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We give an elementary and essentially self-contained proof1 that a reduced ring R is semi-
normal iff the canonical map Pic R → Pic R[X] is an isomorphism, a theorem due to Swan [12],
generalising some previous results of Traverso [13]. By a simple modification of this argument,
we obtain a constructive proof, and hence an algorithm [9], associated to a classical proof which
is not so easy otherwise to access, since it requires a journey through [12, 13, 1] or, in the domain
case, through [11, 10, 5, 6].

We recall [12] that R is seminormal iff if b2 = c3 then there exists a ∈ R such that b = a3

and c = a2. This is a remarkably simple (and technically first-order) condition. Similarly, the
statement that the canonical map Pic R → Pic R[X] is an isomorphism can also be formulated
in an elementary way, see the statement of Theorem 2.2. Swan’s original definition includes that
R is reducible, but, as noticed by Costa [3], reducibility follows from seminormality: if d2 = 0
then d2 = d3 = 0 and so there exists a ∈ R such that d = a2 = a3. We have then d = aa2 = ad
and so d = a(ad) = d2 = 0. Section 7 of Chapter VIII of [7] surveys the work on commutative
seminormal ring up to day.

1 Main theorem

Lemma 1.1 Let M be a projection matrix of rank 1 over a ring A. The matrix M represents
a free module iff there exists xi, yj ∈ A such that mij = xiyj . Furthermore the column vector
(xi) and the line vector (yj) are uniquely defined up to a unit by these conditions: if we have
x′

i, y
′
j ∈ A such that mij = x′

iy
′
j then there exists a unit u of A such that xi = ux′

i and y′
j = uyj .

Proof. Let I be the the module generated by the columns of M . Let (xi) be a column vector
in An that generates the module I. There exists yj such that xiyj = mij . If we have also
mij = x′

iy
′
j then we have Σx′

iy
′
i = 1 and so x′

i = Σx′
jmij . This shows that the vector (x′

i) is
in the module I and so is also a generator of I. Hence there exists a unit u of A such that
xi = ux′

i. In the same way, there exists a unit v such that y′
j = vyj . Writing Σxiyi = Σx′

iy
′
i = 1

we see that u = v.

We let Pn be the n × n matrix pij with p11 = 1 and pij = 0 if i, j 6= 1, 1 and In the n × n
identity matrix.

Corollary 1.2 Let E be an extension of the ring R which is reduced. Let M be a n × n
projection matrix over R[X] such that M(0) = Pn. Assume that fi, gj ∈ E[X] are such that
mij = figj and f1(0) = 1. If M represents a free module over R[X] then fi, gj ∈ R[X].

1The only non trivial result that we use is a basic theorem of Kronecker, proved in an elementary way in the
references [2, 4, 8].
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Proof. By Lemma 1.1 there exists f ′
i , g

′
j ∈ R[X] such that mij = f ′

ig
′
j . We can assume f ′

1(0) = 1.
By Lemma 1.1 there exists a unit u of E[X] such that fi = uf ′

i and g′
j = ugj . We have u(0) = 1

and since E is reduced u = u(0) = 1.

Theorem 1.3 Let A be seminormal and M = (mij) be a n × n projection matrix of rank 1
over A[X] such that M(0) = Pn. We assume that C is a finite reduced integral extension of A
generated by the coefficients of fi, gi ∈ C[X], 1 ≤ i ≤ n satisfying mij = figj and f1(0) = 1.
We have fi, gj ∈ A[X] and hence C = A.

Proof. Since A is seminormal, the conductor I = {r ∈ A | rC ⊆ A} of C in A is an ideal
radical of A and C and is equal to

I = {r ∈ A | rfi, rgj ∈ A[X]}

Indeed, we prove first that if u ∈ C and u2 ∈ I then u ∈ A. This follows from u2 ∈ I ⊆ A
and u3 = u2u ∈ A. We have then a ∈ A such that a2 = u2, a3 = u3 and this implies (a−u)3 = 0
and since C is reduced, a = u and hence u ∈ A.

