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This small note justifies the asymmetry in the definition of the η-expansion
functions ↑ and ↓ for function types in the context of normalization by evaluation
for dependent types [ACD07, Abe10, ACP11].

(↑FunAF n) a = ↑F a n (↓A a)
(↓FunAF f)x = ↓F ↑

A x f (↑A x)

The asymmetry F a vs. F ↑A x can be derived from a view of ↑ and ↓ as
embedding-projection pair, or up- and downcast functions, with a symmetric
definition:

(↑FunA′ F ′

FunAF f) a′ = ↑F
′ a′

F (↓A′
A a)

f (↓A
′

A a′)

(↓FunA′ F ′

FunAF f ′) a = ↓F
′ (↑A′

A a)
F a f (↑A

′

A a)

Upcast ↑A
′

A casts a value of type A to one of type A′; downcast ↓A
′

A casts in the
opposite direction, from A′ to A. The definition is symmetric, we have for all
A,A′,

↑A
′

A = ↓AA′

The upcast ↑A n in the context of NbE casts a neutral n ∈ Ne into A, and the
downcast ↓A a casts a value a ∈ A into the set of normal forms Nf. Since

Ne ⊆ Nf → Ne and Ne→ Nf ⊆ Nf

we can identify Ne with Fun Nf λ Ne and Nf with Fun Neλ Nf. More precisely,
if we want to convert from Ne it is sufficient to convert from Nf → Ne. And if
we want to convert into Nf it is sufficient to convert into Ne→ Nf. This yields

(↑FunA′ F ′

Ne f) a′ = (↑FunA′ F ′

Fun Nf λ Ne f) a′ = ↑F
′ a′

Ne f (↓A
′

Nf a
′)

(↓FunA′ F ′

Nf f ′) a = (↓FunA′ F ′

Fun Neλ Nf f
′) a = ↓F

′ (↑A′
Ne a)

Nf f (↑A
′

Ne a)

from which we can drop the redundant indices Ne and Nf to arrive at the NbE-
definition of ↑ and ↓.
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