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Abstract

This paper introduces a pattern for almost compositional functions over recursive data types,

and over families of mutually recursive data types. Here “almost compositional” means that

for all of the constructors in the type(s), except a limited number of them, the result of

the function depends only on the constructor and the results of calling the function on the

constructor’s arguments. The pattern consists of a generic part constructed once for each

data type or family of data types, and a task-specific part. The generic part contains the

code for the predictable compositional cases, leaving the interesting work to the task-specific

part. Examples of the pattern are given, implemented in dependent type theory with inductive

families, in Haskell with generalized algebraic data types and rank-2 polymorphism, and in

Java using a variant of the Visitor design pattern. The relationships to the “Scrap Your

Boilerplate” approach to generic programming, and to general tree types in dependent type

theory, are investigated by reimplementing our operations using those frameworks.

1 Introduction

This paper addresses the issue of repetitive code in operations on rich data structures.

To give concrete examples of what we would like to be able to do, we start by giving

some motivating problems.

1.1 Some motivating problems

Suppose that you have an abstract syntax definition with many syntactic types such

as statement, expression, and variable.

1. Write a function that prepends an underscore to the names of all variables in

a program. Do this with a case expression that has just two branches: one for

the variables, and another for the rest.

2. Write a function that gives unique names to all variables in a program. Use

only three cases: variable bindings, variable uses, and the rest.

3. Write a function that constructs a symbol table containing all variables

declared in a program, and the type of each variable. Do this with only

two cases: one for declarations, another for the rest.

4. Write a function that replaces increment statements with the corresponding

assignments. Use only two cases: one for increments, and another for the rest.
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One problem when writing recursive functions which need to traverse rich data

structures is that the straightforward way to write them involves large amounts

of traversal code which tends to be repeated in each function. There are several

problems with this:

• The repeated traversals are probably implemented using copy-and-paste or

retyping, both of which are error-prone and can lead to maintenance

problems.

• When we add a constructor to the data type, we need to change all functions

that traverse the data type, many of which may not need any specific behavior

for the new constructor.

• Repeated traversal code obscures the interesting cases where the functions do

their real work.

• The need for complete traversal code for the whole family of data types in

every function can encourage a less modular programming style where multiple

operations are collected in a single function.

1.2 The solution

The pattern which we present in this paper allows the programmer to solve problems

such as those given earlier in a (hopefully) intuitive way. First, we write the traversal

code once and for all for our data type or family of data types. We then reuse this

component to succinctly express the operations which we want to define.

1.3 Article overview

We first present the simple case of a single recursive algebraic data type, and

show examples of using the pattern in plain Haskell 98 (Peyton Jones, 2003a).

After that, we generalize this to the more complex case of a family of data types,

and show how the pattern can be used in dependent type theory (Martin-Löf,

1984; Nordström et al., 1990) with inductive families (Dybjer, 1994) and in Haskell

with generalized algebraic data types (Peyton Jones et al., 2006; Augustsson &

Petersson, 1994) and rank-2 polymorphism (Leivant, 1983; Peyton Jones et al.,

2007). We then prove some properties of our compositional operations, using the

laws for applicative functors (McBride & Paterson, 2008). We go on to express

the pattern in Java (Gosling et al., 2005) using a variant of the Visitor design

pattern (Gamma et al., 1995). We also briefly describe some tools which can be

used to automate the process of writing the necessary support code for a given

data type. Finally, we discuss some related work in generic programming, type

theory, object-oriented programming, and compiler construction, and provide some

conclusions.

2 Abstract syntax and algebraic data types

Algebraic data types provide a natural way to implement the abstract syntax in

a compiler. To give an example, the following Haskell type defines the abstract
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syntax of the lambda calculus with abstractions, applications, and variables. For

more information about using algebraic data types to represent abstract syntax

for programming languages, see, for example Appel’s (1997) book on compiler

construction in ML.

data Exp = EAbs String Exp | EApp Exp Exp | EVar String

Pattern matching is the technique for defining functions on algebraic data types.

These functions are typically recursive. An example is a function that renames all

the variables in an expression by prepending an underscore to their names.

rename :: Exp→ Exp

rename e = case e of

EAbs x b → EAbs ("_" ++ x ) (rename b)

EApp c a → EApp (rename c) (rename a)

EVar x → EVar ("_" ++ x )

3 Compositional functions

Many functions used in compilers are compositional, in the sense that the result

for a complex argument is constructed from the results for its parts. The rename

function is an example of this. The essence of compositional functions is defined by

the following higher-order function:

composOp :: (Exp→ Exp)→ Exp→ Exp

composOp f e = case e of

EAbs x b → EAbs x (f b)

EApp c a → EApp (f c) (f a)

→ e

Its power lies in that it can be used when defining other functions, to take care of

cases that are just compositional. Such is the EApp case in rename, which we thus

omit by writing

rename :: Exp→ Exp

rename e = case e of

EAbs x b → EAbs ("_" ++ x ) (rename b)

EVar x → EVar ("_" ++ x )

→ composOp rename e

In general, an abstract syntax has many more constructors, and this pattern saves

much more work. For instance, in the implementation of GF (Ranta, 2004), the Exp

type has 30 constructors, and composOp is used in more than 20 functions, typically

covering 90% of all cases.

A major restriction of composOp is that its return type is Exp. How do we use

it if we want to return something else? If we simply want to compute some result

using the abstract syntax tree, without modifying the tree, we can use composFold .
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composFold :: Monoid o ⇒ (Exp→ o)→ Exp→ o

composFold f e = case e of

EAbs x b → f b

EApp c a → f c ⊕ f a

→ ∅

This function takes an argument which maps terms to a monoid, and combines

the results. The Monoid class requires an identity element ∅, which we return for

leaf nodes, and an associative operation (⊕), which we use to combine results from

nodes with more than one child.

class Monoid a where

∅ :: a

(⊕) :: a → a → a

Using composFold we can now, for example, write a function which gets the names

of all free variables in an expression.

free :: Exp→ Set String

free e = case e of

EAbs x b → free b \ {x}
EVar x → {x}

→ composFold free e

This example uses a Set type with the operations \ (set minus), {·} (singleton

set), � (empty set), and ∪ (union), with a Monoid instance such that ∅ = � and

(⊕) = ∪.

3.1 Monadic compositional functions

When defining a compiler in Haskell, it is convenient to use monads instead of plain

functions, to deal with errors, state, etc. To this end, we generalize composOp to a

monadic variant.

composM :: Monad m ⇒ (Exp→ m Exp)→ Exp→ m Exp

composM f e = case e of

EAbs x b → f b >>= (λb ′ → return (EAbs x b ′))

EApp c a → f c >>= (λc′ → f a >>= (λa ′ → return (EApp c′ a ′)))

→ return e

Here, we are using the Monad type class (Peyton Jones, 2003b).

class Monad m where

(>>=) :: m a → (a → m b)→ m b

return :: a → m a

If we want to maintain some state across the computation over the tree, we can use

composM with a state monad (Jones, 1995). In the following example, we will use a

state monad State with these operations:
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readState :: State s s

writeState :: s → State s ()

runState :: s → State s a → (a , s)

Now we can, for example, write a function that gives fresh names of the form

"_n", where "n" is an integer, to all bound variables in an expression. Here the state

is an infinite supply of fresh variable names, and we pass a table of the new names

for the bound variables to the recursive calls.

fresh :: Exp→ Exp

fresh = fst ◦ runState names ◦ f [ ]

where names = ["_" ++ show n | n ← [0 . .]]

