What is a monotone dependently typed function?

Andreas Abel! Sandro Stucki?

!Department of Computer Science and Engineering
Chalmers and Gothenburg University, Sweden

2PhD from EPFL Lausanne, Switzerland

Winter Meeting 2018 of the
Division of Functional Programming
Salt & Sill, Tjorn, Sweden
9 January 2018

Abel Stucki Monotone dependently typed Winter'18 1/14

Introduction

Sandro Stucki

@ PhD from EPFL Lausanne in November 2017
Higher-Order Subtyping with Type Intervals

Partial formalization of Scala’s type system (on paper and in Agda).

e Bounded type operators.
o Lower and upper bounds (hence Type Intervals).
o Not yet: variances.

@ Other research interests:

o Category theory.

o Graph rewriting.

e Systems biology.

o Domain specific languages (esp. probablistic and stochastic systems).

@ Is looking for a PostDoc position at Chalmers!
https://sstucki.github.io/

Abel Stucki Monotone dependently typed Winter'18 2 /14

https://sstucki.github.io/

Introduction

Upper and lower bounds

@ From the Java 9 standard library:

interface Map<K,V> {
V computeIfAbsent
(K key
, Function<? super K, ? extends V> mappingFunction
);
3

@ Presentation in System F with bounded quantification:
VKV K >K (VV <V) —
Map K V —+ K — Function K’ V' — V
e With type intervals (x = L..T):
R:* @:* K :K..TO (V' : L1L..V) —
Map KV —+ K — Function K’ V' — V

Abel Stucki Monotone dependently typed Winter'18 3/14

Introduction

Variance

@ Scala has variance annotations:

Function<-K,+V> == K — V
K’ > K, V? <V F+ Function K’ V' < Function K V

@ With variances, no bounds needed:

VKV — Map KV — Function KV — K — V

Abel Stucki Monotone dependently typed Winter'18 4 /14

Introduction

Variance and bounds

Maps need comparable keys:

ImmutMap< -K < Comparable, +V >
ImmutMap : (-K : _L..Comparable) (+V : *) — *

@ Precise kinding of identity:
Id : (A : *) — A..A
Identity should be covariant (monotone):

Id : (+A : *) — A..A
A<BIFIdA<IdB

@ Incomparable kinds!
Id A : A..A B..A
Id B : B..B B..A

o >
w >
IAIA
= >
w w

IAIA

Abel Stucki Monotone dependently typed Winter'18 5/ 14

Introduction

Bounded higher-order variant subtyping

o Judgement FF < G: K
K < K’ < Comparable, V' < V
Map < Map : (-K : L..Comparable) (+V : *) — *
Map K’ < Map K (V) —» ®
Map K’ V? < Map KV : *
@ What about dependencies?
A:*, B:A..TFHF

Id < 1d (X f) = X, X
Id A < IdB : ??

o We wish for:

A:* B :A..TFHF
Id < 1Id (X) —» X, .X
Id A< IdB : A..B

Abel Stucki Monotone dependently typed

Winter'18 6 /14

Variance in Type Theory

o Lowering everything one level:

Kinds — Types

Types — Terms

Type operators — Functions
Subtyping — Partial order

@ Examples:

id :(+n:N) - n..n
minus : (+n : N) - (-1 : 0..n) — 0..n

Abel Stucki Monotone dependently typed Winter'18

7/14

A falling paradigm

@ Type theory paradigm:
Types and terms share a typing context.
fIr =t:Tthenl = T : Type.
@ Cannot work for variance:
+n : N+ minusn : (-1 : 0..n) — 0..n
but not
+n : NF (-1i: 0..n) — 0..n : Type

@ Term is covariant in n, but its type mixed-variant!

Abel Stucki Monotone dependently typed Winter'18

8 /14

Introduction

Paradigm has fallen already

o Linearity [McBride 2016: | got plenty of nutting]
While | can drink my beer only once (resource, linear),
| can contemplate it over and over (mental object, unrestricted).
Ax —x): 1x:N) — x..x
e Erasure [Barras/Bernardo, Sheard/Mishram-Linger 2008]: Irrelevant
in the term, but relevant in the type.

(\nx XS — X :: XS) :
O®n: N) (x:A (xs : Vec An) — Vec A (1 +n)

Abel Stucki Monotone dependently typed Winter'18 9 /14

Introduction

Idea for dependent variance

On the type side,
distinguish positive and negative occurrences of a variable.

@ Substitute a type-side variable by two values!
Fid : (+n : N) — n..n
F3<5:N
Fid 3 < id 5 (n..n)[n:=(3,5)]
Fid 3 < id 5 : n[n:=(5,3)] .. n[n:=(3,5]
Fid 3 < id 5 : 3..5
e Same when going types: If +n: N ¢t: T (or —n:N F t: T) then

—n~ :N,+n" N F T[n:=(n",n")]: Type

Abel Stucki Monotone dependently typed Winter'18 10 / 14

Related idea

@ Decompose mixed variance into co- and contravariance.
@ Forces monotonicity.
@ Example: negative data types.

data D = Lam (D — D)

D=pu(X",XT). (X~ = XT)

Abel Stucki Monotone dependently typed Winter'18

11/ 14

Introduction

Applications of dependent variance

@ Subtyping dependent types.
o Sized types Nat : (4 : Size) — Type.
@ Explaining Agda’s positivity checker.

Abel Stucki Monotone dependently typed Winter'18

12 / 14

Introduction

Future work

@ Does it work?
@ Work out the details.
@ Complete Agda formalization.

o Write a paper.

Abel Stucki Monotone dependently typed Winter'18 13 / 14

Related work

@ Andreas Nuyts et al.: Modal models of type theory:

Parametricity, irrelevance.

@ Models types as categories instead of groupoids.

Abel Stucki Monotone dependently typed

Winter'18

14 / 14

	Introduction

