## Syntactic Normalization Proofs

#### Andreas Abel

Department of Computer Science Ludwig-Maximilians-University Munich

ProgLog Seminar, Chalmers, Göteborg March 14, 2007

#### Introduction

- Research: normalization proofs in Twelf.
- Twelf: higher-order abstract syntax.
- Comfortable variable handling, but no recursive functions.
- Only  $\Pi_2$  statements  $(\forall x \exists y A)$ .
- Termination orders: lexicographic extension of structural order, i.e.,  $<\omega^{\omega}$ .



## A Normalizer for Simply-Typed Lambda-Calculus

A structurally recursive normalizer:

- "Hereditary" substitution of one normal form into another always terminates.
- $[(\lambda y : A.\lambda z : B.w)^{A \to B \to C}/x]x \ u \ v$  triggers two new substitutions

$$[u^A/y]\lambda z:B.w$$
$$[v^B/z]w'$$

but A and B are smaller than  $A \rightarrow B \rightarrow C$ .

•  $[w^A/x]v$  structurally recursive in (A, v).

### Hereditary Substitutions

• Normalizing substitution of normal forms:  $[s^A/x]t$ 

$$\begin{array}{rcl} [s^A/x]x & = & s^A \\ [s^A/x]y & = & y & \text{if } x \neq y \\ [s^A/x](\lambda y \colon B.r) & = & \lambda y \colon B. \, [s^A/x]r & \text{where } y \text{ fresh for } s, x \\ [s^A/x](t\,u) & = & ([\hat{u}^B/y]r')^C & \text{if } \hat{t} = (\lambda y \colon B'.r')^{B \to C} \\ & & \hat{t} \, \hat{u} & \text{otherwise} \\ \\ & \text{where } \hat{t} & = & [s^A/x]t \\ & \hat{u} & = & [s^A/x]u \end{array}$$

• Invariant:  $|B \rightarrow C| \leq |A|$  in line 4.

# Inductive Characterization of Strongly Normalizing Terms

- Following Joachimski and Matthes (2003)
- $\Gamma \vdash t \uparrow A$  means t is strongly normalizing of type A.
- $\Gamma \vdash t \downarrow^{x} A$  means t is sn and neutral of type A.
- Rules:

$$\frac{(x:A) \in \Gamma}{\Gamma \vdash x \downarrow^{x} A} \qquad \frac{\Gamma \vdash r \downarrow^{x} A \to B \qquad \Gamma \vdash s \uparrow A}{\Gamma \vdash r s \downarrow^{x} B} \text{ sne\_app}$$

$$\frac{\Gamma \vdash r \downarrow^{x} A}{\Gamma \vdash r \uparrow A} \text{ sn\_ne}$$

$$\frac{\Gamma, x : A \vdash t \uparrow B}{\Gamma \vdash \lambda x . t \uparrow A \to B} \text{ sn_lam} \qquad \frac{\Gamma \vdash s \uparrow A \qquad \Gamma \vdash [s/x] r \vec{s} \uparrow C}{\Gamma \vdash (\lambda x . r) s \vec{s} \uparrow C} \text{ sn_exp}$$

## Closure of S.N. Terms under Application

- Lemma: Let  $\mathcal{D} :: \Gamma \vdash s \uparrow A$ .

  - 2 If  $\mathcal{E} :: \Gamma, x : A \vdash t \uparrow C$ , then  $\Gamma \vdash [s/x]t \uparrow C$ .
  - ③ If  $\mathcal{E}$  :: Γ, x:  $A \vdash t \downarrow^x C$ , then Γ  $\vdash [s/x]t \uparrow C$  and C is a subexpression of A.
  - 4 If  $\mathcal{E} :: \Gamma, x : A \vdash t \downarrow^y C$  with  $x \neq y$ , then  $\Gamma \vdash [s/x]t \downarrow^y C$ .
- Proof: Simultaneously by main induction on type A (for part 3) and side induction on the derivation  $\mathcal{E}$ .
- Similar to Girard, Lafont and Taylor (1989): Lexicographic induction on highest degree (=type) of a redex and the number of redexes of highest degree.

