the immediate subterms, defined in terms of gfoldl
gmapM :: Monad m => (forall b. Data b => b -> m b) -> a -> m a
-- A generic query that processes the immediate subterms and returns a list, defined in terms of gfoldl
gmapQ :: (forall b. Data b => b -> u) -> a -> [u]
-- A generic transformation that maps over the immediate subterms, defined in terms of gfoldl
gmapT :: (forall b. Data b => b -> b) -> a -> a
...

-- Make a generic transformation: start from a type-specific case; preserve the term otherwise
mkT :: (Typeable b, Typeable a) => (b -> b) -> a -> a
-- Make a generic query: start from a type-specific case; return a constant otherwise
mkQ :: (Typeable b, Typeable a) => r -> (b -> r) -> a -> r
-- Make a generic monadic transformation: start from a type-specific case; resort to return otherwise
mkM :: (Typeable b, Typeable a, Monad m) => (b -> m b) -> a -> m a

-- Extend a generic transformation by a type-specific case
extT :: (Typeable b, Typeable a) => (a -> a) -> (b -> b) -> a -> a
-- Extend a generic query by a type-specific case
extQ :: (Typeable b, Typeable a) => (a -> q) -> (b -> q) -> a -> q
-- Extend a generic monadic transformation by a type-specific case
extM :: (Typeable b, Typeable a, Monad m) => (a -> m a) -> (b -> m b) -> a -> m a

-- Apply a transformation everywhere in bottom-up manner
everywhere :: Data a => (forall a. Data a => a -> a) -> a -> a
-- Summarise all nodes in top-down, left-to-right order
everything :: Data a => (r -> r -> r) -> (forall a. Data a => a -> r) -> a -> r

Figure 2. The type classes and some functions from Scrap Your Boilerplate.

billS :: Salary -> Float
billS (S f) = f

7.1.2 SYB examples using compositional operations
We will now show the above examples implemented using our
compositional operations. We first lift the family of data types from
the previous section into a GADT:

data Company; data Dept
data Unit; data Employee
data Person; data Salary

type Manager = Employee
type Name = String
type Address = String

data Tree :: * -> * where
C :: [Tree Dept] -> Tree Company
D :: Name -> Tree Manager -> [Tree Unit]

-> Tree Dept
PU :: Tree Employee -> Tree Unit
DU :: Tree Dept -> Tree Unit
E :: Tree Person -> Tree Salary -> Tree Employee
P :: Name -> Address -> Tree Person
S :: Float -> Tree Salary

We define compos as in Section 4.2, and use the operations from
the library of compositional operations described in Section 4.3 to
implement the examples.

increase :: Float -> Tree c -> Tree c
increase k c = case c of

S s -> S (s * (1+k))
_ -> composOp (increase k) c

Here is the richer traversal example:

incrOne :: Name -> Float -> Tree c -> Tree c
incrOne d k c = case c of

D n _ _ | n == d -> increase k c
_ -> composOp (incrOne d k) c

Query functions are also easy to implement:

salaryBill :: Tree c -> Float
salaryBill c = case c of

S s -> s
_ -> composOpFold 0 (+) salaryBill c

These examples can all be written as single functions, whereas
with SYB they each consist of two or three functions. With SYB,
the type class based system for type-specific cases forces functions
that have specific cases for multiple types to be split into multiple
definitions.

SYB is a powerful system, but for many common uses such
as the examples presented here, we believe that the composOp
approach is more intuitive and easy to use. The drawback is that the
data type family has to be lifted to a GADT, and that the compos
function must be implemented. However, this only needs to be
done once, and at least the latter can be automated, either by using
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BNFC, or by extending the Haskell compiler to generate instances
of Compos (as is done for SYB).

7.1.3 Using SYB to implement compositional operations
Single data type Above we have shown how to replace simple
uses of SYB with compositional operations. We will now show the
opposite, and investigate to what extent the compositional opera-
tions can be reimplemented using SYB. The renaming example for
the simple functional language, as shown in Section 3, looks very
similar when implemented using SYB:

rename :: Exp -> Exp
rename e = case e of

EAbs x b -> EAbs ("_" ++ x) (rename b)
EVar x -> EVar ("_" ++ x)
_ -> gmapT (mkT rename) e

For the single data type case, our composOp and composOpM
can be implemented with gmapT and gmapM, composOpFold is like
gmapQ with a built-in fold, and our compos corresponds to gfoldl.
Here are their definitions for the Exp type:

composOp :: (Exp -> Exp) -> Exp -> Exp
composOp f = gmapT (mkT f)

composOpM :: Monad m => (Exp -> m Exp)
-> Exp -> m Exp

composOpM f = gmapM (mkM f)

composOpFold :: b -> (b -> b -> b)
-> (Exp -> b) -> Exp -> b

composOpFold z c f = foldl c z . gmapQ (mkQ z f)

compos :: (forall a. a -> m a)
-> (forall a b. m (a -> b) -> m a -> m b)
-> (Exp -> m Exp) -> Exp -> m Exp

compos r a f e = gfoldl (\x -> a x . extM r f) r e

The extM function used above has been generalized to arbitrary
unary type constructors (the extM from SYB requires the type
constructor to be in the Monad class).

