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Digitalization has revolutionized the automotive industry. Modern cars are equipped with powerful Internet-
connected infotainment systems, comparable to tablets and smartphones. Recently, several car manufacturers
have announced the upcoming possibility to install third-party apps onto these infotainment systems. The
prospect of running third-party code on a device that is integrated into a safety critical in-vehicle system raises
serious concerns for safety, security, and user privacy. This paper investigates these concerns of in-vehicle
apps. We focus on apps for the Android Automotive operating system which several car manufacturers have
opted to use. While the architecture inherits much from regular Android, we scrutinize the adequateness
of its security mechanisms with respect to the in-vehicle setting, particularly affecting road safety and user
privacy. We investigate the attack surface and vulnerabilities for third-party in-vehicle apps. We analyze and
suggest enhancements to such traditional Android mechanisms as app permissions and API control. Further,
we investigate operating system support and how static and dynamic analysis can aid automatic vetting of
in-vehicle apps. We develop AutoTame, a tool for vehicle-specific code analysis. We report on a case study of
the countermeasures with a Spotify app using emulators and physical test beds from Volvo Cars.

1 INTRODUCTION

The modern infotainment system, often consisting
of a unit with a touchscreen, is mainly used for help-
ing the driver navigate, listening to music or making
phone calls. In addition to this, many users wish to
use their favorite smartphone apps in their cars. Thus,
several car manufacturers, including Volvo, Renault,
Nissan and Mitsubishi (Volvo Car Group, 2018; Re-
nault-Nissan Alliance, 2018), have chosen to use a
special version of Android for use in cars, called An-
droid Automotive (Google Inc., 2018b). Other man-
ufacturers such as Volkswagen (Volkswagen, 2018)
and Mercedes-Benz (Mercedes-Benz, 2018) are in-
stead developing their new in-house infotainment sys-
tems. In contrast to the in-house alternatives, Android
Automotive is an open platform with available infor-
mation and code. This justifies our focus on Android
Automotive apps.

Android Automotive For the manufacturers, a sub-
stantial benefit of using an operating system based on
Android is gained from relying on third-party devel-
opers to provide in-vehicle apps. A multitude of pop-

ular apps already exists on the Android market, which
can be naturally converted into Android Automotive
apps. Further, Android Automotive is a stand-alone
platform that does not require a connected smart-
phone, contrary to its competitors MirrorLink (Mir-
rorLink, 2009), Apple CarPlay (Apple, 2014) and An-
droid Auto (Google Inc., 2014).

Safety, security, and privacy challenges While
third-party apps boost innovation, they raise serious
concerns for safety, security, and user privacy. In-
deed, it is of paramount importance that the plat-
form both safely handles these apps while driving and
also safeguards the user’s privacy-sensitive informa-
tion against leakage to third parties. Figure 1 gives
a flavor of real-life safety concerns, by showing a
user comment on a radio app with almost half a mil-
lion downloads. The user points out that they had
to stop driving when a shockingly loud ad was sud-
denly played, adding that ads “shouldn’t attempt to
kill you” (Warren, 2018).

While the Android Automotive architecture in-
herits much from regular Android, a key question is
whether its security mechanisms are adequate for in-
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Loved it until I was driving and had to stop because a stupid game
advert scared melllll Really, adds are adds. They shouldn't attempt to
kill you! Thank you

Figure 1: Top comment on a radio app. A user was shocked
by the volume of an ad and had to stop driving.

vehicle apps. However, compared to the setting of
a smartphone, in-vehicle apps have obvious safety-
critical constraints, such as neither being able to tam-
per with the control system nor being able to distract
the driver. Further, car sensors provide sources of pri-
vate information, such as location and speed or sound
from the in-vehicle microphone. In fact, voice con-
trols are encouraged for apps in infotainment systems,
as to help keep the driver’s hands on the wheel, open-
ing up for audio snooping on users by malicious apps.
A recent experiment done by GM collected location
data and radio listening habits from its users with the
goal of creating targeted radio ads (Detroit Free Press,
2018). This clearly highlights the value of user data in
vehicles. Similar data could potentially be collected
by apps using the radio API to record the current sta-
tion (Gampe, 2018). Thus, a key question is whether
Android’s security mechanisms are adequate for in-
vehicle apps.

Android Permissions Android’s core security
mechanism is based on a permission model (Google
Inc., 2018d). This model forces apps to request
permissions before using the system resources.
Sensitive resources such as camera and GPS require
the user to explicitly grant them before the app can
use them. In contrast, more benign resources such
as using the Internet or NFC can be granted during
installation. However, there are several limitations
of this model with implications for the in-vehicle
setting. From a user’s perspective, these permissions
are often hard to understand. Porter Felt et al. (Porter
Felt et al., 2012b) show that less than a fifth of users
pay attention to the permissions when installing an
app, and even a smaller fraction understands the
implications of granting them. Understanding the
implications of giving permissions is even harder.
There are immediate privacy risks, such as an app
having permission to access the car’s position and
the Internet can potentially leak location to any third
party. More advanced attacks would only need access
to the vehicle speed. This may not seem like a privacy
issue but by knowing the starting position, likely
the user’s home address, and speed, it is possible to
derive the path that the car drives (Gao et al., 2014).

