Copatterns
Programming Infinite Objects by Observations

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich

TCS Oberseminar
Ludwig-Maximilians-University Munich
18 January 2013

Andreas Abel (LMU) Agda Logik 1/32

Copatterns

Originated from AIM discussions since 2008 on coinduction.
MiniAgda prototype (March 2011).
Started on Agda prototype in Nov 2011 (with James Chapman)

Currently in abstract syntax only

Goal: integrate into the core (internal syntax)

Andreas Abel (LMU) Agda Logik 2/32

What's wrong with Coq's Coinductive?

@ Coq's coinductive types are non-wellfounded data types.

CoInductive U : Type :=
| inn : U -> U.

CoFixpoint u : U := inn u.

@ Reduction of cofixpoints is context-sensitive, to maintain strong
normalization.

case(inns) ofinny=1t = t[s/y]
case (cofix f)of inny =t = case(f (cofix f))of inny =t

Andreas Abel (LMU) Agda Logik 3/32

A problem with subject reduction in Coq

u . Type a codata type

inmm : U=>U its (co)constructor
U inhabitant of U

u = cofix inn u = inn(inn(...

force : U—=U an identity

force = Ax.casexof inny = inny

eq : (x:U) = x = force x dep. elimination

eq = JAx.casexof inn y = refl

eqy = u=innu offending term

equ = equ —> refl Vrefl :u=innu

Andreas Abel (LMU) Agda Logik 4/ 32

Analysis

@ Problematic: dependent matching on coinductive data.

MNw:v M, y:Ukt:C(inny)
It casewvof inny =t: C(u)

@ Solution: Paradigm shift.

Understand coinduction not through construction,
but through observations.

@ Hinderance: The human mind seems to prefer concrete constructions
over abstract black boxes with an ascribed behavior.

Andreas Abel (LMU) Agda Logik 5/32

Function Definition by Observation

@ A function is a black box. We can apply it to an argument
(experiment), and observe its result (behavior).

Application is the defining principle of functions [Granstrom'’s
dissertation 2009].
f:A—B a:A

fa:B

A-abstraction is derived, secondary to application.

Transfer this to other infinite objects: coinductive things.

Andreas Abel (LMU) Agda Logik 6 /32

Infinite Objects Defined by Observation

A coinductive object is a black box.
There is a finite set of experiments (projections) we can conduct on it.
The object is determined by the observations we make on it.

Generalize records to coinductive types.

Agda code:
record U : Set where

coinductive
field
out : U

out : U -> U is the experiment we can make on U.

Objects of type U are defined by the result of this experiment.

Andreas Abel (LMU) Agda Logik 7/32

Infinite Objects Defined by Observation

@ Defining a cofixpoint.
u:U
out u = u

@ Defining the “constructor”.

inn : U ->10
out (inn x) = x

We call (out _) a projection copattern.

And (_ x) an application copattern.

The whole thing (out (_ x)) is a composite copattern.

Andreas Abel (LMU) Agda Logik 8 /32

Category-theoretic Perspective

e Functor F, coalgebra s : A — F(A).
e Terminal coalgebra out : vF — F(vF) (elimination).
e Coiteration coit(s) : A — vF constructs infinite objects.

coit(s) F(coit(s))

@ Computation rule: Only unfold infinite object in elimination context.

out(coit(s)(a)) = F(coit(s))(s(a))

Instance: U

e With F(X) = X we get the coinductive unit type U = v/F.
e With s = ida we get u = coit(id)(a) for arbitrary a: A.

A—Y A
coit(id) coit(id)
U—U

e Computation out(u) = u.

Andreas Abel (LMU) Agda Logik 10 / 32

Instance: Colists of Natural Numbers

e With F(X) =1+ N x X we get vF = Colist(N).
e With s(n:N) =inr(n,n+1) we get
coit(s)(n) = (n,n+1,n+2,.....).

