
Slide 1

Untyped Algorithmic Equality

for Martin-Löf’s Logical Framework

with Surjective Pairs

Andreas Abel

joint work with Thierry Coquand

TLCA’05
Nara, Japan

April 21, 2005

Work supported by: TYPES & APPSEM-II (EU), CoVer (SSF)

Slide 2

Background: βη-equality

• Checking dependent types requires equality test

• One approach: reduce to normal form and compare
syntactically

• Works fine for β-equality

• Problem with η-reduction: surjective pairing destroys
confluence (Klop 1980)

• Even subject reduction fails:

z : Pair A (λx. F x) ` (z L, z R) : Pair A (λ . F (z L))

[I write Pair A (λxB) for Σx :A.B]

1

Slide 3

Thierry’s Equality Algorithm

• Incremental check for βη-equality in dependently-typed
λ-calculus (Coquand 1991)

• Alternates weak head normalization and comparison of head
symbols

• We extend this algorithm to Σ-types with surjective pairing

• Challenge: termination and completeness

• Two major technical difficulties to overcome

Slide 4

Martin-Löf’s Logical Framework (MLF)

• Expressions = Curry-style λ-terms

c ::= Fun | El | Set constants

r, s, t, A, B,C ::= c | x | λxt | r s expressions

• Examples

Fun A (λxB) dependent function space Πx :A.B

Fun Set (λa. Fun (El a) (λ .El a)) type of identity: ∀a :∗. a → a

2

Slide 5

Martin-Löf’s logical framework

• Judgements for typing and equality, e.g.,

Γ ` t : A t has type A

Γ ` t = t′ : A t and t′ are equal terms of type A

• Example: application rule

Γ ` r : Fun A (λxB) Γ ` s : A

Γ ` r s : B[s/x]

Slide 6

Weak head evaluation

• Weak head values

n ::= c~t | x~t neutral expressions

w ::= n | λxt weak head values

• Weak head evaluation (call-by-name)

(r s)↓ := r↓@s

t↓ := t t not application

n@s := n s

(λxt)@s := (t[s/x])↓

3

Slide 7

Untyped Algorithmic Equality

• βη-conversion test for weak head values w ∼ w′

• Two neutral expressions

c ∼ c x ∼ x

n ∼ n′ s↓ ∼ s′↓
n s ∼ n′ s′

• At least one λ

t↓ ∼ t′↓
λxt ∼ λxt′

t↓ ∼ n x

λxt ∼ n

n x ∼ t′↓
n ∼ λxt′

• Relation ∼ is transitive

• Completeness to be shown by model construction

Slide 8

Lambda Model

• Entities

u, v, f, V, F ∈ D elements of the model

ρ ∈ Var → D environments

• Operations

f · v ∈ D application in the model

tρ ∈ D denotation of expression t in environment ρ

4

Slide 9

Lambda Model Axiomatization

Computation (β)

(λxt)ρ · v = t(ρ, x=v)

Congruences

cρ = c

xρ = ρ(x)

(r s)ρ = rρ · (sρ)

Injectivity

El · v = El · v′ implies v = v′

Fun · V · F = Fun · V ′ · F ′ implies V = V ′ and F = F ′

Slide 10

PER Model

• Assume a basic partial equivalence relation (PER) S on D

• Interpretation of types in D as sub-PERs of S

[Set] = S
[El · v] = S
[Fun · V · F] = {(f, f ′) | (f · v, f ′ · v′) ∈ [F · v] for all (v, v′) ∈ [V]}

• Soundness of typing and equality rules

If Γ ` t : A then (t ρ, t ρ) ∈ [Aρ] for all ρ ∈ [Γ].
If Γ ` t = t′ : A then (t ρ, t′ρ) ∈ [Aρ] for all ρ ∈ [Γ].