Analyzing Android Automotive Security To the
best of our knowledge, this is the first paper to ana-
lyze application-level security on the Android Auto-
motive infotainment system. To assess the security
of the Android Automotive app platform, we need to
extend the scope beyond the traditional permissions.

Attack surface For a systematic threat analysis, we
need to analyze the attack surface available to third-
party apps. This includes analyzing what effects mali-
cious apps may have on the functions of the car, such
as climate control or cruise control, and on the driver.
We demonstrate SoundBlast, representative of distur-
bance attacks, where a malicious app can shock the
driver by excessive sound volume, for example, upon
reaching high speed. We also demonstrate availability
attacks like Fork bomb and Intent storm which render
the infotainment system unusable until it is rebooted.
Further, we explore attacks related to the privacy of
sensitive information, such as vehicle location and
speed, as well as in-vehicle voice sound. We show
how to exfiltrate location and voice sound informa-
tion to third parties. In order to validate the feasibility
of the attacks, we demonstrate the attacks in a simu-
lation environment obtained from Volvo Cars. Based
on the attacks, we derive exploitable vulnerabilities
and use the Common Vulnerability Scoring System
(CVSS) (FIRST.Org Inc., 2018) to assess their im-
pact.

To address these vulnerabilities, we suggest coun-
termeasures of permissions, API control, system sup-
port, and program analysis.

Permissions We identify several improvements to
the permission model. This includes both introduc-
ing missing permissions, such as those, pertaining to
the location and the sound system in the car, as well
as making some permissions more fine-grained. For
location, there are ways to bypass the location per-
mission by deriving the location from IP addresses.
At the same time, the location permission currently
allows all or nothing: either sharing highly accurate
position information or not. The former motivates
adding missing permissions, while the latter moti-
vates making permissions more fine-grained. We ar-
gue that for many apps, like Spotify or weather apps,
low-precision in the location, e.g. city-level, suffices.

API control In contrast to permissions, API con-
trol can use more information when decided to grant
an app access to a resource. For example, using high-
precision data could be allowed only once an hour, or
during an activity like running. Our findings reveal
that apps currently need access to the microphone in
order to use voice controls. We deem this as breaking
the principle of least privilege (Saltzer and Schroeder,
1975). To address this, we argue for full mediation, so



that apps subscribe to voice commands mediated by
the operating system, rather than having access to the
microphone. Similarly, location data can also be me-
diated to limit the precision and frequency of location
requests, making it possible to adhere to the principle
of least privilege. These scenarios exemplify coun-
termeasures we suggest to improve API controls for
in-vehicle apps.

System We argue for improvements to the operat-
ing system in order to protect against apps using too
much of the system’s resources. Malicious apps can
cause the system to become unresponsive or halt, ei-
ther by recursively creating new processes or coerc-
ing other system processes to use up all the resources.
The countermeasures consist of limiting the number
of requests an app can make, limiting the resources
system processes can use, or completely blocking
some capabilities for third-party apps, like creating
New processes.

Code analysis While previous methods protect the
device from malicious apps, our vision is to also be
able to stop the apps before they make it to the device.
This can be accomplished by analyzing the code in the
app store, before the app is published. This does not
only protect against malicious apps but also poorly
written apps that fail to adhere to security best prac-
tices. This could, for example, include apps not using
encryption for data transmissions, which is currently a
big problem (Razaghpanah et al., 2017). Other prob-
lems include vulnerable apps with high privileges be-
ing exploited by malicious apps or colluding mali-
cious apps sharing data over covert channels. Thus,
we investigate how static and dynamic program anal-
ysis can be leveraged to address the vulnerabilities.

We design and develop AutoTame, our own static
analysis tool for detecting dangerous use of APIs, in-
cluding the new automotive APIs. Further, we explore
several state-of-the-art techniques, based on tools like
FlowDroid (Arzt et al., 2014) and We are Family (Bal-
liu et al., 2017).

Threat model The threat model in this paper de-
fines the attacker as being able to install one or more
apps, with the victim’s permission, on their infotain-
ment system. Similar to previous research (Schlegel
et al., 2011), we assume that the victim is more in-
clined to install an app that asks for fewer permis-
sions. This means that, while one app with access
to both Internet and GPS might be considered suspi-
cious, two apps, one with access to the Internet, the
other with access to GPS, would be more acceptable.
Such a model incentivizes apps to collude and share
information over covert channels. Using this model
we analyze how much damage can be done by a user

mistakenly installing malicious apps.

Case study An ideal evaluation of our countermea-
sures would be a large-scale of apps from an app store,
in the style of the studies on Google Play, e.g. (Porter
Felt et al., 2011a; Arzt et al., 2014; Enck et al., 2014).
Unfortunately, Android Automotive is at this stage an
emerging technology with no apps yet publicly avail-
able for a study of this kind. Nevertheless, we have
been granted access to Infotainment Head Unit emu-
lators and physical test beds from Volvo Cars allowing
us to perform a case study with an in-vehicle app ver-
sion of Spotify. We use this infrastructure to evaluate
our countermeasures.

