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Introduction

Sandro Stucki

@ PhD from EPFL Lausanne in November 2017
Higher-Order Subtyping with Type Intervals

Partial formalization of Scala’s type system (on paper and in Agda).

e Bounded type operators.
o Lower and upper bounds (hence Type Intervals).
o Not yet: variances.

@ Other research interests:

o Category theory.

o Graph rewriting.

e Systems biology.

o Domain specific languages (esp. probablistic and stochastic systems).

@ Is looking for a PostDoc position at Chalmers!
https://sstucki.github.io/
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Introduction

Upper and lower bounds

@ From the Java 9 standard library:

interface Map<K,V> {
V computeIfAbsent
( K key
, Function<? super K, ? extends V> mappingFunction
);
3

@ Presentation in System F with bounded quantification:
VKV K >K (VV <V) —
Map K V —+ K — Function K’ V' — V
e With type intervals (x = L..T):
R:* @:* K :K..TO (V' : L1L..V) —
Map KV —+ K — Function K’ V' — V
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Introduction

Variance

@ Scala has variance annotations:

Function<-K,+V> == K — V
K’ > K, V? <V F+ Function K’ V' < Function K V

@ With variances, no bounds needed:

VKV — Map KV — Function KV — K — V
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Introduction

Variance and bounds

Maps need comparable keys:

ImmutMap< -K < Comparable, +V >
ImmutMap : (-K : _L..Comparable) (+V : *) — *

@ Precise kinding of identity:
Id : (A : *) — A..A
Identity should be covariant (monotone):

Id : (+A : *) — A..A
A<BIFIdA<IdB

@ Incomparable kinds!
Id A : A..A B..A
Id B : B..B B..A
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Introduction

Bounded higher-order variant subtyping

o Judgement FF < G: K
K < K’ < Comparable, V' < V
Map < Map : (-K : L..Comparable) (+V : *) — *
Map K’ < Map K (V) —» ®
Map K’ V? < Map KV : *
@ What about dependencies?
A:*, B:A..TFHF

Id < 1d (X f) = X, X
Id A < IdB : ??

o We wish for:

A:* B :A..TFHF
Id < 1Id (X ) —» X, .X
Id A< IdB : A..B
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Variance in Type Theory

o Lowering everything one level:

Kinds — Types

Types — Terms

Type operators — Functions
Subtyping — Partial order

@ Examples:

id :(+n:N) - n..n
minus : (+n : N) - (-1 : 0..n) — 0..n
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A falling paradigm

@ Type theory paradigm:
Types and terms share a typing context.
fIr =t:Tthenl = T : Type.
@ Cannot work for variance:
+n : N+ minusn : (-1 : 0..n) — 0..n
but not
+n : NF (-1i: 0..n) — 0..n : Type

@ Term is covariant in n, but its type mixed-variant!
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Introduction

Paradigm has fallen already

o Linearity [McBride 2016: | got plenty of nutting]
While | can drink my beer only once (resource, linear),
| can contemplate it over and over (mental object, unrestricted).
Ax —x): 1x:N) — x..x
e Erasure [Barras/Bernardo, Sheard/Mishram-Linger 2008]: Irrelevant
in the term, but relevant in the type.

(\nx XS — X :: XS) :
O®n: N) (x:A (xs : Vec An) — Vec A (1 +n)
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Introduction

Idea for dependent variance

On the type side,
distinguish positive and negative occurrences of a variable.

@ Substitute a type-side variable by two values!
Fid : (+n : N) — n..n
F3<5:N
Fid 3 < id 5 (n..n)[n:=(3,5)]
Fid 3 < id 5 : n[n:=(5,3)] .. n[n:=(3,5]
Fid 3 < id 5 : 3..5
e Same when going types: If +n: N ¢t: T (or —n:N F t: T) then

—n~ :N,+n" N F T[n:=(n",n")]: Type
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Related idea

@ Decompose mixed variance into co- and contravariance.
@ Forces monotonicity.
@ Example: negative data types.

data D = Lam (D — D)

D=pu(X",XT). (X~ = XT)
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Introduction

Applications of dependent variance

@ Subtyping dependent types.
o Sized types Nat : (4 : Size) — Type.
@ Explaining Agda’s positivity checker.
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Introduction

Future work

@ Does it work?
@ Work out the details.
@ Complete Agda formalization.

o Write a paper.
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Related work

@ Andreas Nuyts et al.: Modal models of type theory:

Parametricity, irrelevance.

@ Models types as categories instead of groupoids.
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