f :: [(String,String)]→ Exp→ State [String] Exp

f vs t = case t of

EAbs x b → do x ′ : ns ← readState

writeState ns

b ′ ← f ((x , x ′) : vs) b

return (EAbs x ′ b ′)

EVar x → return (EVar (findWithDefault x x vs))

→ composM (f vs) t

findWithDefault :: Eq a ⇒ b → a → [(a , b)]→ b

findWithDefault d [ ] = d

findWithDefault d k ((x , y) : xs) | x == k = y

| otherwise = findWithDefault d k xs

3.2 Generalizing composOp, composM and composFold

The three functions which we have introduced earlier, henceforth referred to as com-

positional operations, share a common structure which we will now reveal. McBride

and Paterson (2008) introduce applicative functors, which generalize monads. An

applicative functor has two operations, pure and �.

class Applicative f where

pure :: a → f a

(�) :: f (a → b)→ f a → f b

The pure operation corresponds to the return operation of a monad, and �

corresponds to ap, which can be defined using >>=.

ap :: Monad m ⇒ m (a → b)→ m a → m b

ap mf mx = mf >>= λf → mx >>= λx → return (f x )

We can rewrite composM to use ap instead of >>=.

composM :: Monad m ⇒ (Exp→ m Exp)→ Exp→ m Exp

composM f e = case e of

EAbs x b → return EAbs ‘ap‘ return x ‘ap‘ f b

EApp c a → return EApp ‘ap‘ f c ‘ap‘ f a

→ return e
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Since composM uses only return and ap, it actually works on all applicative functors,

not just on monads. We call this generalized version compos .

compos :: Applicative f ⇒ (Exp→ f Exp)→ Exp→ f Exp

compos f e = case e of

EAbs x b → pure EAbs � pure x � f b

EApp g h → pure EApp � f g � f h

→ pure e

By using wrapper types with appropriate Applicative instances (McBride &

Paterson, 2008), we can now define composOp, composM , and composFold in terms

of compos . The definitions of composOp and composFold are identical to McBride

and Paterson’s definitions of fmap and accumulate in terms of traverse, and the

definition of composM follows directly from the relationship between applicative

functors and monads.

composOp :: (Exp→ Exp)→ Exp→ Exp

composOp f = runIdentity ◦ compos (Identity ◦ f )

newtype Identity a = Identity {runIdentity :: a }
instance Applicative Identity where

pure = Identity

Identity f � Identity x = Identity (f x )

composM :: Monad m ⇒ (Exp→ m Exp)→ Exp→ m Exp

composM f = unwrapMonad ◦ compos (WrapMonad ◦ f )

newtype WrappedMonad m a = WrapMonad {unwrapMonad :: m a }
instance Monad m ⇒ Applicative (WrappedMonad m) where

pure = WrapMonad ◦ return

WrapMonad f � WrapMonad v = WrapMonad (f ‘ap‘ v )

composFold :: Monoid o ⇒ (Exp→ o)→ Exp→ o

composFold f = getConst ◦ compos (Const ◦ f )

newtype Const a b = Const {getConst :: a }
instance Monoid m ⇒ Applicative (Const m) where

pure = Const ∅
Const f � Const v = Const (f ⊕ v )

Further compositional operations, such as composM , can be defined by using other

wrapper types.

composM :: Monad m ⇒ (Exp→ m ())→ Exp→ m ()

composM f = unwrapMonad ◦ composFold (WrapMonad ◦ f )

newtype WrappedMonad m = WrapMonad {unwrapMonad :: m ()}
instance Monad m ⇒ Monoid (WrappedMonad m) where

∅ = WrapMonad (return ())

WrapMonad x ⊕WrapMonad y = WrapMonad (x >> y)
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4 Systems of data types

4.1 Several algebraic data types

For many languages, the abstract syntax is not just one data type, but many,

which are often defined by mutual induction. An example is the following simple

imperative language with statements, expressions, variables, and types. In this

language, statements that return values (such as assignments and blocks that end

with a return statement) can be used as expressions.

data Stm = SDecl Typ Var | SAss Var Exp | SBlock [Stm] | SReturn Exp

data Exp = EStm Stm | EAdd Exp Exp | EVar Var | EInt Int

data Var = V String

data Typ = TInt | TFloat

We now need one compos function for each recursive type, and some of the recursive

calls must be made on terms which have types different from those on which the

function was called on. This can be solved by taking several functions as arguments,

one for each type.

composStm :: Applicative f ⇒
(Stm→ f Stm,Exp→ f Exp,Var→ f Var,Typ→ f Typ)

→ Stm→ f Stm

composStm (fs , fe, fv , ft) s = case s of

SDecl x y → pure SDecl � ft x � fv y

SAss x y → pure SAss � fv x � fe y

SBlock xs → pure SBlock � traverse fs xs

SReturn x → pure SReturn � fe x

composExp :: Applicative f ⇒
(Stm→ f Stm,Exp→ f Exp,Var→ f Var,Typ→ f Typ)

→ Exp→ f Exp

composExp (fs , fe, fv , ft) e = case e of

EAdd x y → pure EAdd � fe x � fe y

EStm x → pure EStm � fs x

EVar x → pure EVar � fv x

Note that the Typ function is not actually required in composExp, but we include

it here for the sake of uniformity. We would also need to implement composOp,

composM , composFold etc. for each of the types. Even though these implementations

would be identical for all type families, it is difficult to provide generic implemen-

tations of them without resorting to multiparameter type classes and functional

dependencies, since the type of the function tuple will depend on the type family.

With these functions, we can define a renaming function more easily than without

composOp.

renameStm :: Stm→ Stm

renameStm t = composOpStm ( renameStm , renameExp,

renameVar , renameTyp)
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renameExp :: Exp→ Exp

renameExp t = composOpExp (renameStm , renameExp,

renameVar , renameTyp)

renameVar :: Var→ Var

renameVar (V x ) = V ("_" ++ x )

renameTyp :: Typ→ Typ

renameTyp t = t

We now need up to one extra function per type (for nonrecursive types we can get

away with passing id ). In a large system, this can result in significant overhead. For

example, the abstract syntax used in the Glasgow Haskell Compiler contains more

than 50 data types (Peyton Jones, 2007).

4.2 Categories and trees

An alternative to separate mutual data types for abstract syntax is to define just one

type Tree, whose constructors take Trees as arguments.

data Tree = SDecl Tree Tree | SAss Tree Tree | SBlock [Tree] | SReturn Tree

| EStm Tree | EAdd Tree Tree | EVar Tree | EInt Int

| V String | TInt | TFloat

This is essentially the representation one would use in a dynamically typed language.

It does not, however, constrain the combinations enough for our liking: there are

many Trees that are even syntactically nonsense.