We now prove that u ∈ I which will prove that I is a radical ideal. For this, let c be an
element of C. We know u2c2 ∈ A and u3c3 = u2uc3 ∈ A since u2 ∈ I. Hence as previously, we
conclude uc ∈ A. This shows u ∈ I.

Since C is generated by the coefficients of fi and gj and they are all integral over A we
conclude from the fact that I is radical that we have also

I = {r ∈ A | rfi, rgj ∈ A[X]}

Indeed, if ru ∈ A for all coefficients u of fi and gj then we have rNu ∈ A for all u ∈ C for a big
enough N . Hence rN ∈ I and so r ∈ I.

To prove C = A, it is enough to show 1 ∈ I. Otherwise, let p be a minimal prime of A
containing I, and let S be the complement of p in A. Then IS is the maximal ideal of AS . Let R
be the quotient field AS/IS . Since R[X] is principal, the matrix M represents a free module over
R[X]. Also E = CS/IS is a reduced extension of R. By Corollary 1.2 we have fi, gj ∈ R[X]. So
there is a s ∈ S such that sfi, sgj ∈ A[X], which contradicts s /∈ I.

We notice that we don’t need to state that the coefficients of fi and gj are integral over
A, since this is implied by the other conditions. Indeed, if u is a coefficient of fi, it follows
from figj ∈ A[X] that ugj(0) is integral over A for all j. This is a consequence of Kronecker’s
theorem [2, 4, 8] that states that if P1P2 = Q in A[X] then any product u1u2, where ui is a
coefficient of Pi, is integral over the coefficients of Q. Since g1(0) = 1 this implies that u is
integral over A.

In Appendix 2, we show how to explain constructively the use of minimal prime ideals in
this argument.

2 Picard groups in the domain case

As an application, we can prove the following result, which expresses concretely the fact that
the canonical map Pic A → Pic A[X] is an isomorphism, in the case where A is a seminormal
domain.

Lemma 2.1 Let R be a gcd domain and M = (mij) is a projection matrix of rank 1 such
that m11 is regular then M represents a free module over R: there exists fi, gj ∈ R such that
mij = figj .
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Proof. For this, we take f1 ∈ R to be a gcd of the first line m1j . This determines uniquely
all the gj and then all the other fi. More precisely, once we have f1 the equality gjf1 = m1j

determines gj . Since M is of rank 1 we have m11mij = mi1m1j and so h1mij = mi1gj , so that
h1 divides all mi1gj and so divides their gcd, which is mi1. This determines uniquely fi such
that h1fi = mi1 and it follows from m11mij = mi1m1j that we have mij = figj .

Theorem 2.2 If A is a seminormal domain, and M = (mij) is a n × n projection matrix of
rank 1 of A[X] such that M(0) = Pn then there exists fi, gj ∈ A[X] such that mij = figj and
f1(0) = 0.

Proof. We let K be the field of fractions of A. Since K[X] is a gcd domain, we can apply
Lemma 2.1 and find fi, gj ∈ K[X] such that figj = mij and f1(0) = 1. By the previous theorem
we have fi, gj ∈ A[X].

Corollary 2.3 If A is a seminormal domain then the canonical map Pic A → Pic A[X] is an
isomorphism.

Proof. We have to prove that if M is a projection matrix of rank 1 over A[X] such that M(0)
represents a free module over A, then M represents a free module over A[X]. By Lemma 1.1
we have xi, yj ∈ A such that xiyj = mij(0) so that, if x is the column vector (xi) and y the line
vector (yj) we have M(0) = xy and 1 = yx. By adding a line and a column of 0 to the matrix
M , we can assume that M(0) is similar to a matrix Pn+1: indeed we have2(

0 0
0 xy

)
=

(
0 y
−x In − xy

) (
1 0
0 0

) (
0 −y
x In − xy

)
and

In+1 =
(

1 0
0 In

)
=

(
0 y
−x In − xy

) (
0 −y
x In − xy

)
=

(
0 −y
x In − xy

) (
0 y
−x In − xy

)
In this way we reduce further the problem to the case where M(0) = Pn+1, and we can then

apply Theorem 2.2.

