Type-preserving compilation
via dependently typed syntax in Agda

Andreas Abel?

IDepartment of Computer Science and Engineering
Chalmers and Gothenburg University, Sweden

Types for Proofs and Programs (TYPES 2020)
Torino, Italy
Scheduled for 2-5 March
(Cancelled due to COVID-19)

Dependently-Typed Compilation TYPES 2020 1/25

Verified Compilation

Tony Hoare's Grand Challenge: Verified compilation.
CompCert for the masses?
Full verification may be too expensive (> 90% of impl. effort).

Sweet spot: lots of confidence for little verification.

Compiler be a total function.

Dependently-Typed Compilation TYPES 2020 2/25

Verifying Type-Safety

Robin Milner: Well-typed programs do not go wrong.

Types checked by compiler front-end.

Goal: preserve properties through back-end.

o Type safety.
o “Execution safety”: No illegal jumps.

Typed machine language (e.g. LLVM).

Dependently-Typed Compilation TYPES 2020 3/25

Method

@ Implement compiler in a dependently-typed programming language.
@ Represent well-typed syntax as indexed data types.

@ Type-correct compilation enforced by indexing discipline.

Dependently-Typed Compilation TYPES 2020 4/25

Introduction

Intrinsically well-typed syntax

object language meta language
untyped simply typed
e.g.: syntax trees e.g.: (C, Java), Scala, ML, Haskell, ...
simply typed dependently typed
e.g.. A-calculus, C-- e.g.: Agda, Coq, Idris, Lean, ...
dependently typed dependently typed

Dependently-Typed Compilation TYPES 2020 5/25

Compiler for C--

Pipeline

C-- text

parser
abstract syntax

type checker
well-typed syntax
code generator
well-formed machine code

printer

JVM-- symbolic assembler

Dependently-Typed Compilation TYPES 2020 6/25

C-- by example

// Does p divide q?

bool divides (int p, int q) {
return (q / p) * p == q;

}

// Is p prime?
bool prime (int p) {
if (p <= 2) return p == 2;
else {
int q = 3;
while (g * q <= p)
if (divides(q,p)) return false;
else q = q + 2;
3

return true;

Dependently-Typed Compilation TYPES 2020

7/25

Compiler for C--

C-- language elements

@ Hierarchical:

e function definitions contain statements,
e statements contain expressions.

@ Types: Ty = {int, double, bool, void}.
@ Variables (function parameters, local variables) are scoped.
@ Some statements declare new variables (int q = 3;).

@ Control structures: if, while, return.

Dependently-Typed Compilation TYPES 2020

8/25

Typing contexts

@ Scoping is managed by typing contexts I, snoc-lists of types.
o Example list int?> = [int, int]:

c.int.int

o Category Cxt:
o Objects: typing contexts I
e Morphisms I C A are ways in which I is a sublist of A.

as C bs as C bs

=" = d
as C (bs.b) eep one

i
=P (as.a) C (bs.a) eCe

@ Variables (de Bruijn indexes) pick a type from a context.

Var, [2 ([t] € T)

@ Quiz:
@ How many morphisms in int> C int®?
@ How many morphisms in int" Cint"?

Dependently-Typed Compilation TYPES 2020 9/25

Well-typed syntax

Cxt has only weak push-outs

[[a]

[b] [a, b]

[b,

Dependently-Typed Compilation

TYPES 2020

10/25

Well-typed syntax

@ Var; [variables of type t
@ Exp, [expressions of type t

o Stm, [’ statements

e r: return type of function
o [: context before statement
o [=T.A: context after

@ Stms, [T’ statement sequences: free category over Stm.

Dependently-Typed Compilation TYPES 2020 11/25

Expressions
e Exp, : Cxt — Set functor

@ maps hom 7 : ' C A to weakening [n] : Exp, [— Exp, A

@ constructors

lit (v :Val) — Exp, T
var (x : Var:T) — Exp, T
arith (op : ArithOp t) (e1 e : Exp, ') — Exp,T
cmp (op: CmpOpt) (e1 & : Exp, T) — Exppoo I

Dependently-Typed Compilation TYPES 2020 12/25

Well-typed syntax

Statements
assign : (x : Var,I') (e : Exp,I') — Stm, I'T
decl : (t:Ty) — Stm, [(T.t)
return : (e : Exp,I) — Stm, T
while : (e : Exppoo) (s: Stm, 'T") — Stm, T
if (e Exppooi) (s1:Stm,T1) (s2: Stm, ' T2) — Stm, T

Dependently-Typed Compilation TYPES 2020 13/25

Java Virtual Machine (JVM)

no registers

stack for evaluating expressions

°
°
@ local variable store (incl. function parameters)
o (heap for objects)

°

method call handling behind the scenes

Dependently-Typed Compilation TYPES 2020 14 /25

Vel formed machinecode |
Java Virtual Machine (JVM) example

C-- Jasmin (symbolic JVM)

bool divides .method divides(II)I
(int p, int q) iload_1 -
{ iload_0 i b
return idiv
@/ p *p==a; iload_0 55D
} imul