A solution to this problem is provided by dependent types (Martin-Löf, 1984;

Nordström et al., 1990). Instead of a constant type Tree, we define an inductive

family (Dybjer, 1994) Tree c, indexed by a category c. The category is just a label

to distinguish between different types of trees. Inductive families have previously

been used for representing the abstract syntax of well-typed expressions: the family

Exp a gives separate, yet related, types to integer expressions, boolean expressions,

etc. (Augustsson & Petersson, 1994). The extension from such a family to one

comprising all syntactic categories (expressions, statements, etc.) seems to be a

novelty of our work. We must now leave standard Haskell and use a Haskell-like

language with dependent types and inductive families. Agda (Coquand & Coquand,

1999; Norell, 2007) is one such language. What one would define in Agda is an

enumerated type:

data Cat = Stm | Exp | Var | Typ

followed by an idata (inductive data type, or in this case an inductive family of

data types) definition of Tree, indexed on Cat. We omit the Agda definitions of the

Tree family and the compos function as they are virtually identical to the Haskell

versions shown later, except that in Agda the index for Tree is a value of type Cat,

whereas in Haskell the index is a dummy data type.
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We can also do our exercise with the limited form of dependent types provided

by Haskell since version 6.4 of the Glasgow Haskell Compiler (GHC): Generalized

Algebraic Data Types (GADTs) (Augustsson & Petersson, 1994; Peyton Jones et al.,

2006). We cannot quite define a type of categories, but we can define a set of dummy

data types.

data Stm

data Exp

data Var

data Typ

To define the inductive family of trees, we write, in this extension of Haskell,

data Tree :: ∗ → ∗ where

SDecl :: Tree Typ→ Tree Var→ Tree Stm

SAss :: Tree Var→ Tree Exp→ Tree Stm

SBlock :: [Tree Stm]→ Tree Stm

SReturn :: Tree Exp→ Tree Stm

EStm :: Tree Stm→ Tree Exp

EAdd :: Tree Exp→ Tree Exp→ Tree Exp

EVar :: Tree Var→ Tree Exp

EInt :: Int→ Tree Exp

V :: String→ Tree Var

TInt :: Tree Typ

TFloat :: Tree Typ

In Haskell we cannot restrict the types used as indices in the Tree family, which
makes it entirely possible to construct types such as Tree String. However, since

there are no constructors targeting this type, ⊥ is the only element in it.

4.3 Compositional operations

The power of inductive families is shown in the definition of the function compos .

We now define it simultaneously for the whole syntax, and can then use it to define

tree-traversing programs concisely.

compos :: Applicative f ⇒ (∀a . Tree a → f (Tree a))→ Tree c → f (Tree c)

compos f t = case t of

SDecl x y → pure SDecl � f x � f y

SAss x y → pure SAss � f x � f y

SBlock xs → pure SBlock � traverse f xs

SReturn x → pure SReturn � f x

EAdd x y → pure EAdd � f x � f y

EStm x → pure EStm � f x

EVar x → pure EVar � f x

→ pure t

The first argument must now be polymorphic, since it is applied to subtrees of

different types. This requires rank-2 polymorphism (Leivant, 1983; Peyton Jones
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class Compos t where

compos :: Applicative f ⇒ (∀a ◦ t a → f (t a))→ t c → f (t c)

composOp :: Compos t ⇒ (∀a ◦ t a → t a)→ t c → t c

composOp f = runIdentity ◦ compos (Identity ◦ f )

composFold :: (Monoid o,Compos t)⇒ (∀a ◦ t a → o)→ t c → o

composFold f = getConst ◦ compos (Const ◦ f )

composM :: (Compos t ,Monad m)⇒ (∀a ◦ t a → m (t a))→ t c → m (t c)

composM f = unwrapMonad ◦ compos (WrapMonad ◦ f )

composM :: (Compos t ,Monad m)⇒ (∀a ◦ t a → m ())→ t c → m ()

composM f = unwrapMonad ◦ composFold (WrapMonad ◦ f )

Fig. 1. The Compos module.

et al., 2007), a widely supported Haskell extension. The argument to the SBlock

constructor is a list of statements, which we handle by visiting the list elements

from left to right, using the traverse function (McBride & Paterson, 2008), which

generalizes mapM .

traverse :: Applicative f ⇒ (a → f b)→ [a ]→ f [b ]

traverse f [ ] = pure [ ]

traverse f (x : xs) = pure (:) � f x � traverse f xs

The other compositional operations are special cases of compos in the same way as

before.

4.4 A library of compositional operations

Since all the other compositional operations can be defined in terms of compos , we

create a type class containing the compos function, and define the other operations

in terms of it. The code for this is shown in Figure 1.

4.5 Migrating existing programs

Replacing a family of data types with a generalized algebraic data type (GADT)

does not change the appearance of the expressions and patterns in the syntax tree

types. However, the types now have the form Tree c. If we want, we can give the

dummy types names other than those of the original categories, for example Stm ,

Exp , Var , and Typ , and use type synonyms to make the types also look like they

did when we had multiple data types.

type Stm = Tree Stm

type Exp = Tree Exp

type Var = Tree Var

type Typ = Tree Typ
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This allows us to modify existing programs to switch from a family of data

types to a GADT, simply by replacing the type definitions. All existing functions

remain valid with the new type definitions, which makes it possible to take

advantage of our compositional operations when writing new functions, without

being forced to change any existing ones. There are a few minor issues: the

limitations on type inference for GADTs (Peyton Jones et al., 2006) and rank-2

polymorphism (Peyton Jones et al., 2007) may require type signatures for some

functions, and since GHC does not currently support type class instance deriving

for GADTs, we have to write instances of common type classes such as Show and

Eq for our type family by hand.

4.6 Examples

4.6.1 Example: Variable renaming

It is laborious to define a renaming function for the original Haskell definition with

separate data types (as shown in Section 4.1), but now it is easy.

rename :: Tree c → Tree c

rename t = case t of

V x → V ("_" ++ x )

→ composOp rename t

4.6.2 Example: Symbol table construction

This function constructs a variable symbol table by folding over the syntax tree.

We use the Monoid instance for lists, where the associative operation is ++, and the

identity element is [ ].

symbols :: Tree c → [(Tree Var,Tree Typ)]

symbols t = case t of

SDecl typ var → [(var , typ)]

→ composFold symbols t

4.6.3 Example: Syntactic sugar

This example shows how easy it is to add syntax constructs as syntactic sugar, i.e.,

syntactic constructs that can be eliminated. Suppose that you want to add increment

statements. This means a new branch in the definition of Tree c from Section 4.2.

SIncr :: Tree Var→ Tree Stm

Increments are eliminated by translation to assignments as follows:

elimIncr :: Tree c → Tree c

elimIncr t = case t of

SIncr v → SAss v (EAdd (EVar v ) (EInt 1))

→ composOp elimIncr t
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4.6.4 Example: Warnings for assignments

To encourage pure functionality, this function sounds the bell each time an assign-

ment occurs. Since we are not interested in the return value of the function, but

only in its IO outputs, we use the function composM (like composM but without a

tree result, see Section 3.2 for its definition).

warnAssign :: Tree c → IO ()

warnAssign t = case t of

SAss → putChar (chr 7)

→ composM warnAssign t

4.6.5 Example: Constant folding

We want to replace additions of constants by their result. Here is a first attempt.

constFold :: Tree c → Tree c

constFold e = case e of

EAdd (EInt x ) (EInt y)→ EInt (x + y)

→ composOp constFold e

This works for simple cases, but what about for example 1 + (2 + 3)? This is an

addition of constants, but is not matched by the pattern shown earlier. We have to

look at the results of the recursive calls.

constFold ′ :: Tree c → Tree c

constFold ′ e = case e of

EAdd x y → case (constFold ′ x , constFold ′ y) of

(EInt n ,EInt m)→ EInt (n + m)

(x ′, y ′) → EAdd x ′ y ′

→ composOp constFold ′ e

This illustrates a common pattern used when the recursive calls can introduce terms

which we want to handle.

4.7 Writing Compos instances

Until now, we have only shown compos functions for example data types. But what

is the general pattern? We will consider types of the following form

data T : ∗ → ∗ where

C1 :: t1,1 → · · · → t1,a1
→ T c1

...

