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Verified Compilation

Tony Hoare's Grand Challenge: Verified compilation.
CompCert for the masses?
Full verification may be too expensive (> 90% of impl. effort).

Sweet spot: lots of confidence for little verification.

Compiler be a total function.
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Verifying Type-Safety

Robin Milner: Well-typed programs do not go wrong.

Types checked by compiler front-end.

Goal: preserve properties through back-end.

o Type safety.
o “Execution safety”: No illegal jumps.

Typed machine language (e.g. LLVM).
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Method

@ Implement compiler in a dependently-typed programming language.
@ Represent well-typed syntax as indexed data types.

@ Type-correct compilation enforced by indexing discipline.
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Introduction

Intrinsically well-typed syntax

object language meta language
untyped simply typed
e.g.: syntax trees e.g.: (C, Java), Scala, ML, Haskell, ...
simply typed dependently typed
e.g.. A-calculus, C-- e.g.: Agda, Coq, Idris, Lean, ...
dependently typed dependently typed
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Compiler for C--

Pipeline

C-- text

parser
abstract syntax

type checker
well-typed syntax
code generator
well-formed machine code

printer

JVM-- symbolic assembler
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C-- by example

// Does p divide q?

bool divides (int p, int q) {
return (q / p) * p == q;

}

// Is p prime?
bool prime (int p) {
if (p <= 2) return p == 2;
else {
int q = 3;
while (g * q <= p)
if (divides(q,p)) return false;
else q = q + 2;
3

return true;
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Compiler for C--

C-- language elements

@ Hierarchical:

e function definitions contain statements,
e statements contain expressions.

@ Types: Ty = {int, double, bool, void}.
@ Variables (function parameters, local variables) are scoped.
@ Some statements declare new variables (int q = 3;).

@ Control structures: if, while, return.
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Typing contexts

@ Scoping is managed by typing contexts I, snoc-lists of types.
o Example list int?> = [int, int]:

c.int.int

o Category Cxt:
o Objects: typing contexts I
e Morphisms I C A are ways in which I is a sublist of A.

as C bs as C bs

=" = d
as C (bs.b) eep one

i
=P (as.a) C (bs.a) eCe

@ Variables (de Bruijn indexes) pick a type from a context.

Var, [ 2 ([t] € T)

@ Quiz:
@ How many morphisms in int> C int®?
@ How many morphisms in int" Cint"?
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Well-typed syntax

Cxt has only weak push-outs

[ [a]

[b] [a, b]

[b,
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Well-typed syntax

@ Var; [ variables of type t
@ Exp, [ expressions of type t

o Stm, [’ statements

e r: return type of function
o [: context before statement
o [ =T.A: context after

@ Stms, [T’ statement sequences: free category over Stm.
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Expressions
e Exp, : Cxt — Set functor

@ maps hom 7 : ' C A to weakening [n] : Exp, [ — Exp, A

@ constructors

lit (v :Val) — Exp, T
var (x : Var:T) — Exp, T
arith (op : ArithOp t) (e1 e : Exp, ') — Exp,T
cmp (op: CmpOpt) (e1 & : Exp, T) — Exppoo I
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Well-typed syntax

Statements
assign : (x : Var,I') (e : Exp,I') — Stm, I'T
decl : (t:Ty) — Stm, [ (T.t)
return : (e : Exp,I) — Stm, T
while : (e : Exppoo ) (s: Stm, 'T") — Stm, T
if (e Exppooi ) (s1:Stm,T1) (s2: Stm, ' T2) — Stm, T
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Java Virtual Machine (JVM)

no registers

stack for evaluating expressions

°
°
@ local variable store (incl. function parameters)
o (heap for objects)

°

method call handling behind the scenes

Dependently-Typed Compilation TYPES 2020 14 /25



Vel formed machinecode |
Java Virtual Machine (JVM) example

C-- Jasmin (symbolic JVM)

bool divides .method divides(II)I
(int p, int q) iload_1 -
{ iload_0 i b
return idiv
@/ p *p==a; iload_0 55D
} imul

Q

iload_1 |
if_icmpeq L_true
iconst_0 ;; false
goto L_done
L_true: iconst_1 ;3 true
L_done: ireturn
.end method
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Well-formed machine code

Evaluation Stack

@ JVM has local stack for evaluation of expressions.
@ Stack type ST = List Ty

@ Stack instruction Sly ¢ ¢’

o [ : Cxt local variable store typing
e & : ST stack typing before instruction
e &’ : ST stack typing after

Constructors:

ldc (7: (d.int)
load (x : Vare ) — Slr ¢ (b.1)
store : (x:VareI) — Sl (¢.t) ¢
arith (op : ArithOp t) — Slp (®.t.t) ($.1)

i+ Valint) Sl o

@ Instruction sequences SISy ® ®’: free category over Slr.
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Variable typing administration

@ Variable declarations decl t : Stm I (I".t) are NOPs.

@ Needed in intrinsically typed machine language.

declt: (I, &) — (I'.t, D)

@ Reconstruction in actual JVM by static analysis (bytecode verifier).
@ Machine type MT = Cxt x ST.
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Jumps can go wrong

e Bad jump:

;3 Stack modification:
if_icmpeq L_true ;; [int,int] -> []
iconst_0 N -> [int]

L_true: istore_3 ;3 [int] -> []
@ Jump target needs to have same stack typing as source.
@ Same for variable typing.
@ Labels are typed by “before” machine type = of target.
@ Label context Labels = List MT.
@ A label is a de Bruijn index £ : Label= A.

Label= A 2 ([Z] C A)
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Well-formed machine code

Jump targets need to exist

@ Semantics of a label is the code following it.

@ Each label needs to point to some code.
@ Two types of labels:

e Join points for branches of if are lets.
e Back jumps to repeat body of while are fixs.
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Well-formed machine code

Join points: let

[[ if (e) sl; else s2; s 1] =

let 1 [[s1]
11 [[s1]]; goto 1
12 = [[s2]]; goto 1
in [[e]]; branch 11 12
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Back jumps: fix

[[ while (e) sO®; s 1] =

let 12 = [[s]]

in fix 1.
let 11 = [[s0]]; goto 1
in [[e]l]; branch 11 12
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Well-formed machine code

Flowchart (control flow graph)

e FC, = A control flow graph

e r return type of method
e = machine state on entry
e A typed jump targets

o Constructors:

exec :(i:SIF®®)  (fc:FC, (IL®)A) — FC, (T, &) A
decl (t:Ty) (fc: FC,(T.t,e)\) — FC,(T,e) A
return : (e: Exp,I) — FC,(le) A
goto : (¢ :Label=T) — FC, = A
branch : (o : CmpOpt) (fc fc’ : FC, ([, ®)A) — FC, (T, d.t.t) A
let (fd : FC,='A) (fe: FC,=(AZ'))  — FC,= A
fix : (fc: FC,=(ANZ)) — FC. = A
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Back end

@ Code generation: translation from well-typed syntax to flow chart
using continuations.

@ Linearization: from flowcharts to basic blocks.

@ Printing: from basic blocks to Jasmin symbolic JVM.
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Evaluation

o When it type-checks, it works.

@ Had only 3 bugs in compiler on first run!

@ Agda programming requires hard thinking ahead.
o Little proof effort.

@ Too hard for average beginning master student.
°

Full verification in progress:

o Needs reasoning in sublist-category.
e Contributed categorical constructions (e.g. weak pushout) to Agda
standard library.
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