Higher-Order Subtyping, Revisited

Syntactic Completeness Proofs for Algorithmic Judgements

Andreas Abel

TYPES Workshop, April 21, 2006

Contents

- 1. Subtyping for type constructors (F^{ω})
- 2. Proof Technique for Metatheory
 - Elementary (no model)
 - Works for weak theories: STL, LF

1 Higher-Order Subtyping

Subtyping for Collections

• When a Float is expected, an Int is acceptable.

$$\mathsf{Int} \leq \mathsf{Float}$$

• Read-only collections: a list of Ints passes for a list of Floats.

$$\frac{\mathsf{Int} \leq \mathsf{Float}}{\mathsf{List}\;\mathsf{Int} \leq \mathsf{List}\;\mathsf{Float}}$$

• Mutable collections: cannot store a Float into an Int cell.

$$not \; \frac{\mathsf{Int} \leq \mathsf{Float}}{\mathsf{Array} \; \mathsf{Int} \leq \mathsf{Array} \; \mathsf{Float}}$$

Subtyping and Variance

• Distinguish type constructors by their variance

Array : $* \xrightarrow{\circ} *$ mixed-variant List : $* \xrightarrow{+} *$ covariant Sink : $* \xrightarrow{-} *$ contravariant • Subtyping applications:

$$\frac{F: * \xrightarrow{\bullet} * \qquad A = B}{FA \le FB}$$

$$\frac{F: * \xrightarrow{\bullet} * \qquad A \le B}{FA \le FB} \qquad \frac{F: * \xrightarrow{\bullet} * \qquad B \le A}{FA \le FB}$$

Polarized
$$F^{\omega}$$

• Polarities

$$p ::= \circ | + | -$$

• Kinds

$$\kappa ::= * \mid \kappa \xrightarrow{p} \kappa'$$

• Type constructors

$$F,G ::= C \mid X \mid \lambda X.F \mid FG$$

• Constants C, e.g.,

$$\times : * \xrightarrow{+} * \xrightarrow{+} *$$

$$\rightarrow : * \xrightarrow{-} * \xrightarrow{+} *$$

$$\forall_{\kappa} : (\kappa \xrightarrow{\circ} *) \xrightarrow{+} *$$

Polarized Kinding

• Polarized contexts

$$\Gamma ::= \diamond \mid \Gamma, X : p\kappa$$

Polarized kinding

$$\Gamma \vdash F : \kappa$$

• E.g.,

$$\begin{array}{ll} F \colon \! \circ (\ast \xrightarrow{+} \ast), \\ X \colon \! - \ast, \\ Y \colon \! + \ast & \vdash \quad F \: X \to F \: Y \colon \ast \end{array}$$

Declarative Equality and Subtyping

• Judgements

$$\begin{array}{ll} \Gamma \vdash F = F' : \kappa & \quad \beta \eta \text{-equality} \\ \Gamma \vdash F \leq F' : \kappa & \quad \text{polarized subtyping} \end{array}$$

- Subtyping axioms, e.g., $\Gamma \vdash \mathsf{Array} \leq \mathsf{List} : * \xrightarrow{+} *$.
- Axioms for β and η .

- Reflexivity, transitivity, (anti)symmetry.
- Closure under abstraction and application.

$$\begin{array}{ll} \Gamma \vdash F : \kappa \xrightarrow{+} \kappa' & \Gamma \vdash F : \kappa \xrightarrow{\circ} \kappa' \\ \Gamma \vdash G \leq G' : \kappa & \Gamma \vdash F G \leq F G' : \kappa' \end{array}$$

Algorithmic Subtyping

• Judgement for algorithmic subtyping

$$\Gamma \vdash F \leq F' \leftrightharpoons \kappa$$

• Steps

$$\begin{array}{lll} \mathsf{Array} & \leq (\lambda X. \operatorname{List} X) & \rightleftarrows & * \overset{+}{\to} * & \mathsf{apply down to kind } * : \\ \mathsf{Array} \, Y \leq (\lambda X. \operatorname{List} X) \, Y & \leftrightarrows & * & \mathsf{weak head normalize} : \\ \mathsf{Array} \, Y \leq \operatorname{List} Y & \leftrightarrows & * & \mathsf{compare heads (axiom)} : \\ \mathsf{Array} \leq \mathsf{List} : * \overset{+}{\to} * & \mathsf{continue with arguments} : \\ Y & < Y \leftrightarrows * * & \mathsf{veak head normalize} : \\ \mathsf{Array} \leq \mathsf{List} : * \overset{+}{\to} * & \mathsf{continue with arguments} : \\ \mathsf{Array} \leq \mathsf{Array} \times \mathsf{Array$$