We notice also that the previous reasoning applies directly for A[X1, . . . , Xn]. Indeed, if K is
a field then K[X1, . . . , Xn] is a gcd domain [9], and Kronecker’s theorem holds for polynomials
in several variables as well: P1P2 = Q ∈ A[X1, . . . , Xn] then, any product u1u2 where ui is a
coefficient of Pi, is integral over the coefficients of Q [4].

Corollary 2.4 If A is a seminormal domain then the canonical map Pic A → Pic A[X1, . . . , Xn]
is an isomorphism.

As a very special case, we get a direct proof of Quillen-Suslin’s theorem for projective
modules of rank 1.

2These identities are due to Claude Quitté and allow for a self-contained argument.
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3 General case

The hypothesis that A is a domain was only used to build a reduced extension L of A for which
we can find fk, gl ∈ L[X] such that fkgl = mkl and f1(0) = 1.

Indeed when we have such an extension, we can consider the subalgebra C generated by the
coefficients of fi and gj . This is a finite integral extension of A and Theorem 1.3 applies.

Thus, the problem reduces to show the existence of a reduced extension L of A for which
we can find fk, gl ∈ L[X] such that fkgl = mkl and f1(0) = 1. The proof of Theorem 2.2 shows
how to find fk, gl ∈ K[X] satisfying f1(0) = 1 and φ(mkl) = fkgl whenever we have a map
φ : A → K, where K is a field (and fk, gl are even uniquely determined by these conditions). It
is thus enough to find enough such maps φα : A → Kα so that A → ΠKα is injective. We can
for instance take all maps A → A/p → Kp where Kp is the field of fraction of A/p. Since A is
reduced, L is an extension of A.

Constructively, even if A is not a domain, the reasoning of Theorem 2.2 gives a finite covering
D(bi)∩ V (~ai) of spec A (for the constructible topology), and for each i a family f i

k, h
i
l ∈ Ai[X],

with Ai = Abi
/
√

<~ai>, such that f i
1(0) = 1 and f i

kh
i
l = mkl ∈ Ai[X]. Notice that each Ai is

reduced. Also, if a ∈ A and a = 0 in Ai then D(a) ∩D(b) ∩ V (~ai) = 0. Hence a ∈ A becomes 0
in each Ai iff a is nilpotent. Thus, if A is reduced, we have built in this way a reduced extension
L = ΠAi of A for which we can find fk, gl ∈ L[X] such that fkgl = mkl and fk(0) = 1.

Conclusion

In general, if A is reduced and C is the integral extension of A generated by the coefficients of
fi and gj we can still conclude that there are finitely many constants a1, . . . , an ∈ C such that
a2

i+1, a
3
i+1 ∈ A[a1, . . . , ai] and C = A[a1, . . . , an]. Indeed, we consider the intermediary extension

B ⊆ C of elements that belong to such a chain of seminormal extensions, and we can apply the
reasoning of Theorem 1.3 to conclude that B = C. Since our argument is constructive, it can
be seen as an algorithm which computes such a1, . . . , an ∈ C from the coefficients of the matrix
M .

Appendix 1: Schanuel’s example

Conversely, one can show that if A is reduced and the canonical map Pic A → Pic A[X] is
an isomorphism, then A is seminormal. The construction is elementary and due to Schanuel.
Take b, c ∈ A, assume b3 = c2 and let B be a reduced extension of A with a ∈ B such that
b = a2, c = a3. We consider the polynomials in B[X]

f1 = 1 + aX, f2 = bX2, g1 = (1− aX)(1 + bX2), g2 = bX2

The matrix M = (figj) is a projection matrix of rank 1 in A[X] such that M(0) = P2.
If the canonical map Pic A → Pic A[X] is an isomorphism, this matrix should present a free

module over A[X]. By Corollary 1.2 this implies fi, gj ∈ A[X] and so we have a ∈ A.