N ° 1+NxN
coit(s) F(coit(s))
Colist(N) o, 1+ N x Colist(N)

Andreas Abel (LMU) Agda Logik

11 /32

Colists in Agda

o Colists as record.
data Maybe A : Set where
nothing : Maybe A
just : A — Maybe A

record Colist A : Set where
coinductive
field
out : Maybe (A x Colist A)

@ Sequence of natural numbers.
nats : N — N

out (nats n) = just (n , nats (n + 1))

Andreas Abel (LMU) Agda Logik 12 / 32

Streams

@ Streams have two observations: head and tail.

record Stream A : Set where

coinductive
field
head : A

tail : Stream A

@ A stream is defined by its head and tail.
zipWith : {AB C : Set} -> (A ->B > QO ->
Stream A -> Stream B -> Stream C
head (zipWith f as bs) = f (head as) (head bs)
tail (zipWith f as bs) = zipWith f (tail as) (tail bs)

Andreas Abel (LMU) Agda Logik 13 / 32

Deep Copatterns: Fibonacci-Stream

@ Fibonacci sequence obeys this recurrence:

01123 5 8 ... (fib)
11235 8 13 ... (tail fib)
1 2 35 8 13 21 ... | tail(tailfib)

@ This directly leads to a definition by copatterns:

fib : Stream N

(tail (tail fib)) = zipWith _+_ fib (tail fib)
(head (tail fib)) 1

((head fib)) 0

@ Strongly normalizing definition of fib!

Andreas Abel (LMU) Agda Logik 14 / 32

Fibonacci

@ Definition with cons not strongly normalizing.
fib =0 :: 1 :: zipWith _+_ fib (tail fib)

@ Diverges under Coq's reduction strategy:
tail fib
tail (® :: 1 :: zipWith _+_ fib (tail fib))
=1 :: zipWith _+_ fib (tail £fib)
1 :: zipWith +_ fib
(tail (@ :: 1 :: zipWith _+_ fib (tail fib)))

Andreas Abel (LMU) Agda Logik 15 / 32

Type-theoretic motivation

e Foundation: coalgebras (category theory) and focusing (polarized

logic)
polarity positive negative
linear types 1, &, ®, u —0, &, v
Agda types data —, record
extension finite infinite
introduction constructors definition by copatterns
elimination pattern matching message passing
categorical algebra coalgebra

Andreas Abel (LMU) Agda Logik 16 / 32

AB C:=X
| P
| N
P =
| Ax B
| uXD
N =A—B
| vXR
D ":<C1A1‘
R n=A{d1: A, ..

Andreas Abel (LMU)

Types

| cn An)
-/dn : An}

Agda

Type variable
Positive type
Negative type

Unit type
Cartesian product

Data type

Function type
Record type

Variant (labeled sum)
Record (labeled product)

Logik

17 / 32

Type examples

e Data types (algebraic types):

List A = uX (nil 1| cons (A x X))

Nat = uX (zero 1 |suc X)

Maybe A = pu_(nothing 1| just A)

0 = p) (positive empty type)

@ Record types (coalgebraic types):

Stream A = wvX{head: A tail : X}

Colist A = wvX{out: u_(nil 1| cons (A x X))}
Vector A = v_{length : Nat, elems: List A}
T = v{} (negative unit type)

Andreas Abel (LMU) Agda Logik

18 / 32

Terms

Defined symbol (e.g. function)
Variable

Unit (empty tuple)

(tl, t2) Pair

e, t,u

X

—~
~—

ct Constructor application
t1 t Application
t.d Destructor application

Andreas Abel (LMU) Agda Logik 19 / 32

Bidirectional Type Checking

° In context A, the type of term t is inferred as A.

Alx) = A Abt= vXR

AFf=53(f) AbFx=A AFtd= RyvXR/X]

AFti = A — A AFth<= A
At th = A

° In context A, term t checks against type A.

AFt=A A=C A+t < D JuXD/X]
AFt<=C AFct< uXD

At < A Aty <= A
Al—()<:1 A"(tl,tg)<:A1><A2

Andreas Abel (LMU) Agda Logik

20 / 32

Patterns and Copatterns

o Patterns
p = X Variable pattern
) Unit pattern
| (p1,p2) Pair pattern
| cp Constructor pattern
o Copatterns
q Hole

| gp Application copattern
| q.d Destructor copattern

Andreas Abel (LMU) Agda Logik 21 /32

Pattern Type Checking

o |A F p<«< A| Pattern p checks against type A, yielding A.

