Higher-Order Subtyping, Revisited

Syntactic Completeness Proofs for Algorithmic Judgements

Andreas Abel
TYPES Workshop, April 21, 2006

Contents

1. Subtyping for type constructorg{)

2. Proof Technique for Metatheory

e Elementary (no model)
e Works for weak theories: STL, LF

1 Higher-Order Subtyping

Subtyping for Collections
e When aFloat is expected, aimt is acceptable.

Int < Float

e Read-only collections: a list dfts passes for a list dfloats.

Int < Float
List Int < List Float

e Mutable collections: cannot store#pat into anlnt cell.

no Int < Float
Array Int < Array Float

Subtyping and Variance

¢ Distinguish type constructors by theiariance

Array % — x mixed-variant
List : *-5% covariant
Sink : *x — % contravariant

e Subtyping applications:

Fix3x A=1B
FA<FB

F:x 5« A<B F:x—x B<A

FA<FB FA<FB
Polarized F¥
e Polarities
pu=o|+|—
e Kinds
Ku=x|K— K

¢ Type constructors
F,G:=C|X|\X.F|FG

e Constants”, e.g.,

X *i>>ki>>l<
- .+

— * — %k — %

v, (k) 5«

Polarized Kinding

e Polarized contexts

e Polarized kinding

F-F:k
e E.g,
+
F:o(x — %),
X:—x,
Y :i+x F FX—>FY %

Declarative Equality and Subtyping

e Judgements
FPFF=F:k On-equality
Fr-F<F:k polarized subtyping
e Subtyping axioms, e.gl} F Array < List : % —> .

e Axioms for 5 and.

o Reflexivity, transitivity, (anti)symmetry.
e Closure under abstraction aagplication
THF:ikSw I'F:k>r

rG<G :k I'rG=G":k
' FGL<FG : K I'FFG=FG :rx

Algorithmic Subtyping
e Judgement foalgorithmic subtyping

Fr-F<F &k

e Steps
Array < (AX.ListX) &= x> applydown to kind:
ArrayY < (AX.ListX)Y & = weak head normalize:
ArrayY < ListY = compare heads (axiom):
Array < List : % — x continue with arguments:
Y <Y =%
Kind-directed Algorithmic Subtyping
e Weak head normal forms
N === C|X|NG neutral (atomic)
W = N|AXF weak head normal

o Weak head evaluation
N\ W

e Kind-directed algorithmic subtyping

I' - F < F' &=k checking mode
I' W N <N =k inference mode

¢ (Analogously for algorithmic equality)

Rules for Algorithmic Subtyping

e Checking mode

I X:pp FFX < F'X =+«
I'FF << F &pk— K

F\,N F NN TFN<N =«
TFF<F &«

e Inference mode: Axioms +

(X:pr) el pefo,+}
P'FX<X=sk

F'FN<SN = +4k—« r-G<G =«
' -NG<NG =K

Completeness of Algorithmic Subtyping

e Soundness of algorithmic judgements easy
e Transitivity, (anti)symmetry easy
e Completeness har€losure under application?

e Alternatives:
1. From strong normalization (Aspinall Hofmann 2005; Goguen 2005)
2. Model (e.qg., Harper Pfenning 2004)
3. Direct, syntactically

From a Bird’s Perspective

e Type language oF“ is weak (no recursion)

¢ Roughly simply-typed\-calculus

e Proof theory says: there is an elementary meta theory
e Howto construct this elementary proof?

e Technical skillrequired

Main Lemma: Application and Substitution

e Letl' F G < G' = k. Prove simultaneously:

LUTHFF<F &+x—rk'thenT HFFGS<F G &=+
2. f0, X:4+x N < N = &' then
— eitherT" + [G/X]N < [G/X]|N' = &/,
—orl F [G/X]|N < [G/X]|N' &= k" and|x’| < |K|.
3. T, X: 4k - F< F &« thenl + [G/X|F < [G'/X|F =K.

e Lexicographic induction ofx| and derivation length.

1. ...
2. CaseN = N' =Y # X. CaseN = N' = X. Case

'FM <M = +x" =K I'FH<H &=&"
I'FMH<M H =K

Consequences and Evaluation
Consequences of Main Lemma:

e Closure undep; and application.
¢ Reflexivity.
e Completeness.
Evaluation of proof:
e Short, direct
e Purely syntactical
¢ Avoiding logical relations and models

o Well-suited for formalization (e.g., in Twelf)

Applicability of Proof Technique
¢ Normalization of simply-typed lambda-calculus (Joachimski Matthes 2003)

¢ Algorithmic equality for LF

Other logical frameworks (LLF, CLF)

Predicative polymorphism!?

Languages of low proof-theoretical complexity

POPLmark challenges

Limitations

— Impredicativity
— Inductive types

Related Work

e Cut elimination for FOL

Troelstra 1973: Syntactical normalization proof

e Joachimski Matthes 2003: + permutative conversions

Hereditary substitutions:

— Watkins Cervesato Pfenning Walker 2003: Concurrent LF
— Nanevski Pfenning Pientka 2005: Contextual Modal Type Theory
— Adams (PhD 2005)A-free LF

Goguen 1995-2005: Typed Operational Semantics

Conclusions

e Purely syntactical approach to meta theory

Does not work for CC or inductive types

But applicable to many logical frameworks

Proofs suited for formalization (HOAS)

Should be in your tool box!