Cn :: tn,1 → · · · → tn,an → T cn

where n � 0 is the number of data constructors, ax � 0 is the arity of data

constructor Cx , tx,y is the type of argument y of constructor Cx , and cx is the type

argument to T in the type of constructor Cx . The argument types tx,y cannot be
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type variables, since it must be possible to determine statically whether or not each

argument belongs to the type family T. All Compos instances have the following

general form:

instance Compos T where

compos f t = case t of

C1 b1 . . . ba1
→ pure C1 � g1,1 b1 � · · ·� g1,a1

ba1

...

Cn b1 . . . ban
→ pure Cn � gn,1 b1 � · · ·� gn,an ban

where each gx,y function depends on the type tx,y of the corresponding constructor

argument. There is some freedom in how gx,y is chosen. The simplest choice is to

only use f on children which have a type in the type family T:

gx,y =

{
f if ∃c.tx,y = T c

pure otherwise.

In the compos implementation shown in Section 4.3, we used traverse to map f over

any lists containing elements in the type family T. This can be generalized to any

traversable type, using the Traversable type class by McBride and Paterson (2008).

gx,y =

⎧⎨
⎩

f if ∃c.tx,y = T c

traverse f if ∃c.tx,y = F (T c) ∧ Traversable F

pure otherwise

4.7.1 Parameterized abstract syntax

We may want to have type parameters for the entire type family. For example,

GHC’s abstract syntax is parameterized over the type of identifiers. This makes it

possible to use the same abstract syntax, with different identifier types, for the input

before and after name resolution. We can add extra type parameters to our type

family to support this. For example,

data Decl

data Exp

data Tree :: ∗ → ∗ → ∗ where

Decl :: i → Tree i Exp→ Tree i Decl

App :: Tree i Exp→ Tree i Exp→ Tree i Exp

Var :: i → Tree i Exp.

Earlier, we said that constructors should not have type variable arguments, but

when we implement compos , we can choose to treat i as a non-Tree type.

4.7.2 An optimization

As done in the compos implementations in Sections 3.2 and 4.3, the cases for

all nonrecursive constructors (i.e., constructors Cx such that ∀y .gx,y = pure) can

be optimized to a single catch-all case: → pure t . This can be done since
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pure Cx � pure b1 � · · ·� pure bax
= pure (Cx b1 . . . bax

) by the homomorphism law

for applicative functors (see Section 4.8).

4.8 Properties of compositional operations

The following laws hold for our compositional operations:

Identity 1 compos pure = pure

Identity 2 composOp id = id

Identity 3 composFold (λ → ∅) = λ → ∅
Composition composOp f ◦ composOp g = composOp (f ◦ g).

Here, = denotes extensional function equality at some type T for which we have

defined compos according to the scheme shown in Section 4.7. That is, f = g means

that for all total values t :: T, f t = g t . In the proofs, we will make use of the

following laws for applicative functors (McBride & Paterson, 2008):

Identity pure id � u = u

Composition pure ( ◦ ) � u � v � w = u � (v � w )

Homomorphism pure f � pure x = pure (f x )

Interchange u � pure x = pure (λf → f x ) � u .

We would like compos to have the property that it does not modify the term on its

own, i.e.,

Theorem 1

For all total values t :: T, compos pure t = pure t .

Proof

Consider some t = C t1 . . . tn , where C is an arbitrary constructor of T with arity n .

The relevant part of the compos function is then

compos f t = case t of

C x1 . . . xn → pure C � g1 x1 � · · ·� gn xn

where each gi is either pure, f , or traverse f , depending on the type of xi . Since

f = pure in the case that we are reasoning about, the functions g1 . . . gn are either

pure or traverse pure. As noted by Gibbons and Oliveira (2006), all implementations

of traverse should satisfy the “purity law” traverse pure = pure. Thus, all the g1 . . .gn

functions are pure and all constructor cases have the following form:

C x1 . . . xn → pure C � pure x1 � · · ·� pure xn

By the repeated use of the homomorphism law for applicative functors, we have

pure C � pure x1 � · · ·� pure xn = pure (C x1 . . . xn )

Thus, for all total t : T, compos pure t = pure t . �

With the definitions of composOp and composFold given in Section 4.3, Identity 2

and Identity 3 follow straightforwardly from Theorem 1.
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Theorem 2

For all total t :: T, composOp f (composOp g t) = composOp (f ◦ g) t .

Proof

Consider some t = C t1 . . . tn , where C is an arbitrary constructor of T, with arity n .

As in the proof of Theorem 1, the interesting part of compos is

compos f t = case t of

C x1 . . . xn → pure C � g1 x1 � · · ·� gn xn

Lemma 1

composOp g (C x1 . . . xn ) = C (g ′1 x1) . . . (g
′
n xn )

where each g ′i is id , g or fmap g , depending on the type of xi .

Proof

composOp g (C x1 . . . xn )

= { Definition of composOp }
runIdentity (compos (Identity ◦ g) (C x1 . . . xn ))

= { Definition of compos }
runIdentity (pure C � g1 x1 � · · ·� gn xn )

= { Definition of pure for Identity }
runIdentity (Identity C � g1 x1 � · · ·� gn xn )

= { Definition of � for Identity }
runIdentity (Identity (C (runIdentity (g1 x1))) � · · ·� gn xn )

= { Definition of � for Identity }
runIdentity (Identity (C (runIdentity (g1 x1)) · · · (runIdentity (gn xn ))))

= { Introduce g ′i = runIdentity ◦ gi }
runIdentity (Identity (C (g ′1 x1) . . . (g

′
n xn )))

= { Definition of runIdentity }
C (g ′1 x1) . . . (g

′
n xn )

Since each gi is Identity, Identity ◦ g or traverse (Identity ◦ g), each g ′i is id , g or

fmap g . The last case relies on the observation by Gibbons and Oliveira (2006)

that all implementations of traverse should satisfy traverse (Identity ◦ f ) = Identity ◦
fmap f . �

Now,

composOp f (composOp g (C x1 . . . xn ))

= { Lemma 1 }
composOp f (C (g ′1 x1) . . . (g

′
n xn ))

= { Lemma 1 }
C (f ′1 (g ′1 x1)) . . . (f

′
n (g ′n xn ))

= { Definition of ◦ }
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C ((f ′1 ◦ g ′1) x1) . . . ((f
′
n ◦ g ′n ) xn )

= { Lemma 1 and fmap f ◦ fmap g = fmap (f ◦ g) }
composOp (f ◦ g) (C x1 . . . xn )

�

One may think that the stronger compos g t >>= compos f = compos (λx →
g x >>= f ) t would hold for any Applicative type that is also a Monad, but it does

not, as it changes the order of the monadic computations.

It should also be possible to perform formal reasoning about our compositional

operations using dependent type theory with tree sets, as discussed in Section 7.4.

5 Almost compositional functions and the Visitor design pattern

The Visitor design pattern (Gamma et al., 1995) is a pattern used in object-oriented

programming to define an operation for each of the concrete elements of an object

hierarchy. We will show how an adaptation of the Visitor pattern can be used to

define almost compositional functions in object-oriented languages, in a manner

quite similar to that shown earlier for languages with algebraic data types and

pattern matching.

First we present the object hierarchies corresponding to the algebraic data types.

Each object hierarchy has a generic Visitor interface. We then show a concrete

visitor that corresponds to the composOp function. Our examples are written in Java

1.5 (Gosling et al., 2005) and make use of its parametric polymorphism (Bracha

et al., 1998).

5.1 Abstract syntax representation

We use a standard encoding of abstract syntax trees in Java (Appel, 2002), along

with the support code for a type-parametrized version of the Visitor design pattern.