Q

iload_1 |
if_icmpeq L_true
iconst_0 ;; false
goto L_done
L_true: iconst_1 ;3 true
L_done: ireturn
.end method

Dependently-Typed Compilation TYPES 2020 15/25

Well-formed machine code

Evaluation Stack

@ JVM has local stack for evaluation of expressions.
@ Stack type ST = List Ty

@ Stack instruction Sly ¢ ¢’

o [: Cxt local variable store typing
e & : ST stack typing before instruction
e &’ : ST stack typing after

Constructors:

ldc (7: (d.int)
load (x : Vare) — Slr ¢ (b.1)
store : (x:VareI) — Sl (¢.t) ¢
arith (op : ArithOp t) — Slp (®.t.t) ($.1)

i+ Valint) Sl o

@ Instruction sequences SISy ® ®’: free category over Slr.

Dependently-Typed Compilation TYPES 2020 16 /25

Variable typing administration

@ Variable declarations decl t : Stm I (I".t) are NOPs.

@ Needed in intrinsically typed machine language.

declt: (I, &) — (I'.t, D)

@ Reconstruction in actual JVM by static analysis (bytecode verifier).
@ Machine type MT = Cxt x ST.

Dependently-Typed Compilation TYPES 2020 17 /25

Jumps can go wrong

e Bad jump:

;3 Stack modification:
if_icmpeq L_true ;; [int,int] -> []
iconst_0 N -> [int]

L_true: istore_3 ;3 [int] -> []
@ Jump target needs to have same stack typing as source.
@ Same for variable typing.
@ Labels are typed by “before” machine type = of target.
@ Label context Labels = List MT.
@ A label is a de Bruijn index £ : Label= A.

Label= A 2 ([Z] C A)

Dependently-Typed Compilation TYPES 2020

18/25

Well-formed machine code

Jump targets need to exist

@ Semantics of a label is the code following it.

@ Each label needs to point to some code.
@ Two types of labels:

e Join points for branches of if are lets.
e Back jumps to repeat body of while are fixs.

Dependently-Typed Compilation TYPES 2020

19/25

Well-formed machine code

Join points: let

[[if (e) sl; else s2; s 1] =

let 1 [[s1]
11 [[s1]]; goto 1
12 = [[s2]]; goto 1
in [[e]]; branch 11 12

Dependently-Typed Compilation TYPES 2020 20/25

Back jumps: fix

[[while (e) sO®; s 1] =

let 12 = [[s]]

in fix 1.
let 11 = [[s0]]; goto 1
in [[e]l]; branch 11 12

Dependently-Typed Compilation

TYPES 2020

21/25

Well-formed machine code

Flowchart (control flow graph)

e FC, = A control flow graph

e r return type of method
e = machine state on entry
e A typed jump targets

o Constructors:

exec :(i:SIF®®) (fc:FC, (IL®)A) — FC, (T, &) A
decl (t:Ty) (fc: FC,(T.t,e)\) — FC,(T,e) A
return : (e: Exp,I) — FC,(le) A
goto : (¢ :Label=T) — FC, = A
branch : (o : CmpOpt) (fc fc’ : FC, ([, ®)A) — FC, (T, d.t.t) A
let (fd : FC,='A) (fe: FC,=(AZ')) — FC,= A
fix : (fc: FC,=(ANZ)) — FC. = A

Dependently-Typed Compilation TYPES 2020 22 /25

Back end

@ Code generation: translation from well-typed syntax to flow chart
using continuations.

@ Linearization: from flowcharts to basic blocks.

@ Printing: from basic blocks to Jasmin symbolic JVM.

Dependently-Typed Compilation TYPES 2020 23 /25

Evaluation

o When it type-checks, it works.

@ Had only 3 bugs in compiler on first run!

@ Agda programming requires hard thinking ahead.
o Little proof effort.

@ Too hard for average beginning master student.
°

Full verification in progress:

o Needs reasoning in sublist-category.
e Contributed categorical constructions (e.g. weak pushout) to Agda
standard library.

Dependently-Typed Compilation TYPES 2020 24 /25

Related Work

Andrew Appell, Modern compiler implementation in C/Java/ML
Xavier Leroy et al., CompCert, in Coq

Magnus Myreen et al., CakeML, in HOL

DeepSpec project: Verified tool chain

Greg Morrisett et al., Typed Assembly Language

Alberto Pardo, Emmanuel Gunter, Miguel Pagano, Marcos Viera, An
Internalist Approach to Correct-by-Construction Compilers, PPDP’18:
Terms indexed by semantics (in Agda)

Dependently-Typed Compilation TYPES 2020 25/25

	Introduction
	Compiler for C–
	Well-typed syntax
	Well-formed machine code
	Wrapping up