Impact At the same time, an early study of Android
Automotive security has its advantages. Because our
analysis comes at an early phase of Android Auto-
motive adoption by car manufacturers, it has higher
chances for impact. We have reported our findings to
both Volvo Cars that participated in our experiments
and Google. We are in contact with both on closing
the vulnerabilities we point out and on experimenting
with the countermeasures.

Contributions The paper offers the following con-
tributions:

e We present an attack surface for third-party in-
vehicle apps, identifying classes of disturbance,
availability, and privacy attacks (Section 3).

e We propose countermeasures, based on fine-
grained permissions, API control, system support,
and information flow (Section 4).

e We overview prominent representatives of tech-
niques and tools for detecting security and privacy
violations in third-party apps (Section 4.4).

e We present our own static analysis tool, Auto-
Tame!, for detection of dangerous API usage
(Section 4.4).

e We evaluate the countermeasures on a case study
with the in-vehicle app Spotify (Section 5).

2 BACKGROUND

As cars become more connected and their info-
tainment systems more powerful, people expect the
car to interact in a seamless way with their other de-
vices. In contrast to most other personal devices, a

1 . . . .
Our implementations are available online on https://www.cse.chalmers.se/
research/group/security/autotame/



software bug in a car can have lethal consequences.
For example, in 2015 Miller and Valasek (Miller and
Valasek, 2015) showed that it was possible to re-
motely take over a 2014 Jeep Cherokee by exploit-
ing their infotainment system Uconnect. More re-
cently, in May 2018, researchers found multiple vul-
nerabilities in the infotainment system and Telematics
Control Unit of BMW cars which made it possible to
gain control of the CAN buses in the vehicle (Tencent
Keen Security Lab, 2018). These type of attacks show
that remote take over attacks of connected vehicles is
a possibility and a real threat.

Attackers do not necessarily need to take control
over the braking or steering system to endanger or dis-
tract the driver. For example, an attacker can make a
malicious infotainment app that disturbs or shocks the
driver at a certain speed level. In order to shock the
driver, the app may, for example, play loud music or
rapidly flash the screen.

In addition to security, privacy is also a concern
as cars become more capable of collecting data about
their users. In accordance with the new EU reg-
ulation, GDPR (European Commission, 2016), the
user has to be informed about how the data is used
and agree to their data being used in the described
way. Previous research projects have explored the
possibility to automatically track and analyze how
privacy-sensitive information is leaked from Android
apps (Reyes et al., 2017), either deliberately through
advertisement networks or inadvertently through in-
secure communication means (Razaghpanah et al.,
2017).

2.1 Experimental Setup

With access to Volvo Cars internal testing equipment,
both the attacks and countermeasures were tested on
their infrastructure. In particular, the code is tested
on Volvo’s Infotainment Head Unit emulators (IHU)
emulators and physical test beds. All of the Android
code is developed for Android SDK version 26 and
27, which corresponds to Android 8.0 and 8.1.

2.2 Automatic analysis of Android apps

Automatically analyzing Android apps can be done
through two major strategies, static analysis or dy-
namic analysis. Static analysis only considers the
code while in dynamic analysis the code is executed
and the program’s behavior is analyzed. Whichever
method is chosen, a decision on what to look for
in the analysis has to be made. In this paper, two
tracks are evaluated, how privacy-sensitive informa-
tion flows through the app and scanning apps for com-

mon vulnerabilities.
2.3 Android Automotive

Today, the Android system is officially used in all
types of devices, from phones and tablets to watches,
TVs and soon cars (Google Inc., 2018a). Android Au-
tomotive is a version of Android developed specifi-
cally for use in cars. It is essentially Android with
a User Interface (UI) adapted for cars and a number
of car specific APIs. The car specific APIs allow for
control over vehicle functions, such as the heating,
ventilation, and air conditioning (HVAC), and read-
ing of sensor data, e.g. speed, temperature and engine
RPM (Google Inc., 2018b). Android Automotive is
not to be confused with Android Auto which is al-
ready available on the market today. Unlike Android
Auto, Automotive is a completely stand-alone system
that is not dependent on a smartphone. In Android
Auto, apps run on the users Android phone which
then renders content on a screen in the car. The apps
and the Android system thus runs separated from the
car.

2.4 Android’s Permission model

The Android operating system controls access to
many parts of the system, such as camera, position
and text messages, through permissions. These per-
missions can be of one of four types; normal, danger-
ous, signature or signatureOrSystem. The first two
are the most common and can be granted to any third-
party app. Normal permissions give isolated accesses
with minimal risk for the system and user, these are
automatically granted by the operating system. Dan-
gerous permissions, on the other hand, give accesses
to private user data and control over the device that
may harm the user. These permissions have to be ex-
plicitly granted by the user on a per-application ba-
sis. Both Android’s coarse and fine location permis-
sions are examples of dangerous permissions, since
both supply high precision data. The difference be-
tween them is that fine location has access to the
GPS while coarse uses cell towers and WiFi access
points. Finally, there are the signature and signa-
tureOrSystem permissions, which requires the app to
be pre-installed or cryptographically signed (Google
Inc., 2018c).

