
Normalization by Evaluation for Call-by-Push-Value

Andreas Abel∗ and Christian Sattler

Department of Computer Science and Engineering, Gothenburg University

Normalization by evaluation (NbE) [Berger and Schwichtenberg, 1991] is the interpretation
of an (open) term of type A as value in a suitable model [[A]], followed by reification of the value
to a normal form of type A. Functions f in [[A⇒ B]] are reified as λ-abstractions whose bodies
are obtained by reflecting a fresh variable of type A as value a in [[A]] and reifying the application
f a at type B. A suitable model that supports fresh variable generation are presheaves over the
category of typing contexts Γ and order-preserving embeddings Γ ⊆ Γ′, where a base type o is
interpreted as the presheaf Ne o of neutral normal forms of type o, and function types by the
presheaf exponential aka Kripke function space [Coquand, 1993, Altenkirch et al., 1995].

NbE for sum types requires a refinement of the model, since reflection of a variable of type
A + B as a value in [[A + B]] requires case distinction in the model. One such refinement are
sheaves [Altenkirch et al., 2001]; another is the use of a monad C [Filinski, 2001, Barral, 2008]
in the category of presheaves for the interpretation of sum types: [[A+B]] = C([[A]]+ [[B]]). The
smallest such “cover” monad C are binary trees where leaves are the monadic unit aka return,
and the nodes case distinctions over neutrals Ne (A1+A2) of sum type. When leaves are normal
forms, the whole tree represents a normal form, thus, runNf : C(Nf A) → Nf A is trivial. This
running of the monad on normal forms represents the algorithmic part of the sheaf condition
on Nf A and extends as run : C[[A]]→ [[A]] to all semantic types.

The given interpretation of sum types [[A+B]] = C([[A]] + [[B]]) corresponds to the call-by-
name (CBN) lambda calculus with lazy constructors. NbE can also be performed in call-by-
value (CBV) style, then the monad is placed in the codomain of function types: [[A ⇒ B]] =
[[A]] ⇒ C[[B]] [Danvy, 1996]. A systematic semantic analysis of CBN and CBV lambda-calculi
has been pioneered by Moggi [1991] through translation into his computational lambda calculus;
Filinski [2001] studied NbE for the latter calculus using the continuation monad. Moggi’s work
was continued and refined by Levy [2006] who subsumed CBV and CBN under his monadic
call-by-push-value (CBPV) calculus. In this work, we study NbE for CBPV.

CBPV was designed to study lambda-calculus with effects. It separates types into value
types P and computation types N , which we, in analogy to polarized lambda-calculus [Zeil-
berger, 2009] refer to as positive and negative types. Variables stand for values, thus, have
positive types. The monad that models the effects is placed at the transition from values to
computations Comp P , and computations can be embedded into values by thunking (Thunk N).

Ty+ 3 P ::= o | P1 + P2 | Thunk N positive type / value type
Ty− 3 N ::= P ⇒ N | Comp P negative type / computation type

We restrict to a fragment of pure CBPV with a single positive connective, sum types P1 + P2,
and a single negative connective, call-by-value function types P ⇒ N . While we have no proper
effects, the evaluation of open terms requires the effect of case distinction over neutrals, modeled
by a cover monad C. In the following, we give inductive definitions of the presheaves of normal
(Nf) and neutral normal forms (Ne) of our fragment of CBPV and a concrete, strong cover
monad Cov.

var
Var o Γ

Nf oΓ
thunk

Nf N Γ

Nf (Thunk N) Γ
inji

Nf Pi Γ

Nf (P1 + P2) Γ
ret

Cov (Nf P ) Γ

Nf (Comp P ) Γ
abs

Nf N (Γ.P )

Nf (P ⇒ N) Γ
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force
Var (Thunk N) Γ

Ne N Γ
app

Ne (P ⇒ N) Γ Nf P Γ

Ne N Γ
bind

Ne (Comp P ) Γ Cov J (Γ.P )

Cov J Γ

return
J Γ

Cov J Γ
case

Var (P1 + P2) Γ Cov J (Γ.P1) Cov J (Γ.P2)

Cov J Γ

(J stands for an arbitrary presheaf in Cov J .) Normal forms start from a variable of base
type and continue with introductions, except that the services of the monad can be used at the
transition ret from positive to negative types (Comp P ). Neutrals are eliminations of variables
of type Thunk N into a positive type Comp P , and can then be bound to a variable of type
P to be used in a computation (see bind). Variables of sum type P1 + P2 can be utilized in
computations through a case split.

Terms Tm of CBPV are obtained by blurring the distinction between Ne and Nf, generalizing
bind and case from Cov J to computations TmN , and relaxing var to variables of arbitrary type
P and force to arbitrary terms of type Thunk N . Terms are evaluated in the following presheaf
model, which interprets Thunk as the identity and Comp as Cov.

[[P1 + P2]] = [[P1]] +̂ [[P2]]
[[Thunk N ]] = [[N ]]
[[o]] = Var o

[[P ⇒ N ]] = [[P ]] ⇒̂ [[N ]]
[[Comp P ]] = Cov[[P ]]

The evaluation of bind terms in TmN relies on run : Cov[[N ]] → [[N ]], which makes any com-
putation type monadic. Reflection ↑ and reification ↓ are defined mutually by induction on
the type. They take the usual form, only that reflection of positive variables is monadic, to
allow the complete splitting of sums via case. It is invoked by reification of functions ↓P⇒N via
runNf .

↑P : VarP → Cov [[P ]]
↑N : NeN → [[N ]]

↓P : [[P ]]→ Nf P
↓N : [[N ]]→ NfN

The details of our construction, plus extension to product types and polarized lambda cal-
culus, can be found in the full version at https://arxiv.org/abs/1902.06097. A partial Agda
formalization is available at https://github.com/andreasabel/ipl.
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