For each algebraic data type in the Haskell version (as shown in Section 4.1), we

have an abstract base class in the Java representation,

public abstract class Stm {
public abstract〈R,A〉R accept (Visitor〈R,A〉v ,A arg);

public interface Visitor〈R,A〉 {
public R visit (SDecl p,A arg);

public R visit (SAss p,A arg);

public R visit (SBlock p,A arg);

public R visit (SReturn p,A arg);

public R visit (SInc p,A arg);

}
}

The base class contains an interface for visitors, with methods for visiting each of

the inheriting classes. The Visitor interface has two type parameters: R is the type

of the value returned by the Visitor, and A is the type of an auxiliary argument

which is threaded through the traversal. Each inheriting class must have a method
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for accepting the visitor. This method dispatches the call to the correct method in

the visitor.

For each data constructor in the algebraic data type, we have a concrete class

which inherits from the abstract base class, for example,

public class SDecl extends Stm {
public final Typ typ ;

public final Var var ;

public SDecl (Typ p1 ,Var p2 ) {typ = p1 ; var = p2 ; }
public〈R,A〉R accept (Visitor〈R,A〉v ,A arg) {

return v .visit (this, arg);

}
}

The Visitor interface can be used to define operations on all the concrete classes

in one or more of the hierarchies (when defining an operation on more than one

hierarchy, the visitor implements multiple Visitor interfaces). This corresponds to

the initial examples of pattern matching on all of the constructors, as shown in

Section 2. It suffers from the same problem: lots of repetitive traversal code.

5.2 ComposVisitor

We can create a class which does all of the traversal and tree rebuilding. This

corresponds to the composOp function in the Haskell implementation.

public class ComposVisitor〈A〉implements

Stm.Visitor〈Stm,A〉,Exp.Visitor〈Exp,A〉,
Var.Visitor〈Var,A〉,Typ.Visitor〈Typ,A〉 {
public Stm visit (SDecl p,A arg) {

Typ typ = p.typ .accept (this, arg);

Var var = p.var .accept (this, arg);

return new SDecl (typ , var );

}
// . . .

}

The ComposVisitor class implements all the Visitor interfaces in the abstract syntax,

and can thus visit all of the constructors in all of the types. Each visit method visits

the children of the current node, and then constructs a new node with the results

returned from these visits. A visitor for a given base class corresponds to a Haskell

case expression on an algebraic data type. Multiple interface inheritance lets us write

a single visitor which can handle multiple classes. Such a visitor is then like a case

expression on an entire type family. This use of multiple interface inheritance is

what makes it possible to handle the multiple-type recursion issue that forced us to

use GADTs and rank-2 polymorphism in Haskell.

The code above could be optimized to eliminate the reconstruction overhead when

the recursive calls do not modify the subtrees. For example, if all the objects which
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are being traversed are immutable, unnecessary copying could be avoided by doing

a pointer comparison between the old and the new child. If all the children are

unchanged, we do not need to construct a new parent.

5.3 Using ComposVisitor

While the composOp function takes a function as a parameter, and applies that

function to each constructor argument, the ComposVisitor class in itself is essentially

a complicated implementation of the identity function. Its power comes from the

fact that we can override individual visit methods.

When using the standard Visitor pattern, adding new operations is easy, but

adding new elements to the object hierarchy is difficult, since it requires chang-

ing the code for all the operations. Having a ComposVisitor changes this, as

we can add a new element, and only have to change the Visitor interface, the

ComposVisitor, and any operations which need to have special behavior for the new

class.

The Java code given below implements the desugaring example from Section 4.6.3

where increments are replaced by addition and assignment. Note that in Java we

only need the interesting case, all the other cases are taken care of by the parent

class.

class Desugar extends ComposVisitor〈Object〉 {
public Stm visit (SInc i ,Object arg) {

Exp rhs = new EAdd (new EVar (i .var ), new EInt (1));

return new SAss (i .var , rhs);

}
}
Stm desugar (Stm stm) {

return stm .accept (new Desugar (), null);

}

The Object argument to the visit method is a dummy since this visitor does not

need any extra arguments. The desugar method at the end is just a wrapper used

to hide the details of getting the visitor to visit the statement, and passing in the

dummy argument.

This being an imperative language, we do not have to do anything special to

thread a state through the computation. Here, is the symbol table construction

function from Section 4.6.2 in Java.

class BuildSymTab extends ComposVisitor〈Object〉 {
Map〈Var,Typ〉symTab = new HashMap〈Var,Typ〉();
public Stm visit (SDecl d ,Object arg) {

symTab.put (d .var , d .typ );

return d ;

}
}
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Map〈Var,Typ〉symbolTable (Stm stm) {
BuildSymTab v = new BuildSymTab ();

stm .accept (v , null);

return v .symTab;

}

You may wonder why this function was implemented as a stateful computation

instead of as a fold like in the Haskell version. Creating a visitor which corresponds

to composFold would be less elegant in Java, since we would have to pass a combining

function and a base case value to the visitor. This could be done by adding abstract

methods in the visitor, but in most cases the stateful implementation is probably

more idiomatic in Java.

Our final Java example is the example from Section 3, where we compute the set

of free variables in a term in the small functional language introduced in Section 2.

class Free extends ComposVisitor〈Set〈String〉〉 {
public Exp visit (EAbs e,Set〈String〉vs) {

Set〈String〉xs = new TreeSet〈String〉();
e.exp .accept (this, xs);

xs .remove (e.ident );

vs .addAll (xs);

return e;

}
public Exp visit (EVar e,Set〈String〉vs) {

vs .add (e.ident );

return e;

}
}
Set〈String〉freeVars (Exp exp) {

Set〈String〉vs = new TreeSet〈String〉();
exp.accept (new Free (), vs);

return vs;

}

Here, we make use of the possibility of passing an extra argument to the visit

methods. The argument is a set to which the visit method adds all the free variables

in the visited term.

6 Language and tool support for compositional operations

When using the method we have described, one needs to define the Haskell Compos

instance or Java ComposVisitor class manually for each type or type family. To

create Compos instances automatically, we could extend the Haskell compiler to

allow deriving instances of Compos. Another possibility would be to generate the

instances using Template Haskell (Sheard & Peyton Jones, 2002), DrIFT (Winstanley

et al., 2007), or Derive (Mitchell & O’Rear, 2007), but these tools do not yet support

GADTs.
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SDecl. Stm ::= Typ Var ";";

SAss. Stm ::= Var "=" Exp ";";

SBlock. Stm ::= "{" [Stm] "}";

SReturn.Stm ::= "return" Exp ";";

SInc. Stm ::= Var "++" ";";

separator Stm "";

EStm. Exp1 ::= Stm;

EAdd. Exp1 ::= Exp1 "+" Exp2;

EVar. Exp2 ::= Var;

EInt. Exp2 ::= Integer;

EDbl. Exp2 ::= Double;

coercions Exp 2;

V. Var ::= Ident;

TInt. Typ ::= "int";

TDbl. Typ ::= "double";

Fig. 2. LBNF grammar for the simple imperative language.

We have added a new back-end to the Backus–Naur Form Converter (BNFC)

(Forsberg, 2007; Forsberg & Ranta, 2006) tool which generates a Haskell GADT

abstract syntax type along with instances of Compos, Eq, Ord, and Show. We have

also extended the BNFC Java 1.5 back-end to generate the Java abstract syntax

representation shown earlier, along with the ComposVisitor class. In addition to

the abstract syntax types and traversal components described in this paper, the

generated code also includes a lexer, a parser, and a pretty printer. We can generate

all the Haskell or Java code for our simple imperative language example using the

grammar shown in Figure 2. It is written in LBNF (Labeled Backus–Naur Form),

the input language for BNFC.

