
On η-Expansion in NbE and Type Casts

Andreas Abel
Department of Computer Science

Ludwig-Maximilians-University Munich
andreas.abel@ifi.lmu.de

13 October 2011

This small note justifies the asymmetry in the definition of the η-expansion
functions ↑ and ↓ for function types in the context of normalization by evaluation
for dependent types [ACD07, Abe10, ACP11].

(↑FunAF n) a = ↑F a n (↓A a)
(↓FunAF f)x = ↓F ↑

A x f (↑A x)

The asymmetry F a vs. F ↑A x can be derived from a view of ↑ and ↓ as
embedding-projection pair, or up- and downcast functions, with a symmetric
definition:

(↑FunA′ F ′

FunAF f) a′ = ↑F
′ a′

F (↓A′
A a)

f (↓A
′

A a′)

(↓FunA′ F ′

FunAF f ′) a = ↓F
′ (↑A′

A a)
F a f (↑A

′

A a)

Upcast ↑A
′

A casts a value of type A to one of type A′; downcast ↓A
′

A casts in the
opposite direction, from A′ to A. The definition is symmetric, we have for all
A,A′,

↑A
′

A = ↓AA′

The upcast ↑A n in the context of NbE casts a neutral n ∈ Ne into A, and the
downcast ↓A a casts a value a ∈ A into the set of normal forms Nf. Since

Ne ⊆ Nf → Ne and Ne→ Nf ⊆ Nf

we can identify Ne with Fun Nf λ Ne and Nf with Fun Neλ Nf. More precisely,
if we want to convert from Ne it is sufficient to convert from Nf → Ne. And if
we want to convert into Nf it is sufficient to convert into Ne→ Nf. This yields

(↑FunA′ F ′

Ne f) a′ = (↑FunA′ F ′

Fun Nf λ Ne f) a′ = ↑F
′ a′

Ne f (↓A
′

Nf a
′)

(↓FunA′ F ′

Nf f ′) a = (↓FunA′ F ′

Fun Neλ Nf f
′) a = ↓F

′ (↑A′
Ne a)

Nf f (↑A
′

Ne a)

from which we can drop the redundant indices Ne and Nf to arrive at the NbE-
definition of ↑ and ↓.

1



References

[Abe10] Andreas Abel. Towards Normalization by Evaluation for the βη-
Calculus of Constructions. In FLOPS’10, volume 6009 of LNCS, pages
224–239. Springer, 2010.

[ACD07] Andreas Abel, Thierry Coquand, and Peter Dybjer. Normalization
by evaluation for Martin-Löf Type Theory with typed equality judge-
ments. In LICS’07, pages 3–12. IEEE CS Press, 2007.

[ACP11] Andreas Abel, Thierry Coquand, and Miguel Pagano. A modular
type-checking algorithm for type theory with singleton types and proof
irrelevance. LMCS, 7(2:4):1–57, 2011.

2