Kind-directed Algorithmic Subtyping

Weak head normal forms

• Weak head evaluation

$$F \searrow W$$

• Kind-directed algorithmic subtyping

$$\begin{array}{ll} \Gamma \vdash F \leq F' \leftrightharpoons \kappa & \text{checking mode} \\ \Gamma \vdash N \leq N' \rightrightarrows \kappa & \text{inference mode} \end{array}$$

• (Analogously for algorithmic equality)

Rules for Algorithmic Subtyping

• Checking mode

$$\frac{\Gamma, X : p\kappa \vdash F X \leq F' X \leftrightharpoons \kappa'}{\Gamma \vdash F \leq F' \leftrightharpoons p\kappa \to \kappa'}$$

$$\frac{F \searrow N \qquad F' \searrow N' \qquad \Gamma \vdash N \leq N' \rightrightarrows *}{\Gamma \vdash F \leq F' \leftrightharpoons *}$$

• Inference mode: Axioms +

$$\frac{(X:p\kappa) \in \Gamma \qquad p \in \{\circ, +\}}{\Gamma \vdash X \leq X \rightrightarrows \kappa}$$

$$\frac{\Gamma \vdash N \leq N' \rightrightarrows +\kappa \to \kappa' \qquad \Gamma \vdash G \leq G' \leftrightharpoons \kappa}{\Gamma \vdash N G \leq N' G' \rightrightarrows \kappa'}$$

Completeness of Algorithmic Subtyping

- Soundness of algorithmic judgements easy
- Transitivity, (anti)symmetry easy
- Completeness hard: Closure under application?
- Alternatives:
 - 1. From strong normalization (Aspinall Hofmann 2005; Goguen 2005)
 - 2. Model (e.g., Harper Pfenning 2004)
 - 3. Direct, syntactically

From a Bird's Perspective

- Type language of F^{ω} is weak (no recursion)
- Roughly simply-typed λ -calculus
- Proof theory says: there is an elementary meta theory
- How to construct this elementary proof?
- Technical skill required

Main Lemma: Application and Substitution

- Let $\Gamma \vdash G \leq G' \models \kappa$. Prove simultaneously:
 - 1. If $\Gamma \vdash F \leq F' \rightleftharpoons +\kappa \rightarrow \kappa'$ then $\Gamma \vdash F G \leq F' G' \rightleftharpoons \kappa'$.
 - 2. If $\Gamma, X : +\kappa \vdash N \leq N' \Rightarrow \kappa'$ then
 - either $\Gamma \vdash [G/X]N \leq [G/X]N' \Rightarrow \kappa'$,
 - or $\Gamma \vdash [G/X]N \leq [G/X]N' \rightleftharpoons \kappa'$ and $|\kappa'| \leq |\kappa|$.
 - 3. If $\Gamma, X : +\kappa \vdash F \leq F' \rightleftharpoons \kappa'$ then $\Gamma \vdash [G/X]F \leq [G'/X]F' \rightleftharpoons \kappa'$.
- Lexicographic induction on $|\kappa|$ and derivation length.

1. . .

2. Case
$$N = N' = Y \neq X$$
. Case $N = N' = X$. Case

$$\frac{\Gamma \vdash M \leq M' \rightrightarrows {\color{red} +} \kappa'' \rightarrow \kappa' \qquad \Gamma \vdash H \leq H' \rightleftarrows \kappa''}{\Gamma \vdash M \, H \leq M' \, H' \rightrightarrows \kappa'}$$

Consequences and Evaluation

Consequences of Main Lemma:

- Closure under β and application.
- Reflexivity.
- Completeness.

Evaluation of proof:

- Short, direct
- · Purely syntactical
- Avoiding logical relations and models
- Well-suited for formalization (e.g., in Twelf)

Applicability of Proof Technique

- Normalization of simply-typed lambda-calculus (Joachimski Matthes 2003)
- Algorithmic equality for LF
- Other logical frameworks (LLF, CLF)
- Predicative polymorphism!?
- Languages of low proof-theoretical complexity
- POPLmark challenges
- Limitations
 - Impredicativity
 - Inductive types

Related Work

- Cut elimination for FOL
- Troelstra 1973: Syntactical normalization proof
- Joachimski Matthes 2003: λ + permutative conversions
- Hereditary substitutions:
 - Watkins Cervesato Pfenning Walker 2003: Concurrent LF
 - Nanevski Pfenning Pientka 2005: Contextual Modal Type Theory
 - Adams (PhD 2005): λ -free LF
- Goguen 1995-2005: Typed Operational Semantics

Conclusions

- Purely syntactical approach to meta theory
- Does not work for CC or inductive types
- But applicable to many logical frameworks
- Proofs suited for formalization (HOAS)
- Should be in your tool box!