7 Related work

7.1 Scrap Your Boilerplate

The part of this work dealing with functional programming languages can be seen

as a solution to a subset of the problems solved by generic programming systems.

Like “Scrap Your Boilerplate” (SYB) (Lämmel & Peyton Jones, 2003), we focus on

traversal operations that make it easier to write functions over a given rich data type

or set of data types when there are only a few “interesting” cases. Our approach does

not aim at defining functions such as equality, hashing, or pretty-printing, which

need to consider every constructor in the type or type family. We also do not address

the problem of writing polytypic functions (Jansson & Jeuring, 1997; Hinze, 2004),

that is, functions that work on any data type, even those which are yet to be defined.

7.1.1 Introduction to Scrap Your Boilerplate

SYB uses generic traversal functions along with a type safe cast operation imple-

mented by the use of type classes. This allows the programmer to extend fully generic
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operations with type-specific cases, and use these with various traversal schemes.

Data types must have instances of the Typeable and Data type classes to be used

with SYB.

The original “Scrap Your Boilerplate” paper (Lämmel & Peyton Jones, 2003)

contains a number of examples, some of which we will show as an introduction

and later use for comparison. In the examples, some type synonyms (GenericT and

GenericQ) have been inlined to make the function types more transparent. The

examples work on a family of following data types:

data Company = C [Dept] deriving (Typeable,Data)

data Dept = D Name Manager [Unit] deriving (Typeable,Data)

data Unit = PU Employee | DU Dept deriving (Typeable,Data)

data Employee = E Person Salary deriving (Typeable,Data)

data Person = P Name Address deriving (Typeable,Data)

data Salary = S Float deriving (Typeable,Data)

type Manager = Employee

type Name = String

type Address = String

The first example increases the salary of all employees.

increase :: Data a ⇒ Float→ a → a

increase k = everywhere (mkT (incS k ))

incS :: Float→ Salary→ Salary

incS k (S s) = S (s ∗ (1 + k ))

The everywhere function applies a generic transformation to every node, bottom-up,

and mkT makes a type specific transformation generic. More advanced traversal

schemes are also supported. Following example increases the salary of everyone in

a named department:

incrOne :: Data a ⇒ Name→ Float→ a → a

incrOne n k a | isDept n a = increase k a

| otherwise = gmapT (incrOne n k ) a

isDept :: Data a ⇒ Name→ a → Bool

isDept n = False ‘mkQ ‘ isDeptD n

isDeptD :: Name→ Dept→ Bool

isDeptD n (D n ′ ) = n == n ′

The gmapT function applies a generic transformation to the immediate subterms.

SYB also supports queries, that is, functions that compute some result from the

data structure rather than returning a modified structure. A type-specific query is

made generic by mkQ , whose first argument is a constant that is returned for all

other types. Following example computes the sum of the salaries of everyone in the

company:

salaryBill :: Company→ Float

salaryBill = everything (+) (0 ‘mkQ ‘ billS )
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billS :: Salary→ Float

billS (S f ) = f

The everything function applies a generic query everywhere in a term, and summa-

rizes the results using the function given as the first argument.

7.1.2 SYB examples using compositional operations

We will now show the above examples implemented using our compositional

operations. We lift the family of data types from the previous section into a GADT.

data Company; data Dept; data Unit

data Employee; data Person; data Salary

type Manager = Employee

type Name = String

type Address = String

data Tree :: ∗ → ∗ where

C :: [Tree Dept]→ Tree Company

D :: Name→ Tree Manager→ [Tree Unit]→ Tree Dept

PU :: Tree Employee→ Tree Unit

DU :: Tree Dept→ Tree Unit

E :: Tree Person→ Tree Salary→ Tree Employee

P :: Name→ Address→ Tree Person

S :: Float→ Tree Salary

We define compos as described in Section 4.7, and use the operations from the

library of compositional operations from Section 4.4 to implement the examples.

increase :: Float→ Tree c → Tree c

increase k c = case c of

S s → S (s ∗ (1 + k ))

→ composOp (increase k ) c

Here is the richer traversal example.

incrOne :: Name→ Float→ Tree c → Tree c

incrOne d k c = case c of

D n | n == d → increase k c

→ composOp (incrOne d k ) c

Query functions are also easy to implement (given a Monoid instance where ∅ = 0

and (⊕) = (+)).

salaryBill :: Tree c → Float

salaryBill c = case c of

S s → s

→ composFold salaryBill c
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These examples can all be written as single functions, whereas with SYB each consist

of two or three functions. SYB requires at least one function for each type-specific

case, and one function that extends a generic traversal with the type-specific cases.

SYB is a powerful system, but for many common uses such as the examples

presented here, we believe that the composOp approach is more intuitive and easy

to use. The drawback is that the data type family has to be lifted to a GADT,

and that the compos function must be implemented. However, this only needs to be

done once, and at least the latter can be automated, either by using BNFC, or by

extending the Haskell compiler to generate instances of Compos (as is done for the

Data and Typeable classes used by SYB).

7.1.3 Using SYB to implement compositional operations

Single data type: We have shown how to replace simple uses of SYB with composi-

tional operations. We will now show the opposite, and investigate to what extent the

compositional operations can be reimplemented using SYB. The renaming example

for the simple functional language, as shown in Section 3, looks very similar when

implemented using SYB.

rename :: Exp→ Exp

rename e = case e of

EAbs x b → EAbs ("_" ++ x ) (rename b)

EVar x → EVar ("_" ++ x )

→ gmapT (mkT rename) e

For the single data type case, our composOp and composM can be implemented

with gmapT and gmapM (a monadic version of gmapT ). The gmapQ function, which

returns a list of the results of applying a query to the immediate subterms, can be

used to write composFold . Our compos function can be written in terms of gfoldl , the

one SYB function which can be used to implement all the others. Their definitions

for the Exp type are as follows:

composOp :: (Exp→ Exp)→ Exp→ Exp

composOp f = gmapT (mkT f )

composM :: Monad m ⇒ (Exp→ m Exp)→ Exp→ m Exp

composM f = gmapM (mkM f )

composFold :: Monoid o ⇒ (Exp→ o)→ Exp→ o

composFold f = foldl (⊕) ∅ ◦ gmapQ (mkQ ∅ f )

compos :: Applicative f ⇒ (Exp→ f Exp)→ Exp→ f Exp

compos f = gfoldl (λx y → x � extM pure f y) pure

Here the extM function, which adds a type-specific case to a generic transformation,

has been generalized to arbitrary functors (the extM from SYB requires a Monad).

Families of data types: For the multiple data type case, it is difficult to use SYB

to implement our examples with the desired type. When using composOp, the
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type restriction is achieved as a by-product of lifting the family of data types into a

GADT. Using a GADT to restrict the function types when using SYB is currently not

practical, since current GHC versions cannot derive Data and Typeable instances

automatically for GADTs. We can implement functions with types that are too

general or too specific. For example, this is too general:

rename :: Data a ⇒ a → a

rename = gmapT (rename ‘extT ‘ renameVar)

where renameVar :: Var→ Var

renameVar (V x ) = V ("_" ++ x )

renameStm :: Stm→ Stm

renameStm = rename

What we would like to have is a rename function which can be applied to any

abstract syntax tree, but not to things that are not abstract syntax trees. With a

family of normal Haskell data types, the restriction could be achieved by the use of

a dummy type class.

class Data a ⇒ Tree a

instance Tree Stm

instance Tree Exp

instance Tree Var

instance Tree Typ

renameTree :: Tree a ⇒ a → a

renameTree = rename

However, we would like the class Tree to be closed, something which is currently

only achievable using hacks such as not exporting the class.

