The Next 700 Modal Type Assignment Systems

Andreas Abel

Department of Computer Science and Engineering
Gothenburg University

We exhibit a generic modal type system for simply-typed lambda-calculus that subsumes
linear and relevance typing, strictness analysis, variance (positivity) checking, and other modal
typing disciplines. By identifying a common structure in these seemingly unrelated non-
standard type systems, we hope to gain better understanding and a means to combine several
analyses into one. This is work in progress.

Our modal type assignment system is parametrized by a (partially) ordered monoid (P, _-_,
1, <) with a partial, monotone binary operation +_ and a default element pg € P. Types T,U
include at least a greatest type T and function types — T', and form a partial ordering under
subtyping T' < T’ with partial meet T AT’. Modal types Q ::= pT support composition pQ and
partial meet Q A Q' defined by p(¢T) = (pq)T and pT A ¢T = (p + q)T. Subtyping pT < p'T’
holds if p < p’ and T < T".

For typing contexts I'; A, which are total functions from term variables to modal types,
modality composition pI', subsumption I' < A, and meet I' A A are defined pointwise. Finite
contexts x1:Q1,...,Z,: Q) are represented as I'(x;) = @; and T'(y) = po T for y # x;.

Judgements T' -¢: T and T I ¢ : Q are given by the following (linear) typing rules:

p<1l Tx:QFHt:T 'Ft:Q—>T AFu:@Q
T re:T " Tratoo1 ™ TAAFiu:T APP
I'<A Art:T TSUSUB I'ket:T MOD
'kt:U pl' Ht:pT

The default modality py controls weakening: We can use the subsumption rule SUB with (T, z:
pT) < T which holds if p < pg (as then pT < poT = I'(x)). Meaningful instances of our modal
type assignment system abound, here are a few:

1. Simple typing: P = {1} with 1+ 1 =1 and ¢ well-typed if T' -¢:T # T.

2. Quantitative typing: Take some P C P(N) closed under p-q = {nm | n € p,m € ¢}
and define p < gaspDqgandp+qgas({{reP|r2{n+m|n€pmeq}}t If
0:={0} € P, it is a zero.

The rule MOD has an intuitive reading in quantitative typing: If ¢ produces a T from
resources I', we can produce p times T from the p-fold resources pI'. Subsumption SUB
may allow us to produce less (or the same) from more (or the same) resources. A modal
function type pU — T requires p-fold U to deliver one T'.

Instances of quantitative typing include:
(a) Linear typing: [4] P = {0,1} with unit 1 = {1} and default py = O forbidding

weakening with linear variables x : 1T (as 1 € pp). Contraction is also forbidden as
1+ 1 is undefined.

(b) Affine typing: P = {0,1} with unit 1 = {0, 1}, allowing weakening as 1 < py = 0.
(c) Relevant typing: P = {0, 1} with unit 1 = N\ 0, allowing contraction as 1+1 = 1.

1

Next 700 Modal Type Systems A. Abel

(d) Linear and unrestricted hypotheses: P = {!,1} with 1 = {1} and po =! = N.
Allows weakening and contraction for x : !T.

(e) Strictness typing: [2] P = {l, s} with lazy po =1 = N and unit strict s = N\ 0.
We cannot weaken with strict variables. As p+ ¢ = s iff p = s or ¢ = s, one strict
occurrence of a variable z suffices to classify a function Azt : sT — T’ as strict,
whereas a function is lazy only if all occurrences of parameter x are lazy.

3. Variance (positivity): P = {0,+,—,x} = P{+1,—1} with unit + = {+1} denoting
positive occurrence, — = {—1} negative occurrence, &= = {+1, —1} mized occurrence, and
po = 0 no occurrence. Withp < qiff p Dgandpg={ij|i€p,j€qtandp+qg=pUgqg
we obtain variance typing aka positivity checking for type-level lambda calculi [I].

We can go further and give up the distinction between types and modal types, leading to
the types T,U =:=T | U — T | pT | ... quotiented by p(¢T) = (pq)T. This makes modal types
first class, and we can simplify the hypothesis rule to

- HYP.
z:TkHx:T

Thus, we subsume further type systems:
1. Linear typing with exponential: As but now !T is a valid type.

2. Nakano’s modality for recursion [3]: Basic modalities are later > and always O with
O - p = O, generating the modalities P = {>",>"0 | n € N} with unit 1 = 5% and partial
order pFO <plO <p! <p™mfor k<1 <m. Sincez : U = T,y : U F zy: T entails
z:>(U — T),y :>U F xzy: T by MOD, idiomatic application AzAy.xzy : >(U — T) —
>U — T is definable.

Acknowledgments. Thanks to the anonymous referees, who helped improving the quality of
this abstract through their feedback. This work was supported by Vetenskapsradet through the
project Termination Certificates for Dependently-Typed Programs and Proofs via Refinement
Types.

References

[1] Andreas Abel. Polarized subtyping for sized types. Math. Struct. in Comput. Sci., 18:797-822,
2008. Special issue on subtyping, edited by Healfdene Goguen and Adriana Compagnoni.

[2] Stefan Holdermans and Jurriaan Hage. Making ”stricterness” more relevant. J. Higher-Order and
Symb. Comput., 23(3):315-335, 2010.

[3] Hiroshi Nakano. A modality for recursion. In Proc. of the 15th IEEE Symp. on Logic in Computer
Science (LICS 2000), pages 255-266. IEEE Computer Soc. Press, 2000.

[4] David Walker. Substructural type systems. In Benjamin C. Pierce, editor, Advanced Topics in
Types and Programming Languages, chapter 1. MIT Press, 2005.

