Copatterns Programming Infinite Objects by Observations

A. Abel¹ B. Pientka² D. Thibodeau² A. Setzer³

¹Department of Computer Science Ludwig-Maximilians-University Munich, Germany

> ²School of Computer Science McGill University, Montreal, Canada

³Computer Science Swansea University, Wales, UK

Principles of Programming Languages Roma, Italy 23 January 2013

Crash course "Programming in the Infinite" Final Exam

Crash course "Programming in the Infinite" Final Exam

Problem 1 (Duality): Complete this table!

finite	infinite
algebra	coalgebra
inductive	coinductive
constructors	destructors
pattern matching	

Approaches to Infinite Structures

- Just functions. (Scheme, ML)
 - Delay implemented as dummy abstraction, force as dummy application.
 - Memoization needs imperative references.
- 2 Terminal coalgebras.
 - SymML [Hagino, 1987].
 - Charity [Cockett, 1990s]: Programming with morphism (pointfree).
 - Object-oriented programming: Objects react to messages.
- Solution
 Lists/trees of infinite depth.
 - Convenient: program just with pattern matching.
 - Haskell: everything lazy. Finite = infinite.
 - Coq: inductive/coinductive types both via constructors.

Which is best for dependent types?

What's wrong with Coq's CoInductive?

Coq's coinductive types are non-wellfounded data types.

```
CoInductive Stream : Type :=
| cons (head : nat) (tail : Stream).

CoFixpoint zeros : Stream := cons 0 zeros.
```

Reduction of cofixpoints only under match.
 Necessary for strong normalization.

```
case cons a s of cons x y \Rightarrow t = t[a/x][s/y]

case cofix f of branches = case f (cofix f) of branches
```

• Leads to loss of subject reduction. [Gimenez, 1996; Oury, 2008]

Issue 1: Loss of Subject Reduction

```
cons : \mathbb{N} \to \mathsf{Stream} \to \mathsf{Stream}
                                                                      its (co)constructor
zeros : Stream
                                                                           inhabitant of U
                                                               u = cons 0 (cons 0 (...
zeros = cofix (cons 0)
force : Stream \rightarrow Stream
                                                                                 an identity
force s = \mathbf{case} \, s \, \mathbf{of} \, \cos x \, y \Rightarrow \cos x \, y
eq : (s : Stream) \rightarrow s \equiv force s
                                                                              equality type
eq s = \mathbf{case} \, s \, \mathbf{of} \, \cos x \, y \Rightarrow \mathbf{refl}
                                                                         dep. elimination
eq_{zeros} : zeros \equiv cons 0 zeros
                                                                           offending term
eq_{zeros} = eq zeros \longrightarrow refl
                                                         \forall refl : zeros \equiv cons 0 zeros
```

Stream : Type

<ロ > ← □

a codata type

Analysis

Problematic: dependent matching on coinductive data.

$$\frac{\Gamma \vdash s : \mathsf{Stream} \qquad \Gamma, \ x : \mathbb{N}, \ y : \mathsf{Stream} \vdash t : C(\mathsf{cons} \ x \ y)}{\Gamma \vdash \mathsf{case} \ s \ \mathsf{of} \ \mathsf{cons} \ x \ y \Rightarrow t : C(s)}$$

• [McBride, 2009]: Let's see how things unfold.

Issue 2: Deep Guardedness Not Supported

Fibonacci sequence obeys recurrence:

Direct recursive definition:

```
fib = cons 0 (cons 1 (zipWith _+ fib) (tail fib)))
fib = cons 0 ( F (tail fib))
```

Diverges under Coq's reduction strategy:

```
tail fib
    = F (tail fib)
    = F (F (tail fib))
    = ...
```

Solution: Paradigm shift

Understand coinduction not through construction, but through observations.

Our contribution:

- New definition scheme "by observation" with copatterns.
- Defining equations hold unconditionally.
- Subject reduction.
- Coverage.
- Strong normalization. (In progress.)

Function Definition by Observation

- A function is a black box. We can apply it to an argument (experiment), and observe its result (behavior).
- Application is the defining principle of functions [Granström's dissertation 2009].

$$\frac{f:A\to B \qquad a:A}{f:a:B}$$

- λ -abstraction is derived, secondary to application.
- Typical semantic view of functions.