Corollary A.1 If A is seminormal so is A[X].

Proof. This follows from Schanuel’s example and Corollary 2.4.
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Appendix 2: A constructive proof of Theorem 1.3

If M is a rectangular matrix over a ring, we write ∆k(M) the ideal generated by all minors of
M of order k. If m = a0 + . . . + akX

k in R[X] we call ak the (formal) leading coefficient of
m (this coefficient may be 0) and k the (formal) degree of m. If M = (mij) is a matrix over
R[X], we write C(M) the set of constants r ∈ R that can be written of the form Σuivjmij with
ui, vj ∈ R[X].

Lemma A.2 Let R be a reduced ring. If M is a matrix over R[X] such that ∆1(M) = 1 then
the annihilator of C(M) is 0.

Proof. Let a be an element such that aC(M) = 0, by working in the localisation Ra, we reduce
the statement to: if C(M) = 0 then 1 = 0 in R.

Notice that each localisation Ru, u ∈ R is reduced, and that 1 = 0 in Ru iff u = 0 in R.
Notice also that an elementary transformation on M does not change neither C(M) nor ∆1(M).

We first prove that statement in the case where at least one mij has a a leading coefficient
u which is invertible, by induction on the degree n of such mij . If n = 0 the statement is clear,
since then u ∈ C(M). Also, if we have a leading coefficient v of one mkl of degree < n, then by
induction we have 1 = 0 in Rv and hence v = 0 in R, so any mkl of formal degre < n is equal to
0. This shows that mij divides all mkl, since by elementary transformations, we can make first
all mil, l 6= j of formal degree < n, and so 0, and then all mkj , k 6= i and finally all remaining
mkl to be 0 as well. So ∆1(M) = <mij> = 1 and so 1 = 0 in R.

From this, we conclude that if u is a leading coefficient of one mij we have 1 = 0 in Ru and
so u = 0 in R. Thus M = 0 and 1 = 0 in R.

Classically, one would prove the statement as follows: let p be a minimal prime of R. Then
Rp is a field. The statement is clear if R is a field because, by writing M in Smith normal form,
we find ui, vj in R[X] such that 1 = Σuivjmij . Thus the annihilator of C(M) is included in all
minimal primes p.

We can use this lemma to end the proof of Theorem 1.3 in a constructive way as follows.
We have to prove that 1 ∈ I. By Lemma A.2 applied to the matrix M = (figj) modulo I it is
enough to show that if ui, vj ∈ A[X] and Σuivjfigj is a constant s ∈ A modulo I then s is in I.

Since Σuivjfigj = (Σuifi)(Σvjgj) = s modulo I and since I is a radical ideal, we conclude
that both sm(Σuifi) and sm(Σvjgj) are constants in A modulo I for some m. Indeed, we reason
in L[X] where L = (C/I)s which is reduced; in the ring L[X] we have that (Σuifi)(Σvjgj) is
an invertible constant, and hence both sm(Σuifi) and sm(Σvjgj) are constant in C modulo I
for some m. Since fi(0), gj(0) ∈ A, we conclude that these constants are in A.

Also
sm+1fi = (Σvjgjfi)sm(Σuifi)

and
sm+1gj = (Σuifigj)sm(Σvjgj)

are in A[X], and hence sm+1 ∈ I and s ∈ I as desired, since I is a radical ideal.
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[5] R. Gilmer and R. Heitmann. On Pic R[X] for R seminormal. J. Pure Appl. Algebra 16
(1980), 251-257

[6] F. Ischebeck. Zwei Bemerkungen über Seminormale Ringe. Math. Z. 152 (1977), 101-106

[7] T-Y. Lam. Serre’s Problem on Projective Module. to appear, 2005

[8] H. Lombardi. Hidden constructions in abstract algebra (1) Integral dependence relations.
J. Pure Appl. Algebra 167 (2002), 259-267

[9] R. Mines, F. Richman and W. Ruitenburg. A course in constructive algebra. Springer-Verlag,
1988
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