Families of data types For the multiple data type case, it is diffi-
cult to use SYB to implement our examples with the desired type.
We can implement functions with a type which is too general or too
specific, for example:

rename :: Data a => a -> a
rename = gmapT (rename ‘extT‘ renameVar)

where renameVar :: Var -> Var
renameVar (V x) = V ("_" ++ x)

renameStm :: Stm -> Stm
renameStm = rename

What we would like to have is a rename function which can be
applied to any abstract syntax tree, but not to things which are not
abstract syntax trees. Using a family of normal Haskell data types,
this restriction could be achieved by the use of a dummy type class:

class Data a => Tree a
instance Tree Stm
instance Tree Exp
instance Tree Var
instance Tree Typ

renameTree :: Tree a => a -> a
renameTree = rename

However, we would like the class Tree to be closed, something
which is currently only achievable using hacks such as not export-
ing the class.

When using composOp, the type restriction is achieved as a side
effect of lifting the family of data types into a GADT. Using a
GADT to restrict the function types when using SYB is currently
not practical, since current GHC versions cannot derive Data and
Typeable instances automatically for GADTs.

7.1.4 Using compositional operations to implement SYB
We can also try to implement the SYB functions in terms of our
functions. If we are only interested in our single data type, this
works:

gmapT :: Data a =>
(forall b. Data b => b -> b) -> a -> a

gmapT f = mkT (composOp f)

gmapM :: (Data a, Monad m) =>
(forall b. Data b => b -> m b)

-> a -> m a
gmapM f = mkM (composOpM f)

gmapQ :: Data a =>
(forall b. Data b => b -> u) -> a -> [u]

gmapQ f =
mkQ [] (composOpFold [] (++) ((:[]) . f))

Of course these functions are no longer truly generic: even
though their types are the same as the SYB versions’, they will
only apply the function that they are given to values in the single
data type Exp. Defining gfoldl turns out to be problematic, since
the combining operation that gfoldl accepts cannot be constructed
from the operations of an applicative functor.

For the type family case, it does not seem possible to use
compositional operations to implement SYB operations. It is even
unclear what this would mean, since type families are implemented
in different ways in the two approaches.

7.1.5 Scrap Your Boilerplate conclusions
We consider the main differences between Scrap Your Boilerplate
and our compositional operations to be that:

• When using SYB, no changes to the data types are required
(except some type class deriving), but the way in which func-
tions over the data types are written is changed drastically. With
compositional operations on the other hand, the data type fam-
ily must be lifted to a GADT, while the style in which functions
are written remains more natural.

• SYB functions over multiple data types are too generic, in that
they are not restricted to the type family for which they are
intended.

• Our approach is a general pattern which can be translated rather
directly to other programming languages and paradigms.

• Compositional operations directly abstract out the code for pat-
tern matches, recursion and reconstruction otherwise written by
hand. SYB uses runtime type representations and type casts,
which makes for more genericity, at the expense of transparency
and understandability.

7.2 The Tree set constructor
7.2.1 Introduction
Petersson and Synek [18] introduce a set constructor for tree types
into Martin-Löf’s intuitionistic type theory. Their tree types are
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similar to the inductive families in for example Agda, and, for our
purposes, to Haskell’s GADTs. The value representation, however,
is quite different. There is only one constructor for trees, and it
takes as arguments the type index, the data constructor and the data
constructor arguments.

Tree types are constructed by the following rule:

TREE SET FORMATION
A : set

B(x) : set[x : A] C(x, y) : set[x : A, y : B(x)]
d(x, y, z) : A[x : A, y : B(x), z : C(x, y)] a : A

Tree(A, B, C, d, a) : set

Here A is the set of names (type indices) of the mutually depen-
dent sets. B(x) is the set of constructors in the set with name x.
C(x, y) is the set of argument labels (or selector names) for the ar-
guments of the constructor y in the set with name x. d is a function
which assigns types to constructor arguments: for constructor y in
the set with name x, d(x, y, z) is the name of the set to which the
argument with label z belongs. For simplicity, T (a) is used below,
instead of Tree(A, B, C, d, a).

Tree values are constructed using this rule:

TREE VALUE INTRODUCTION
a : A b : B(a) c(z) : T (d(a, b, z))[z : C(a, b)]

tree(a, b, c) : T (a)

Here a is the name of the set to which the tree belongs. b is the
constructor. c is a function which assigns values to the arguments
of the constructor (children of the node), where c(z) is the value of
the argument with label z.