• Implication: (t ρ, t′ρ) ∈ S

5

Slide 11

Substitution and Extensionality

• Difficulty 1: Soundness proof of application rule

Γ ` r : Fun A (λxB) Γ ` s : A

Γ ` r s : B[s/x]

• requires substitution property

(B[s/x])ρ = B(ρ, x=sρ).

• Hence, model needs additional axiom

(ξ) (λxt)ρ = (λxt′)ρ′

if t(ρ, x=v) = t′(ρ′, x=v) for all v ∈ D

Slide 12

Completeness of Algorithmic Equality

• Recall: ` t = t′ : A implies (t, t′) ∈ S

• Take model instance

D = β-equivalence classes

f · v = f v

tρ = t[ρ]

S = lifted algorithmic equality ∼

• algorithmic equality on β-equivalence classes

t ∼ t′ :⇐⇒ t =β v and t′ =β v′ for some v, v′ with v ∼ v′

6

Slide 13

Standardization

• Using standardization, t ∼ t′ implies t↓ ∼ t′↓.

• Summary (ρ0 is identity valuation):

Γ ` t = t′ : A

Soundness of judgement
��

(tρ0, t
′ρ0) ∈ [Aρ0]

[Aρ0] ⊆ S
��

t ∼ t′

Standardization
��

t↓ ∼ t′↓

Slide 14

Extension to Σ-types

• Expressions

c ::= · · · | Pair constants

r, s, t, A, B,C ::= · · · | (r, s) | t L | t R expressions

• Example: Pair A (λxB) dependent type of pairs (Σx :A.B)

• Surjective pairing rule

Γ ` r = r′ : Pair A (λxB)
Γ ` (r L, r R) = r′ : Pair A (λxB)

7

Slide 15

Extended Algorithmic Equality

• Neutral expressions

n ∼ n′

n L ∼ n′ L

n ∼ n′

n R ∼ n′ R

• At least one pair

r↓ ∼ r′↓ s↓ ∼ s′↓
(r, s) ∼ (r′, s′)

r↓ ∼ n L s↓ ∼ n R

(r, s) ∼ n

n L ∼ r′↓ n R ∼ s′↓
n ∼ (r′, s′)

Slide 16

Transitivity

• Problem 2: Alg. Eq. not transitive

• λx. z x ∼ z and z ∼ (z L, z R), but not λx. z x ∼ (z L, z R)

• Solution: “Transitivization” +∼ through additional rules

t↓ +∼ n x n L
+∼ r n R

+∼ s

λxt
+∼ (r, s)

+ symmetrical rule

• If t, t′ are of the same type, t
+∼ t′ does not use extra rules.

• Equality is transitive for expressions of the same type

8

Slide 17

Summary of Completeness Proof

Γ ` t = t′ : A

Soundness of judgement
��

(tρ0, t
′ρ0) ∈ [Aρ0]

[Aρ0] ⊆ S
��

t
+∼ t′

Standardization
��

t↓ +∼ t′↓

Transitivity (with Γ ` t, t′ : A)
��

t↓ ∼ t′↓

Slide 18

Proof Economics

Injectivity required

Inversion of typing required

Standardization required

Subject reduction not required

Confluence (Church-Rosser) not required

Normalization not required

Certificate good economics!

9

Slide 19

Related Work

• Vaux (2004): PER model for MLF with intersection

• Aspinall/Hofmann (TAPL II), Goguen (2005): completeness of
algorithmic equality using standard meta theory

• Coquand, Pollack, and Takeyama (2003): extension of MLF by
records with manifest fields

• Harper and Pfenning (2005): algorithmic equality for ELF
directed by simple types (obtained by erasure)

• Schürmann and Sarnat (2004): extension to Σ-types

• Adams (2001): Luo’s LF with Σ-kinds and type-directed
equality

Slide 20

Future Work

• Logical framework with proof-irrelevant propositions

• Type-directed equality without erasure

• An open problem?!

Thanks to Frank Pfenning, Carsten Schürmann, and Lionel Vaux

10