7.1.4 Using compositional operations to implement SYB

We can also try to implement the SYB functions in terms of our functions. If we

are only interested in our single data type, this works as follows:

gmapT :: Data a ⇒ (∀b. Data b ⇒ b → b)→ a → a

gmapT f = mkT (composOp f )

gmapM :: (Data a ,Monad m)⇒ (∀b ◦ Data b ⇒ b → m b)→ a → m a

gmapM f = mkM (composM f )

gmapQ :: Data a ⇒ (∀b. Data b ⇒ b → u)→ a → [u ]

gmapQ f = mkQ [ ] (composFold (λx → [f x ]))

Note that these functions are no longer truly generic: even though their types are

the same as the SYB versions’, they will only apply the function that they are given

to values in the single data type Exp. Defining gfoldl turns out to be problematic,

since the combining operation that gfoldl requires cannot be constructed from the

operations of an applicative functor.
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For the type family case, it does not seem possible to use compositional operations

to implement SYB operations. It is even unclear what this would mean, since type

families are implemented in different ways in the two approaches.

7.1.5 The Spine data type

In “Scrap Your Boilerplate” Reloaded (Hinze et al., 2006), SYB is explained by using

a GADT called Type to lift all types into a single type Spine. For our type family

example, this becomes

data Stm; data Exp; data Var; data Typ

data Type :: ∗ → ∗ where

Stm :: Type Stm

Exp :: Type Exp

Var :: Type Var

Typ :: Type Typ

List :: Type a → Type [a ]

Int :: Type Int

String :: Type String

data Typed a = a : Type a

data Spine :: ∗ → ∗ where

Constr :: a → Spine a

(�) :: Spine (a → b)→ Typed a → Spine b

For example, the value EVar (V "x") is represented as Constr EVar � V "x" : Var.

Compared to our representation, the Spine data type only lifts the top-level (or

spine) of the value, rather than the entire value. The Spine type adds another level

above the existing types, instead of replacing them, which changes how values are

written. It also decouples constructors from their arguments, making it impossible

to do pattern matching directly. While this means that the Spine type cannot be

used to replace our type family representation, it can be used to implement the SYB

combinators. Thus it can be used to implement compos as shown in Section 7.1.3.

7.1.6 Scrap Your Boilerplate conclusions

We consider the following to be the main differences between Scrap Your Boilerplate

and our compositional operations:

• When using SYB, no changes to the data types are required (except some type

class deriving), but the way in which functions over the data types are written

is changed drastically. With compositional operations on the other hand, the

data type family must be lifted to a GADT, while the style in which functions

are written remains more natural.

• SYB functions over multiple data types are too generic, in that they are not

restricted to the type family for which they are intended.
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• Our approach is a general pattern which can be translated rather directly to

other programming languages and paradigms.

• Compositional operations directly abstract out the pattern matching, recursion,

and reconstruction code otherwise written by hand. SYB uses runtime type

representations and type casts, which gives more genericity, at the expense of

transparency and understandability.

7.2 Catamorphisms and folds

The composFold function may appear to be similar to a catamorphism or fold (Meijer

et al., 1991). However, none of the compositional operations are recursive, as they

just apply a given function to the immediate children of the current term. When

using a fold, the behavior for each constructor is specified, and the recursion is

done by the fold operator. With composFold , there is a default behavior for each

constructor, and any recursion must be done explicitly.

7.3 Two-level types

Two-level types, as described by Sheard and Pasalic (2004), also address a problem

that can lead to repetitive code. Their solution is to break the data type up into two

levels, one level for the structures that the algorithm manipulates and one “recursive

knot-tying level.” The problem which the two-level types approach solves is dual

to the problem described in this paper: we want to reduce the amount of repeated

code when writing many similar functions over the same data type, and they want

to reduce the amount of repeated code when writing the same function for many

similar data types.

Using the idea of splitting a type into two levels can give us some insight into

the relationship between compositional operations and idiomatic traversals (the term

used by Gibbons (2007) to describe McBride and Paterson’s (2008) traverse function).

We split the Exp type into two levels, making Exp a fixed point of the structure

operator E. Now compos becomes an idiomatic traversal, without changing anything

but the type signature (and expanding the catch-all case). The intuition is that E is

a container of expressions, and compos maps a function over the expressions that it

contains. This is only done at the top level, just as a regular map on lists does not

descend into any nested lists.

data E e = EAbs String e | EApp e e | EVar String

newtype Exp = Wrap (E Exp)

compos :: Applicative f ⇒ (a → f b)→ E a → f (E b)

compos f e = case e of

EAbs x b → pure EAbs � pure x � f b

EApp g h → pure EApp � f g � f h

EVar v → pure EVar � pure v

We define composOp, composM , and composFold as before, but with different types.
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composOp :: (a → b)→ E a → E b

composM :: Monad m ⇒ (a → m b)→ E a → m (E b)

composFold :: Monoid o ⇒ (a → o)→ E a → o

Functions such as rename which work on the Exp type now need to use the Wrap

constructor, but apart from that, the code is unchanged.

rename :: Exp→ Exp

rename (Wrap e) = Wrap $ case e of

EAbs x b → EAbs ("_" ++ x ) (rename b)

EVar x → EVar ("_" ++ x )

→ composOp rename e

7.4 The Tree set constructor

7.4.1 Introduction

Petersson and Synek (1989) introduce a set constructor for tree types into Martin-

Löf’s (1984) intuitionistic type theory. Their tree types are similar to the inductive

families in, for example, Agda (Norell, 2007), and, for our purposes, to Haskell’s

GADTs. The value representation, however, is quite different. There is only one

constructor for trees, and it takes as arguments the type index, the data constructor,

and the data constructor arguments.

Tree types are constructed by the following rule:

Tree set formation

A : set B(x) : set[x : A]

C(x, y) : set[x : A, y : B(x)] d(x, y, z) : A[x : A, y : B(x), z : C(x, y)] a : A

Tree(A,B, C, d, a) : set

Here, A is the set of names (type indices) of the mutually dependent sets. B(x) is

the set of constructors in the set with name x. C(x, y) is the set of argument labels

(or selector names) for the arguments of the constructor y in the set with name x. d

is a function which assigns types to constructor arguments: for constructor y in the

set with name x, d(x, y, z) is the name of the set to which the argument with label z

belongs. For simplicity, T(a) is used, instead of Tree(A,B, C, d, a).

Tree values are constructed using the following rule:

Tree value introduction

a : A b : B(a) c(z) :T(d(a, b, z))[z : C(a, b)]

tree(a, b, c) :T(a)

Here, a is the name of the set to which the tree belongs, b is the constructor, and c

is a function which assigns values to the arguments of the constructor (children of

the node), where c(z) is the value of the argument with label z.
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Trees are eliminated using the treerec constant, with the following computation

rule:

treerec(tree(a, b, c), f)→ f(a, b, c, λz. treerec(c(z), f))

Here, f is applied to the tree set name a, the constructor b, the children c, and the

results of recursive calls on each of the children. The type of treerec is given by

Tree value elimination

D(x, t) : set[x : A, t :T(x)] a : A t :T(a)

f(x, y, z, u) : D(x, tree(x, y, z)) [x : A, y : B(x), z(v) :T(d(x, y, v))[v : C(x, y)],

u(v) : D(d(x, y, v), z(v))[v : C(x, y)]]

treerec(t, f) : D(a, t)

7.4.2 Relationship to GADTs

As we have seen above, trees are built using the single constructor tree, with the

type, constructor, and constructor arguments as arguments to tree. We can use this

structure to represent GADT values, as long as all children are also trees. Using the

constants l1 . . . n as argument labels for all constructors, we can represent GADT

values in the following way:

b t1 . . . tn :: Tree a ≡ tree(a, b, λz. case z of {l1 : t1; . . . ; ln : tn}).