2.5 Covert channels

A covert channel, as defined by Lampson, is a com-
munication channel between two entities that are not
intended for information transfer (Lampson, 1973).



In Android, a number of different covert channels
exist that use both hardware attributes and software
functions to communicate. Apps can, for exam-
ple, communicate by reading and setting the volume,
sending special intents or cause high and low system
load (Marforio et al., 2012; Schlegel et al., 2011).

3 ATTACKS

This section focuses on the implementation deci-
sions regarding the attacks presented in Table 1. The
category and asset columns in the table give an under-
standing of what the attack is targeting. More specif-
ically, the asset is what the attack is trying to take
control over. In the case of denial-of-service (DoS)
attacks, this is usually some type of resource. Privacy
attacks, on the other hand, try to acquire and exfiltrate
data such as speed or location. User interaction and
permission are used to judge how easy the attack is
to execute. The values are finally combined to create
a severity score based on the Common Vulnerability
Scoring System (CVSS3) (FIRST.Org Inc., 2018). A
shortcoming of CVSS3 is that possible physical dam-
age or safety risks are not considered in the scoring.
Distraction vulnerabilities, like the one exploited by
SoundBIlast, and other automotive vulnerabilities will
be underrated. These shortcomings are currently be-
ing revised for CVSS3.1 (Dugal, 2018). The exact
vectors and scores for each attack are presented in Ta-
ble 3. Table 2 present the same attacks together with
suitable countermeasures to mitigate the underlying
vulnerabilities.

3.1 Disturbance

SoundBlast The SoundBlast attack relies heavily
on the AudioManager class in Android. This class
supplies functions which are used to control the vol-
ume of different audio streams in Android. Cars also
have the more specific CarAudioManager, however,
this class requires special permissions. Different au-
dio streams are used to differentiate between volumes,
e.g. music volume, ringer volume, alarm volume, etc.
A malicious app can use the permissionless audio API
to max the volume and shock the driver. The attack is
further improved by using a ContentObserver to lis-
ten for changes in volume and force the volume to the
maximum as soon as it changes. Using the vehicle’s
sensors, the attacker can also design the attack to only
active when traveling at high speeds.

Testing the SoundBlast attack shows that it is pos-
sible to set any volume on all the different audio
streams in Android, without needing any permissions.

In addition, the attack can also detect changes in vol-
ume and max the volume accordingly. The changes
are also detected even if the driver uses the hardware
controls on the IHU or steering wheel. Killing the app
is the only way to regain control of the volume.

3.2 Availability

Fork bomb A fork bomb is a program that creates
new instances of itself until the system runs out of re-
sources, either freezing the device or force a reboot.
While this might be acceptable on a phone, in a vehi-
cle setting this is problematic. Since the IHU usually
handles navigation, freezing the device might distract
drivers trying to fix it, or frustrate them by having to
stop and reboot.

Forking in Android is not possible by default, re-
sulting in the need for a vulnerability to leverage in or-
der to accomplish forking. Unlike previously success-
ful fork bomb attacks on Android (Armando et al.,
2012), our attack takes an application-level approach
by creating a shell, which in turn has the power to
fork itself. By using exec to run sh -s, a new shell
is created, which can execute the fork bomb.

When testing this attack it is able to fully grind
both the emulator and test bed to a halt, requiring a
power cycle to regain control. It is thus able to render
the infotainment system unusable until the system is
rebooted.

Intent storm The intent storm attack uses Android
intents to continuously restart the app itself. Simi-
lar to the fork bomb presented in section 3.2, the in-
tent storm attack tries to use up all the CPU resources,
making the IHU unusable. The difference, however,
is that the intent storm does not use the resources it-
self, but rather forces another system process, the sys-
tem_server, to use up all resources. The fast activity
switching required is made possible with threads and
intents. As soon as the app starts, it spins up 8§ threads
which all ask Android to start its own main activity.
Using multiple threads increases the pressure on the
system_server, making the device less responsive.

During the tests, the system_server process was
forced by the attack to use 100% of the CPU, making
the IHU unusable. Similar to the fork bomb in sec-
tion 3.2, this would grind the IHU to a halt. However,
in some cases, the IHU would automatically restart
after a few minutes.

3.3 Privacy

Permissionless speed In Android Automotive,
apps have direct access to the current speed. How-



Table 1: The attacks are divided into three different categories. Which asset and permissions the attacks affects and requires are listed

along with the needed user interaction.

Name Category Asset User interaction Permission Severity
SoundBlast Disturbance Driver’s attention ~ Start app None Medium?
Fork bomb DoS CPU resources Start app None Medium
Intent storm DoS CPU resources Start app None Medium
Permissionless speed Privacy Current speed Start app None Low
Permissionless exfiltration  Privacy Data Exfiltration  Start app None Low
Covert channel Privacy Data Exfiltration  Start app Channel dependent  Low

4 The score is subject to the limitation of CVSS3 on lacking support for physical damage and safety risks (Dugal, 2018).

ever, since speed is privacy sensitive it requires a per-
mission. By combining other permissionless sensor
values, such as the current RPM and gear, and knowl-
edge about the wheel size, the speed can be derived.
The effectiveness of this attack does depend on the
sampling frequency of the sensors. The hardware
test beds only contained the IHU and not the full car,
meaning that the efficiency of the attack is yet to be
tested.