Infinite Objects Defined by Observation

- A coinductive object is a black box.
- There is a finite set of experiments (projections) we can perform.
- The object is determined by the observations we make.
- Generalize (Agda) records to coinductive types.

```
record Stream : Set where
  coinductive
  field
   head : N
  tail : Stream
```

- head and tail are the experiments we can make on Stream.
- Objects of type Stream are defined by the results of these experiments.

Infinite Objects Defined by Observation

New syntax for defining a cofixpoint.

```
zeros : Stream
head zeros = 0
tail zeros = zeros
```

Defining the "constructor".

```
cons : \mathbb{N} \to \mathsf{Stream} \to \mathsf{Stream}
head ((cons x) y) = x
tail ((cons x) y) = y
```

- We call (head _) and (tail _) projection copatterns.
- And (_ x) and (_ y) application copatterns.
- A left-hand side (head ((_ x) y)) is a composite copattern.

Patterns and Copatterns

Patterns

$$\begin{array}{ccccc} p & ::= & x & & \text{Variable pattern} \\ & | & () & & \text{Unit pattern} \\ & | & (p_1, p_2) & & \text{Pair pattern} \\ & | & c & p & & \text{Constructor pattern} \end{array}$$

Copatterns

Definitions

$$q_1[f/\cdot] = t_1$$

$$\vdots$$

$$q_n[f/\cdot] = t_n$$

Category-theoretic Perspective

- Functor F, coalgebra $s: A \to F(A)$.
- Terminal coalgebra force : $\nu F \rightarrow F(\nu F)$ (elimination).
- Coiteration $coit(s): A \rightarrow \nu F$ constructs infinite objects.

Computation rule: Only unfold infinite object in elimination context.

$$force(coit(s)(a)) = F(coit(s))(s(a))$$

Instance: Stream

- With $F(X) = \mathbb{N} \times X$ we get the streams $Stream = \nu F$.
- With s() = (0, ()) we get zeros = coit(s)().

• Computation: (head, tail)(coit(s)()) = (0, coit(s)()).

Deep Copatterns: Fibonacci-Stream

• Fibonacci sequence obeys this recurrence:

• This directly leads to a definition by copatterns:

```
fib: Stream N
(tail (tail fib)) = zipWith _+_ fib (tail fib)
(head (tail fib)) = 1
(\text{head fib}) = 0
```

Strongly normalizing definition of fib!

Interactive Program Development

Goal: cyclic stream of numbers.

```
cycleNats : \mathbb{N} \to \mathsf{Stream} \ \mathbb{N} cycleNats n = n, n-1, \ldots, 1, 0, N, N-1, \ldots, 1, 0, \ldots
```

Fictuous interactive Agda session.

```
 \begin{array}{lll} \mathsf{cycleNats} & : & \mathsf{Nat} \to \mathsf{Stream} \ \mathsf{Nat} \\ \mathsf{cycleNats} & = & ? \end{array}
```

Split result (function).

```
cycleNats x = ?
```

Split result again (stream).

```
head (cycleNats x) = ? tail (cycleNats x) = ?
```

Interactive Program Development

Finish first clause:

```
head (cycleNats x) = x tail (cycleNats x) = ?
```

Split x in second clause.

```
head (cycleNats x) = x
tail (cycleNats 0) = ?
tail (cycleNats (1 + x')) = ?
```

Fill remaining right hand sides.

```
head (cycleNats x) = x
tail (cycleNats 0) = cycleNats N
tail (cycleNats (1 + x')) = cycleNats x'
```

Coverage

- Coverage algorithm:
- Start with the trivial covering.
- Repeat
 - split a pattern variable until computed covering matches user-given patterns.

Copattern Coverage

- Coverage algorithm:
- Start with the trivial covering. (Copattern · "hole")
- Repeat
 - split result or
 - split a pattern variable

until computed covering matches user-given patterns.