### Intersection Types

STL + additional typing rules:

$$\frac{\Gamma \vdash t : A \qquad \Gamma \vdash t : B}{\Gamma \vdash t : A \cap B} \qquad \frac{\Gamma \vdash t : A \cap B}{\Gamma \vdash t : A} \qquad \frac{\Gamma \vdash t : A \cap B}{\Gamma \vdash t : B}$$

- Exactly the s.n. terms are typable.
- Additional rules for inductive characterization of s.n.:

$$\frac{\Gamma \vdash n \downarrow^{x} A \cap B}{\Gamma \vdash n \downarrow^{x} A} \qquad \frac{\Gamma \vdash n \downarrow^{x} A \cap B}{\Gamma \vdash n \downarrow^{x} B}$$

$$\frac{\Gamma \vdash t \uparrow A \qquad \Gamma \vdash t \uparrow B}{\Gamma \vdash t \uparrow A \cap B}$$

#### Closure under ∩-Elimination

Recap:

$$\frac{\Gamma \vdash r \downarrow^{x} A}{\Gamma \vdash r \uparrow A}$$

$$\frac{\Gamma, x : A \vdash t \uparrow B}{\Gamma \vdash \lambda x . t \uparrow A \to B} \qquad \frac{\Gamma \vdash t \uparrow A \qquad \Gamma \vdash t \uparrow B}{\Gamma \vdash t \uparrow A \cap B}$$

$$\frac{\Gamma \vdash s \uparrow A \qquad \Gamma \vdash [s/x] r \vec{s} \uparrow C}{\Gamma \vdash (\lambda x . r) s \vec{s} \uparrow C}$$

- Lemma:  $\Gamma \vdash t \uparrow A_1 \cap A_2$  implies  $\Gamma \vdash t \uparrow A_i$ .
- Hereditary substitutions still work since all eliminations make type smaller.



## Term Rewriting

- Coquand and Spiwack (LICS'06) give a filter model for Martin-Löf'a logical framework with term rewriting.
- Backend is an intersection type system.
- Example:

add 
$$y$$
 0  $\longrightarrow$   $y$  add  $y$  ( $\$x$ )  $\longrightarrow$   $\$$  (add  $y$   $x$ )

add
$$: 0 \to 0 \to 0$$

$$\cap 0 \to \$0 \to \$0$$

$$\cap \$0 \to 0 \to \$0$$

$$\cap \$0 \to \$0 \to \$0$$

$$\cap \$0 \to \$0 \to \$\$0$$

## Types Approximating Function Behavior

#### Ground types

$$a,b,c$$
 ::= E exception   
  $| 0 | \$a$  zero and successor singletons

#### Types

$$A, B, C ::= a$$
 ground type  $|\bigcap_{i \in I} (A_i \to B_i)|$  finite funct. descr., all  $A_i$  different

- Intersection and subtyping definable.
- Measure: |a| = 0 and  $|\bigcap_{i \in I} (A_i \to B_i)| = \max\{|A_i| + 1, |B_i| \mid i \in I\}.$



## **Typing**

$$\frac{\Gamma \vdash r : a}{\Gamma \vdash 0 : 0} \qquad \frac{\Gamma \vdash r : a}{\Gamma \vdash \$r : \$a}$$

$$\frac{\Gamma \vdash r : 0 \qquad \Gamma \vdash \underline{z} : C}{\Gamma \vdash f(r) : C} f(0) \longrightarrow \underline{z}$$

$$\frac{\Gamma \vdash r : \$a \qquad \Gamma, x : a \vdash \underline{s} : C}{\Gamma \vdash f(r) : C} f(\$x) \longrightarrow \underline{s}$$

$$\frac{\Gamma \vdash r : A}{\Gamma \vdash f(r) : E} A \neq 0, \$a$$

$$\frac{\Gamma \vdash r : A}{\Gamma \vdash r : A \cap B} \qquad \frac{\Gamma \vdash r : A}{\Gamma \vdash r : B}$$