Permissionless exfiltraion The Android permis-
sion model clearly states that any app wanting com-
municate on a network requires Internet permission.
However, by using intents it is possible to force an-
other app with Internet permission to leak the data.
Different apps handle different intents, for example,
the web browser will open URLs, music player opens
music files, etc. While the implementation details dif-
fer depending on the app, the common procedure is to
encode the data, split it into chunks and send a sepa-
rate intent for each chunk.

Crafting an intent with data type audio/wav
and using the URL http://evil.com/music.wav
?d=[data], forces the music player to load the URL.
The native Android music player is quite stealthy as
it only shows a small popup with a play button will
appear. By returning a malformed wav file from the
server, the music player will only show a subtle error
message.

If a web browser is used, the attacker can have
the server redirect the request to a deep link, giving
control back to the exfiltration app. Not only does this
give the app the ability to leak more data, but it also
enables two-way communication with the attacker’s
server, all without using the Internet permission.

In order to test this, a proof-of-concept code was
developed that would record audio for five seconds
and then upload it using the described method. The
code only needs permission to record audio, but not
to use the Internet. Testing this attack shows that it is
possible to send data to the Internet without using the
Internet permission. The attack was successful using
Chrome, the standard music player, video player and

image viewer. If the device has not been configured
with a default application for opening the type of data,
it will ask the user to pick one.

Covert channels Previous work on covert chan-
nels in Android have used both vibration and vol-
ume settings to transmit data between colluding
apps (Schlegel et al., 2011). In addition, Android Au-
tomotive introduces some new APIs. In particular the
new climate control API for temperature. Since the
temperature is represented by a floating point value,
the bandwidth is more than tenfold that of the volume
settings. However, changing the temperature does
currently require a signature permission, making it
hard for third-party apps to acquire.

In contrast to previous work on covert channels,
which relied on time synchronization, our attack is
based on asynchronous messages. This forces the
receiver to send an acknowledgment for each of the
received values. While this lowers the bit rate, in
contrast to synchronous communication, it greatly in-
creases the reliability of the communication.

With this implementation, two apps can collude
to leak privacy- sensitive information to the Inter-
net. One app requests permission to privacy-sensitive
information but not the Internet and then acts as a
sender. The second app requests Internet permis-
sion but not permission to access any sensitive data.
The second app can now receive sensitive informa-
tion which it does not have permission for and leak it
to the Internet.

4 COUNTERMEASURES

The vulnerabilities are very different in nature
and, as such, the mitigation techniques differ. Some
vulnerabilities can be mitigated by several different
techniques while others can only be mitigated by one.
An overview of the attacks together with mitigations
for the underlying vulnerabilities are presented in Ta-
ble 2.



4.1 Permission

The current permission model can be improved both
by adding new permissions for unprotected resources,
and also by refining some very broad permission. The
SoundBlast attack, from Section 3.1, relies on chang-
ing the volume through an API called AudioManager
which does not require any permission. At the same
time, there exists an API called CarAudioManager,
which does require a permission. Cars usually have
more advanced sound systems than phones so a dif-
ferent API with more settings does make sense as
does the need for a permission. When conducting
experiments with the emulator the AudioManager is
usable by third-party apps, thus allowing an attacker
to change the volume without any permission.

In addition to audio, Android allows apps to get
the location of the device by using GPS. This can, for
example, be used by apps to give weather informa-
tion. However, due to these systems having high pre-
cision and allowing for real-time updates, apps often
excessive information.

There are multiple methods for preserving the
user’s privacy while still maintaining an acceptable
level of functionality in apps using location (Micinski
et al., 2013; Fawaz and Shin, 2014). Which method
is optimal is highly dependent on the type of infor-
mation the app needs. A simple approach is to trun-
cate location, effectively creating a grid of possible
locations. A grid will better protect the privacy of the
user, but at the same time degrade the functionality of
some apps (Micinski et al., 2013). In order to handle
apps like fitness trackers, which requires fast updates
and high precision, truncation is not feasible. Fawaz
and Shin (Fawaz and Shin, 2014) argue that in order
to preserve privacy, a choice has to be made between
tracking distance and speed, or tracking the path of
the exercise. They present a method for tracking the
distance and speed by supplying the exercise tracker
with a synthetic route, that has correct distance and
speed but a forged path. Furthermore, they argue that
navigation apps with Internet access, usually used for
real-time traffic information, are the hardest to han-
dle since they can potentially leak the location. This
problem could be solved by using state-of- the-art in-
formation flow tracking to ensure that the location is
never leaked.