For example, the value SDecl TInt (V "foo")::Tree Stm in our Haskell representation

would be represented as the term shown below. We use “string” to stand for some

appropriate tree representation of a string.

tree(Stm, SDecl, λx. case x of {
l1 : tree(Typ, TInt, λy. case y of {});
l2 : tree(Var, V , λy. case y of {l1 : “foo”})

})

7.4.3 Tree types and compositional operations

We can implement a composOp-equivalent in type theory by using treerec.

composOp(f, t) = treerec(t, λa. λb. λc. λc′. tree(a, b, λz. f(c(z))))

What makes this so easy is that all values have the same representation, and c

which contains the child trees is just a function that we can compose with our

function f. With this definition, we can use composOp like in Haskell. The following

code assumes that we have wild card patterns in case expressions, and that ++ is a

concatenation operation for whatever string representation we have:

rename(t) = treerec(t, λa. λb. λc. λc′. case b of {
V : tree(Var, V , λl. “ ” ++ c(l));

: composOp(rename, t)

}).

One advantage over the Haskell solution is that treerec is a catamorphism for

arbitrary tree types, as it gives us access not only to the original child values (c in
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the above example), but also to the results of the recursive calls (c′ in the above

example). This would simplify functions which need to use the results of recursive

calls, for example, the constant folding example in Section 4.6.5. As compositional

operations are not catamorphisms (see Section 7.2), composOp itself does not make

use of the c′ argument.

7.5 Related work in object-oriented programming

The ComposVisitor class looks deceptively simple, but it has a number of features

in what appears to be a novel combination:

• It uses type-parameterized visitor interfaces, which require powerful features

such as C++ templates or Java generics. Similar parameterized visitor inter-

faces can be found in the Loki C++ library (Alexandrescu, 2001).

• It is a depth-first traversal combinator whose behavior can be overridden for

each concrete class. A similar traversal can be achieved by using the BottomUp

and Identity combinators from Visser’s (2001) work on visitor combinators,

and with the depth-first traversal function in the Boost Graph Library (Lee

et al., 2002).

• It allows modification of the data structure in a functional and compositional

way. The fact that functional modification is not widely used in imperative

object-oriented programming is probably the main reason why this area has

not been explored further.

7.6 Nanopass framework for compiler education

The idea of structuring compilers as a large number of simple passes is central to

the work on the Nanopass framework for compiler education (Sarkar et al., 2005),

a domain-specific language embedded in Scheme. Using the Nanopass framework,

a compiler is implemented as a sequence of transformations between a number of

intermediate languages, each of which is defined using a set of mutually recursive

data types. Transformations are implemented by pattern matching, and a pass

expander adds any missing cases, a role similar to that of our composOp.

One notable feature of the Nanopass framework is that a language can be declared

to inherit from an existing language, with new constructors added or existing ones

removed. This makes it possible to give more accurate types to functions which add

or remove constructions, without having to define completely separate languages

which differ only in the presence or absence of a few constructors. While this is

a very useful feature, it is difficult to implement in languages such as Haskell or

Java whose notions of data types are more rigid than Scheme’s. In Haskell, we

model abstract syntax with algebraic datatypes, but Haskell does not allow the

extension or restriction of datatypes. In Java, we could add subclasses to encode

new constructors, and create new Visitor interfaces for each set of constructors we

want to handle, but this would require writing a new ComposVisitor class for each

new Visitor interface.
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8 Conclusions

We have presented a pattern for easily implementing almost compositional opera-

tions over rich data structures such as abstract syntax trees.

We have ourselves started to use this pattern for real implementation tasks, and

we feel that it has been very successful. In the compiler for the Transfer lan-

guage (Bringert, 2006), we use a front-end generated by BNFC (Forsberg & Ranta,

2006; Forsberg, 2007), including a Compos instance for the abstract syntax. The ab-

stract syntax has 70 constructors, and in the (still very small) compiler compositional

operations are currently used in 12 places. The typical function that uses composi-

tional operations pattern matches on between 1 and 5 of the constructors, saving hun-

dreds of lines of code. Some of the functions include replacing infix operator use with

function calls, beta reduction, simultaneous substitution, getting the set of variables

bound by a pattern, getting the free variables in an expression, assigning fresh names

to all bound variables, numbering meta-variables, changing pattern equations to

simple declarations using case expressions, and replacing unused variable bindings

in patterns with wild cards. Furthermore, we have noticed that using compositional

operations to implement a compiler makes it easy to structure it as a sequence of

simple steps, without having to repeat large amounts of traversal code for each step.

Modifying the abstract syntax, for example by adding new constructs to the front-

end language, is also made easier since only the functions which care about this new

construct need to be changed. However, using many simple steps is likely to have

a negative impact on performance, as a complete traversal is potentially done in

every step. This problem could perhaps be ameliorated by developing deforestation

techniques (Wadler, 1990) for compositional operations.
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type theory. In Category Theory and Computer Science. Lecture Notes in Computer Science,

Vol. 389. Heidelberg: Springer, pp. 128–140.

Peyton Jones, Simon. (2003a) The Haskell 98 language. J. Funct. Program. 13(1), 1–146.

Peyton Jones, Simon. (2003b) The Haskell 98 libraries. J. Funct. Program. 13(1), 149–240.

Peyton Jones, Simon. (August 2007). The GHC Commentary. http://hackage.haskell.

org/trac/ghc/wiki/Commentary.

Peyton Jones, Simon, Vytiniotis, Dimitrios, Weirich, Stephanie & Washburn, Geoffrey.

(2006) Simple unification-based type inference for GADTs. In ICFP’06: Proceedings of

the Eleventh ACM SIGPLAN International Conference on Functional Programming. New

York: ACM Press, pp. 50–61.

Peyton Jones, Simon, Vytiniotis, Dimitrios, Weirich, Stephanie & Shields, Mark. (2007)

Practical type inference for arbitrary-rank types. J. Funct. Program. 17(1), 1–82.

Ranta, Aarne. (2004) Grammatical framework: A type-theoretical grammar formalism.

J. Funct. Program. 14(2), 145–189.

Sarkar, Dipanwita, Waddell, Oscar & Dybvig, Kent R. (2005) EDUCATIONAL PEARL: A

Nanopass framework for compiler education. J. Funct. Program. 15(5), 653–667.

Sheard, Tim & Pasalic, Emir. (2004) Two-level types and parameterized modules. J. Funct.

Program. 14(5), 547–587.

Sheard, Tim & Peyton Jones, Simon. (2002) Template meta-programming for Haskell. In

Haskell’02: Proceedings of the ACM SIGPLAN workshop on Haskell. New York: ACM

Press, pp. 1–16.

Visser, Joost. (2001) Visitor combination and traversal control. In OOPSLA’01: Proceedings of

the 16th ACM SIGPLAN Conference on Object Oriented Programming, Systems, Languages,

and Applications, Vol. 36. New York: ACM Press, pp. 270–280.

Wadler, Philip. (1990) Deforestation: Transforming programs to eliminate trees. Theor.

Comput. Sci. 73(2), 231–248.

Winstanley, Noel, Wallace, Malcom & Meacham, John. (2007) The DrIFT homepage.

http://repetae.net/ john/computer/haskell/DrIFT/.