## What about our Termination Argument!?

- Neutral terms in STL: The types of the s<sub>i</sub> in x s<sub>1</sub> ... s<sub>n</sub> are smaller than the type of x.
- With TR: The type of f(x) might be bigger than the type of x.
- Problematic for substituting into  $f(x) s_1 \dots s_n$ .
- Solution: Distinguish atomic terms  $x \vec{s}$  from neutral terms  $E[f(x \vec{s})]$ .
- Evaluation contexts:

$$E[] ::= [] | E[] s | f(E[]).$$



#### S.N. Atomic and Neutral Terms

SN: Atomic terms.

$$\frac{\Gamma \vdash r \downarrow \bigcap_{i \in I} (A_i \to B_i) \qquad \Gamma \vdash s \Uparrow A_j \text{ for all } j \in J}{\Gamma \vdash r \downarrow \bigcap_{i \in I} (A_i \to B_i)}$$

SN: Neutral terms.

$$\frac{\Gamma \vdash r \downarrow A \qquad A \subseteq B}{\Gamma \vdash r \Downarrow B} \qquad \frac{\Gamma \vdash r \Downarrow 0 \qquad \Gamma \vdash \underline{z} \, \vec{s} \Uparrow C}{\Gamma \vdash f(r) \, \vec{s} \Downarrow C} f(0) \longrightarrow \underline{z}$$

$$\frac{\Gamma \vdash r \Downarrow \$ a \qquad \Gamma, x : a \vdash \underline{s} \, \vec{s} \Uparrow C}{\Gamma \vdash f(r) \, \vec{s} \Downarrow C} f(\$ x) \longrightarrow \underline{s}$$

#### S.N. Terms

Neutral terms.

$$\frac{\Gamma \vdash r \Downarrow A \qquad A \subseteq B}{\Gamma \vdash r \uparrow B}$$

Introductions.

$$\frac{\Gamma, x : A_i \vdash t \uparrow B_i \text{ for all } i \in I}{\Gamma \vdash \lambda x t \uparrow \bigcap_{i \in I} (A_i \to B_i)} \qquad \frac{\Gamma \vdash r \uparrow a}{\Gamma \vdash 0 \uparrow \downarrow 0} \qquad \frac{\Gamma \vdash r \uparrow a}{\Gamma \vdash \$r \uparrow \$a}$$

Blocked terms.

$$\frac{\Gamma \vdash r \Uparrow A}{\Gamma \vdash f(r) \Uparrow E} A \neq 0, \$ a \qquad \frac{\Gamma \vdash r \Uparrow E \qquad \Gamma \vdash s \Uparrow A}{\Gamma \vdash r s \Uparrow E}$$

### S.N. Terms (continued)

Weak head expansions.

$$\frac{\Gamma \vdash s \Uparrow A \qquad \Gamma \vdash E[[s/x]t] \Uparrow C}{\Gamma \vdash E[(\lambda x t) s] \Uparrow C}$$

$$\frac{\Gamma \vdash E[\underline{z}] \Uparrow C}{\Gamma \vdash E[f(0)] \Uparrow C} f(0) \longrightarrow \underline{z}$$

$$\frac{\Gamma \vdash r \Uparrow A \qquad \Gamma \vdash E[[r/x]\underline{s}] \Uparrow C}{\Gamma \vdash E[f(\$r)] \Uparrow C} f(\$x) \longrightarrow \underline{s}$$

- Cannot treat higher-order datatypes like tree ordinals (yet!?)
- But sufficient for bar recursion example.

#### Conclusion

- Technique extends also to predicative polymorphism.
- Current work: primitive recursion (needs ordinals up to  $\omega^{\omega}$ ).
- Leads into "Munich" proof theory (ordinal analysis).

#### References

- Matthes, Joachimski, AML 2003: Syntactic normalization.
- Watkins et al, TYPES 2003: Hereditary subst.
- Schürmann, Sarnat: LR-Proofs in Twelf.