4.2 API control

In some scenarios, permissions are not enough. This
is usually the case when access to a resource can be
abused over time. For example, in the current Android
model, apps are allowed to record audio from the mi-

crophone at all times, as long as it has been granted
the permission once. This means that a restaurant app
that uses voice commands to find close by restaurants,
can listen to everything the user says, at all times.
Since voice commands are more prevalent in vehi-
cles, where the user’s focus is on driving, it is reason-
able to believe that more in-vehicle apps will use this
functionality. One solution to this problem is to use
a voice mediator, which is a special service that has
access to the microphone and allows for third-party
apps to subscribe to certain keywords. The app would
only receive sentences that contain the keywords it
subscribed to, effectively removing its capabilities to
eavesdrop. Similar to the voice mediation, the same
method can be used for location. By using a loca-
tion mediator apps can subscribe to arbitrary precision
for location data. The mediator can also introduce a
trade-off between the refresh rate and precision of the
requests, mitigating real-time tracking.

4.3 System

Some problems are best solved at the operating sys-
tem level. These problems include resource man-
agement, e.g. how much CPU time or memory an
app should be allowed to use. Android already lim-
its resource usage by apps to a great extent when it
comes to memory and CPU However, some system
processes, the system_server process in particular, can
use all of the CPU, effectively starving the rest of
the system. This lack of rate limiting was exploited
in the intent storm attack in Section 3.2. While not
tested, we speculate that this vulnerability could ei-
ther be countered by rate limiting the CPU usage of
the system_server process or limit incoming intents to
the system_server.

Similar to CPU limiting, memory usage requires
limitations too. When Android is running low on
memory it will start to terminate apps in the back-
ground. This can result in the termination of apps that
the user wants to run in the background, e.g. nav-
igation apps. A possible method for ensuring that
the navigation works while driving is to prohibit An-
droid from terminating important apps. This protects
against both malicious apps using up the memory, and
legitimate memory hungry apps.

Akin to permissions, SELinux policies are poli-
cies which limit what the processes in an OS can
do. These policies play a crucial role in protecting
the vehicle’s subsystems from Android. The policies
are suitable for specifying what an app is allowed to
do. However, not how many times it can do it. As
Bratus et al. (Bratus et al., 2011) explains, “SELinux
does not provide an easy way to control the use of



the fork operation once forking has been allowed in
the program’s profile”, which shows that SELinux is
not suited to stop attacks like fork bombing. While it
might be infeasible in many situations, blocking fork-
ing altogether could be a solution.

4.4 Code analysis

Automatic analysis techniques can be used to scan
apps, both before installation and during runtime, to
find vulnerabilities and block attacks. The following
sections describe this in more detail.

Vulnerability detection Both AndroBugs (Lin,
2018) and QARK (LinkedIn Corporation, 2018) are
tools that can be used to scan Android apps for
known vulnerabilities. QARK is capable of find-
ing many common security vulnerabilities in Android
apps (Ibrar et al., 2017). QARK can, for exam-
ple, find incorrect usage of cryptographic functions,
trace intents and detect insecure broadcasts. In ad-
dition, QARK can also generate exploits for some
of these vulnerabilities. While not able to generate
exploits, AndroBugs can detect vulnerabilities based
on heuristics in the code. For example, multiple dex
files suggests a master key vulnerability (CVE-2013-
4787) (MITRE, 2013). The tools work well together
since AndroBugs can quickly scan multiple apps with
heuristics and then QARK can perform a deeper anal-
ysis of the interesting apps.

AutoTame To scan for dangerous use of the new au-
tomotive APIs, we developed a special tool built on
the Soot framework, which can analyze both Java and
Android bytecode. The tool has a list of dangerous
APIs, e.g controlling the HVAC system, change au-
dio volume or spawning shells. Using Soot, our tool
decompiles the APK and analyses each function in
the app while testing if it matches any of the ones in
the list. AutoTame performs a full application anal-
ysis. The main advantage of this is that it does not
require any entry point analysis. Compared to many
other languages, Android apps do not have a single
main function from which execution starts. Therefore
a full analysis ensures that any dangerous use of an
API is detected. However, without knowing the entry
points, dead code could be flagged, potentially lead-
ing to false positives. In addition to only detecting if
the volume is changed, AutoTame can also give ex-
tra warnings if the volume is set to a high numeric
value or if getStreamMaxVolume is used. If a match
is found the app can be removed or marked as poten-
tially dangerous. The tool was able to flag the Sound-
Blast attack, as well as the fork bomb.

Taint tracking Taint tracking can help detect pri-
vacy leaks where sensitive information, such as the
user’s location, is being sent to a remote server. Flow-
Droid (Arzt et al., 2014) is a tool for static taint anal-
ysis on Android, that can detect these flows. The taint
analysis works by tainting private sources of infor-
mation, such as the user’s location. If the location is
written to a variable, then this variable also becomes
tainted. If at a later time this tainted variable is writ-
ten to a public sink, e.g an Internet connection, a leak
from a private source to a public sink will be detected.

What makes FlowDroid special is its highly accu-
rate modeling of Android’s life cycles. This is impor-
tant as an app can be started in many different ways.
FlowDroid is also able to track leaks via button clicks
and other UI events. Important for the car API used
in this paper is that FlowDroid can track dynamically
registered callback functions, which is used to estab-
lish the connection to the car.

In order to make FlowDroid fully functional with
Android Automotive apps, we extended the tool with
new sources and sinks. Some of the sources added
were used to acquire the car’s manufacturer, model
and year. For sinks, we added functions for writing to
the climate control APIs.