Trees are eliminated using the treerec constant, with the com-
putation rule:

treerec(tree(a, b, c), f) → f(a, b, c, λz. treerec(c(z), f))

7.2.2 Relationship to GADTs
As we have seen above, trees are built using the single constructor
tree, with the type, constructor and node children as arguments to
tree. We can use this structure to represent GADT values, as long
as all children are also trees. Using the constants l1 . . . as argument
labels for all constructors, we can represent GADT values in the
following way:

b t1 . . . tn :: Tree a ≡
tree(a, b, λz. case z of {l1 : t1; . . . ; ln : tn})

For example, the value SDecl T int (V "x") :: Tree Stm
in our Haskell representation would be represented as the term
shown below. We use ”x” as syntactic sugar for some appropriate
tree representation of a string.

tree(Stm, SDecl,λx. case x of {
l1 : tree(Typ, T int, λy. case y of {});
l2 : tree(V ar, V, λy. case y of {l1 : ”x”})

})
7.2.3 Tree types and compositional operations
We can implement a composOp-equivalent in type theory by using
treerec:

composOp(f, t) =

treerec(t, λ(a, b, c, c′). tree(a, b, λz. f(c(z))))

What makes this so easy is that all values have the same rep-
resentation, and c which contains the child trees is just a function

which we can compose with our function f . With this definition,
we can use composOp like in Haskell. The code below assumes
that we have wild card patterns in case expressions, and that ++
is a concatenation operation for whatever string representation we
have.

rename(t) = treerec(t,λ(a, b, c, c′). case b of {
V : tree(V ar, V, λl. ” ” ++c(l));

: composOp(rename, t)

})
One advantage over the Haskell solution is that we have access

to both the original child values (c in the example above), and the
results of the recursive calls (c′ in the example above) when writing
our functions. This would simplify functions which need to use
the results of the recursive calls, for example the constant folding
example in Section 4.4.4.

7.3 Related work in object-oriented programming
The ComposVisitor class looks deceptively simple, but it com-
bines a number of features, some of which are already known in the
object-oriented programming community. It does however appear
that the combination which we have presented is relatively novel.

• It uses type-parameterized visitor interfaces, which can only
be implemented in a few object-oriented languages. Similar
parameterized visitor interfaces can be found in the Loki C++
library [1].

• It is a depth-first traversal combinator whose behavior can be
overridden for each concrete class. A similar effect can be
achieved by using the BottomUp and Identity combinators
from Joost Visser’s work on visitor combinators [21], and with
the depth-first traversal function in the the Boost Graph Li-
brary [15].

• It allows modification of the data structure in a functional and
compositional way. The fact that functional modification is
not widely used in imperative object-oriented programming is
probably the main reason why this area has not been explored
further.

8. Future Work
8.1 Automatic generation of compos for existing types
Some way of automatically declaring new Compos instances for
existing data types should be developed. At the moment, none of
the meta-programming and generic programming tools which we
have looked at support reflection over GADTs.

8.2 Applications in natural language processing
While most of the examples in this paper are related to compiler
writing, we think that this technique could also be useful in natural
language processing, for example in rule-based translation. One ex-
ample of this would be aggregation, e.g. by transforming sentence
conjunction, for example “John walks and Mary walks”, to noun
phrase conjunction, such as “John and Mary walk”. We want to be
able to do this transformation wherever sentences of this form ap-
pear in a phrase, for example in “I know that John walks and Mary
walks”. The transformation is done on the level of abstract syntax,
and is similar to the ones for formal languages shown earlier in this
paper. Since a natural language grammar may have a very large
number of constructors, using composOp for this kind of transfor-
mation could be very beneficial. We will explore this further in the
Transfer language [4], which is intended for writing functions over
GF [19] abstract syntax terms. The language is dependently typed,

10 2006/7/27



and has support for inductive families and automatic generation of
composOp functions.

8.3 Tree types and generic programming
In “Scrap Your Boilerplate” Reloaded [9], SYB is explained in
terms of a lifting of all types to a GADT. We have already seen that
the tree types of Petersson and Synek [18] are a very powerful con-
struct which can be used to represent GADTs and perform generic
operations on them. It would be interesting to see to what extent
generic programming systems such as Scrap Your Boilerplate can
be explained using dependent type theory with these tree types.

9. Conclusions
We have presented a pattern for implementing almost composi-
tional operations over rich data structures such as abstract syntax
trees easily.

We have ourselves started to use this pattern for real implemen-
tation tasks, and we feel that it has been very successful. In the
compiler for the Transfer language [4] we use a BNFC [17, 6]-
generated front-end with a generated Compos instance for the ab-
stract syntax. The abstract syntax has 70 constructors, and in the
(still very small) compiler the various composOp* functions are
currently used in 12 places. The typical function using composOp*
pattern matches on between 1 and 5 of the constructors, saving hun-
dreds of lines of code. Some of the functions include: replacing in-
fix operator use with function calls, beta reduction, simultaneous
substitution, getting the set of variables bound by a pattern, get-
ting the free variables in an expression, assigning fresh names to all
bound variables, numbering meta-variables, changing pattern equa-
tions to simple declarations using case expressions, and replacing
unused variable bindings in patterns with wild cards. Furthermore,
we have noticed that using compositional operations to implement
a compiler makes it easy to structure it as a sequence of simple
steps, without having to repeat large amounts of traversal code for
each step. Modifying the abstract syntax, for example by adding
new constructs to the front-end language, is also made easier since
only the functions which care about this new construct need to be
changed.
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