AF p< D [uXD/X]
X:AEx<«< A AFcp<=uXD

All—p1<:A1 Ag}—p2<:A2
F()<=1 A1, Ao = (p1, p2) < Ar X Ap

° ’A |Atq= C‘ Copattern g eliminates given type A into inferred

type C, yielding context A.
A|AFqg=vXR
|AF-=A A|AF q.d= R4y[lvXR/X]

A |AFg=B—C ArFp<=B
A, Ay [AFgp=C

Andreas Abel (LMU) Agda Logik 22 /32

Fibonacci Example Program

@ Program consists of type signatures ¥~ and rewrite rules Rules.

@ Example entries for fib.

Y (fib) = wX{head: pY (zero1|suc Y), tail: X}
- .head — zero ()
Rules(fib) = ¢ - .tail .head +— suc(zero())

.+ tail .tail s zipWith +_ fib (fib .tail)

Andreas Abel (LMU) Agda Logik 23 /32

Evaluation

@ Redexes have form E[f].
@ Evaluation contexts E.
Hole

Ee Application
E.d Projection

E

@ To reduce redex, we need to match E against copatterns q.

Andreas Abel (LMU) Agda Logik 24 /32

(Co)pattern Matching

o |t ="p\,o| Term t matches with pattern p under substitution o.

t="p\ o
t="x\,t/x ct="cp\ o

t1 = p1 \ 01 tr="pr \, 02
() =’ ()\l (tl7t2) =’ (p17p2)\01702

e |E =" g\, o |Evaluation context £ matches copattern g returning
substitution o.

E="qg\. 0
=N Ed="qd\ o

E="qN\o t="p\.o
Et="qp\ 0,0

Agda

Andreas Abel (LMU)

Logik 25 /32

Interactive Program Development

@ Goal: cyclic stream of numbers.

cycleNats : N — Stream N
cycleNatsn = n,n—1,...,1L,0N,N—-1,...,1,0,...
@ Fictuous interactive Agda session.

cycleNats : Nat — Stream Nat
cycleNats = 7

@ Split result (function).
cycleNats x = 7
@ Split result again (stream).

head (cycleNats x) =
tail (cycleNats x) =

Andreas Abel (LMU) Agda Logik

26 / 32

Interactive Program Development

o Last state:
head (cycleNats x) =
tail (cycleNats x) =
@ Split x in second clause.
head (cycleNats x) =
tail (cycleNats 0) =
tail (cycleNats (1 +x)) =
o Fill right hand sides.

head (cycleNats x) = x
tail (cycleNats 0) = cycleNats N
tail (cycleNats (14 x’)) = cycleNats x’

Andreas Abel (LMU) Agda Logik 27 /32

Copattern Coverage

@ Coverage algorithm:
@ Start with the trivial covering (copattern - “hole”).

@ Repeat

o split result or
e split a pattern variable

until computed covering matches user-given patterns.

Andreas Abel (LMU) Agda Logik 28 / 32

Coverage Rules

A < Q Typed copatterns Q cover elimination of type A.

@ Result splitting:
Ad|Q(AFqg=B— ()
A<l (F-=A) A<l Q(Ax:BFqgx=C)

A< Q(AF qg=vXR)
A <] Q (At q.d = RyvXR/X])dcr

@ Variable splitting:
A<l Q (A x: A x Ak qg= C)
A <] Q(A,x1: AL xa: A E gl(x1,x2)/x] = C)

A <|Q(A,x:puXDF q= C)
A <| Q (A, x": D[uXD/X]F glc x'/x] = C)eep

Andreas Abel (LMU) Agda Logik

29 / 32

Results

@ Subject reduction.
@ Progress: Any well-typed term that is not a value can be reduced.

@ Thus, well-typed programs do not go wrong.

Andreas Abel (LMU) Agda Logik 30/ 32

Future Work

@ A productivity checker with sized types.

@ Proof of strong normalization.

Andreas Abel (LMU) Agda Logik 31/32

Conclusions

@ Accepted for presentation at POPL 2013:

Abel, Pientka, Thibodeau, and Setzer

Copatterns — Programming Infinite Structures by Observation.
o Related Work:

o Cockett et al. (1990s): Charity.
o Zeilberger, Licata, Harper (2008): Focusing sequent calculus.

Andreas Abel (LMU) Agda Logik 32/32

	Introduction
	Syntax
	Coverage
	Conclusions