Observable flows Taint tracking is not always
enough to find all privacy leaks. For this reason, a
more powerful tool that can detect observable implicit
flows is introduced. The We are Family paper by Bal-
liu et al. (Balliu et al., 2017) presents a two-fold hy-
brid analysis solution. The first stage is a static analy-
sis that transforms the application and adds monitors.
These monitors will aid the dynamic analysis tool in
the second stage to find implicit flows. The added
monitors are in this case used to track the program
counter label and analyze the current taint value, mak-
ing it possible to detect potential leaks during run-
time on the device. The dynamic tool developed in
the paper is an extension of TaintDroid (Enck et al.,
2014). By using the transformed program together
with TaintDroid, observable implicit flows can be de-
tected, something TaintDroid was not able to do.

5 SPOTIFY CASE STUDY

To test some of the countermeasures, an in-depth
case study was performed on the Spotify app. The
motivation behind using Spotify is that it was the only
third-party app available on the emulator and test bed,
making it the most realistic app to test. It was also
much larger in size than the proof-of-concept attacks.



Table 2: List of all developed attacks and which countermeasure(s) can be used to mitigate each attack the underlying vulner-

abilities.
Attacks / Countermeasures  Permissions  Location granularity ~SELinux AutoTame FlowDroid We are Family Rate limit
SoundBlast v v
Fork bomb v v

Intent Storm

Permissionless speed

Permissionless exfiltration

ENENEN

Covert channels v

INENEN
ENENEN

The larger size will show how well the methods han-
dle real apps.

5.1 Permissions

The first analysis that has to be performed is to gather
an understanding of the permissions the app uses.
Spotify needs permission to Internet, Bluetooth and
NFC, for data transfer. Furthermore, it also requires
permission to change audio settings, run at startup,
and prevent the device from sleeping. Since Spotify
is a music streaming app that should be able to run
in the background, as well as talk to other Bluetooth
devices, these permissions seem innocuous. Shifting
focus to the dangerous permissions, Spotify does re-
quire permission to read the accounts on the device,
contacts stored on the device, the device ID, and in-
formation about current calls. It is not clearly mo-
tivated why this information is necessary, and while
some connection between the Spotify user and the de-
vice user is reasonable, having access to all contacts
seems excessive. Spotify does not ask for the loca-
tion permission, instead, they use IP-addresses for lo-
cation (Spotify, 2018). In addition, Spotify can also
record audio and take pictures, as well as read and
write access to the external storage. Taking pictures is
necessary to scan QR-codes and the microphone will
be used in Spotify’s driving mode (Singleton, 2018).
Access to external storage is reasonable since it al-
lows for offline storage of music, however, it does in-
clude access to other photos and media files beyond
Spotify’s.

5.2 Vulnerability detection

To ensure that the app does not have any known vul-
nerabilities QARK is used to scan the app. While
QARK didn’t find any severe vulnerabilities, it did
find cases where a vulnerability could arise, e.g. by
using a WebView in an older version of Android (API
< 18). Moreover, it also points out interesting entry-
points into the app, one of them leading to a version
of Spotify meant for another automotive system. In
addition, a malicious third-party app can also send in-
tents to Spotify to search and play arbitrary music,

skip songs, or even crash the app. QARK did not find
any vulnerabilities relating to the vehicle APIs, moti-
vating the need for further analysis.

5.3 AutoTame

Using AutoTame, multiple warnings about both
changing the volume and querying for max volume
was found. Further manual analysis proved that the
maximum volume was used directly to set the vol-
ume, as shown in Figure 2.

int 1 = this.c.getStreamMaxVolume (0);
this.c.setStreamVolume (0, i, 0);

Figure 2: Decompiled code setting volume to max

5.4 Information flow analysis

The permissions give an upper bound on what the app
is capable of doing. A more precise understanding of
the app is achieved by analyzing it with FlowDroid,
using implicit flow tracking. Using these settings the
information flow analysis found 13 leaks in the app.
One interesting leak was getLastKnownLocation
being leaked into a dynamic receiver registration.
As shown in Figure 3, FlowDroid was able to track
the sensitive location through different assignments,
function calls and control flows. While this case
might be quite benign, as it only leaks one bit, it still
shows the capabilities of the technique.

The analysis also over-approximates some leaks,
especially when the information being sent is based
on information being received. A concrete example
of this is when threads try to communication using
sendMessage and obtainMessage. Since the ob-
tained information could contain sensitive informa-
tion, it is flagged as a leak. This could potentially
be solved using dynamic information flow tracking.

5.5 Summary

To summarize these findings, we see that a more ro-
bust and at the same time more fine-grained permis-



on )

Figure 3: The publicly observable addAction function is im-
plicitly dependent on the private location information.

sion model would be beneficial, as it would allow
apps like Spotify to use lower precision location data
instead of privacy-invading high precision data. In
addition, vulnerability detection methods succeed in
finding a bug that could be exploited to terminate Spo-
tify. Finally, static analysis proved successful for au-
tomatically detecting privacy leaks.