Deriving Covering Set of Clauses

```
 \begin{array}{c} \mathsf{start} & (\;\vdash \cdot : \; \mathbb{N} \to \mathsf{Stream}) \\ \\ \mathsf{split} \; \mathsf{function} & (x : \mathbb{N} \;\vdash \cdot \; x : \mathsf{Stream}) \\ \\ \mathsf{split} \; \mathsf{stream} \; (x : \mathbb{N} \;\vdash \mathsf{head} \; (\cdot \; x) : \; \mathbb{N}) & (x : \mathbb{N} \;\vdash \mathsf{tail} \; (\cdot \; x) : \mathsf{Stream}) \\ \\ \mathsf{split} \; \mathsf{var}. & (x : \mathbb{N} \;\vdash \mathsf{head} \; (\cdot \; x) : \; \mathbb{N}) & (\;\vdash \mathsf{tail} \; (\cdot \; 0) : \mathsf{Stream}) \\ \\ & (x' : \mathbb{N} \;\vdash \mathsf{tail} \; (\cdot \; (1 + x')) : \; \mathsf{Stream}) \\ \\ \end{aligned}
```

Syntax

finite / positive / type checking				
	type	introduction t	pattern <i>p</i>	
tuple	$A_1 \times A_2$	(t_1,t_2)	(p_1, p_2)	
data	μ ,+	c t	ср	
infinite / negative / type inference				
	type	copattern <i>q</i>	elimination <i>e</i>	
function	$A_1 \rightarrow A_2$	q p	e t	
record	ν,&	d q	d e	

Results

- Subject reduction.
- Non-deterministic coverage algorithm.
- Progress: Any well-typed term that is not a value can be reduced.
- Thus, well-typed programs do not go wrong.
- Prototypic implementations: MiniAgda, Agda.

Suggestion to Haskellers

Use copattern syntax for newtypes!

```
newtype State s a = State { runState :: s -> (a,s) }
instance Monad (State s) where

runState (return a) s = (a,s)

runState (m >>= k) s =
 let (a,s') = runState m
 in runState (k a) s'
```

Conclusions

- Future work:
 - MiniAgda: A productivity checker with sized types.
 - TODO: Prove strong normalization.
 - TODO: Integrate copatterns into Agda's kernel.
- Related Work:
 - Hagino (1987): Categorical data types.
 - Cockett et al. (1990s): Charity.
 - Zeilberger, Licata, Harper (2008): Focusing sequent calculus.

Crash course "Programming in the Infinite" Model Solution

Problem 1 (Duality): Complete this table!

finite	infinite	
algebra	coalgebra	
inductive	coinductive	
constructors	destructors	
pattern matching	copattern matching	

Instance: Colists of Natural Numbers

- With $F(X) = 1 + \mathbb{N} \times X$ we get $\nu F = \text{Colist}(\mathbb{N})$.
- With $s(n : \mathbb{N}) = inr(n, n + 1)$ we get coit(s)(n) = (n, n + 1, n + 2,).

Colists in Agda

Colists as record.

```
record Colist A : Set where
  coinductive
  field
   force : Maybe (A × Colist A)
```

Sequence of natural numbers.

Coverage Rules

- $A \triangleleft |\vec{Q}|$ Typed copatterns \vec{Q} cover elimination of type A.
 - Result splitting:

$$\frac{\dots(\Delta \vdash q : B \to C) \dots}{\dots(\Delta, x : B \vdash q : C) \dots}$$

$$\frac{\dots(\Delta \vdash q : R) \dots}{\dots(\Delta \vdash d : R)_{d \in R} \dots}$$

Variable splitting:

$$\frac{\ldots(\Delta, x : A_1 \times A_2 \vdash q[x] : C) \ldots}{\ldots(\Delta, x_1 : A_1, x_2 : A_2 \vdash q[(x_1, x_2)] : C) \ldots}$$
$$\frac{\ldots(\Delta, x : D \vdash q[x] : C) \ldots}{\ldots(\Delta, x' : D_c \vdash q[c \ x'] : C)_{c \in D} \ldots}$$

Type-theoretic background

Foundation: coalgebras (category theory) and focusing (polarized logic)

polarity	positive	negative
linear types	$1, \oplus, \otimes, \mu$	- ∘, &, ν
Agda types	data	ightarrow, record
extension	finite	infinite
introduction	constructors	definition by copatterns
elimination	pattern matching	message passing
categorical	algebra	coalgebra