6 RELATED WORK

Previous security and privacy research on vehi-
cles have to a large extent focused on low-level prob-
lems relating to the internal components. Koscher et
al. (Koscher et al., 2010) showed that with physical
access to the CAN bus it is possible to control both the
speedometer, horn and in-vehicle displays to distract
the driver. Miller and Valasek (Miller and Valasek,
2015) gained similar access to the CAN bus, this time
remotely. A similar vulnerability found in an info-
tainment system used in cars from Volkswagen was
also recently discovered by researchers in the Nether-
lands (Computest, 2018). They showed that it was
possible to connect to the car via WiFi to exploit a
service running in the infotainment system to gain re-
mote code execution system. The most recent study
on attacks against vehicles was done by researchers
at Tencent Keen Security Lab (Tencent Keen Security
Lab, 2018), where they found multiple vulnerabilities
in the infotainment system and Telematics Control
Unit of BMW cars, resulting in control of the CAN
buses.

A contribution of our paper is to show that even
without access to the internal buses or exploiting low-
level vulnerabilities, it is possible to cause distractions
and leak private information.

A more high-level study was done by Mazloom
et al. (Mazloom et al., 2016) where they conducted a
security analysis of the MirrorLink protocol. Mirror-
Link allows smartphones to run apps on the cars info-
tainment system. Their analysis showed weaknesses

in the MirrorLink protocol which could, amongst
other things, allow malicious smartphone apps to play
unwanted music or interfere with navigation. Man-
dal et al. (Mandal et al., 2018) showed that the simi-
lar system Android Auto have multiple problems that
can be abused by third-party apps. For example, auto-
playing audio when launching an app or showing vi-
sual advertisements, both of which are against An-
droid Auto’s quality policy. In our paper, we show
similar attacks are possible on Android Automotive,
however, without the requirement of the user’s smart-
phone, since the malicious app runs on the infotain-
ment system.

Intents, which is the main component in our ex-
filtration attack, are problematic for many reasons.
Khadiranaikar et al. (Khadiranaikar et al., 2017) high-
lighted some of these problems, including how ma-
licious apps can both steal information and compro-
mise other apps using intents. Our paper builds on
these ideas to develop new exfiltration methods for
the Android Automotive platform.

There is a large body of work on Android per-
missions (Porter Felt et al., 2011b; Porter Felt et al.,
2012a; Frank et al., 2012). As a representative exam-
ple, a study on Android permissions by Porter Felt et
al. (Porter Felt et al., 2011a) shows that many apps
are using more permissions that they need, i.e. not
adhering to the principle of least privilege. Other re-
searches (Bugiel et al., 2013), also argue for the need
of a more fine-grained model which can grant access
to specific functions instead of full APIs or services.
Extensions such as Apex (Nauman et al., 2010) have
also been developed in order to supply end users with
a more fine-grained model, capable of granting per-
missions based on user-specified policies. While our
focus is on the specifics of the in-vehicle setting, we
argue that many apps get access to excessive data due
to the coarse granularity of the permission model it-
self. For example, a weather app or Spotify app only
needs low-precision location, such as city level.

7 CONCLUSIONS

To the best of our knowledge, we have presented
the first study to analyze application-level security on
the Android Automotive infotainment system. Unfor-
tunately, our analysis shows that in-vehicle Android
apps are currently as secure as regular phone apps.
We argue it is insufficient because in-vehicle apps can
affect road safety and to some extent user privacy.

Our study of the attack surface available to third-
party apps include driver disturbance, availability, and
privacy attacks, for which there is currently no protec-



tion mechanisms in Android Automotive.

Consequently, it is important for car manufactur-
ers that third-party apps are limited in their abilities to
cause a considerable distraction for the driver. Addi-
tionally, there are a number of vehicle specific APIs,
such as access to current gear and engine RPM, that
is a cause for concern when it comes to user privacy.

To address the vulnerabilities that lead to these at-
tacks, we have suggested the countermeasures of ro-
bust and fine-grained permissions, API control, sys-
tem support, and program analysis.

We have designed and developed AutoTame, a
tool for detecting dangerous vehicle-specific API us-
age. We have demonstrated that in-vehicle code anal-
ysis can be performed using AndroBugs and QARK,
to detect known vulnerabilities, AutoTame to detect
vehicle specific vulnerabilities and FlowDroid, with
the additional vehicle specific sources and sinks, to
detect privacy leaking apps.

We have evaluated the countermeasures with a
Spotify app using an infrastructure of Volvo Cars.
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APPENDIX

Table 3: List of attacks and their severity score, based on
CVSS v3 (FIRST.Org Inc., 2018).

Name CVSS v3 Vector Score

SoundBlast

AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:L/A:L 4.4

Fork bomb

AV:L/AC:L/PR:N/UI:R/S:U/C:N/I:N/A:H 59

Intent storm AV:L/ACIL/PR:N/UL:R/S:0/C:N/T:N/Ac 9.9

Permissionless speed AV:L/AC:L/PR:N/UI:R/S:U/C:L/I:N/A:N 3.3

Permissionless exfiltration  av:i/ac:r/erov/vr:r/s:v/cin/tvan - 3.3

Covert channel AV:L/AC:L/PR:N/UI:R/S:U/C:L/I:N/A:N 3.3




