Implementing a Normalizer Using Sized
Heterogeneous Types

Normalization of A-Terms by Structural Recursion

Andreas Abel

Mathematically Structured Functional Programming
Kuressaare, Estonia, July 2, 2006

Outline

Contents

1 Introduction 1
2 The Meta-Language: F_ 1
3 The Object Language: STL 3
4 De Bruijn Implementation 5
5 Conclusion 7

1 Introduction

Interpreters

e Turing-complete Language L: can implement its own interpreter.

e What meta-language M L is required to interpret a total (=terminating) language
L?

e M L should also be total.
e Here: L = simply-typed \-calculus
e ML =F;, afunctional programming language with sized types

e Termination can be ensured by the type-checker!

2 The Meta-Language: F

The meta-language: F_

e Pure functional language (no assignments, pointers, I/O)

e Higher-order functions

e Impredicative polymorphism

e Sized recursive types of higher-kind

e Recursion, restricted; termination guaranteed by type system

e Corecursion, restricted: productivity guaranteed by type system

e Mathematical structure: ordinals, transfinite induction

Sized types, semantically
e Recursive types defined from below by transfinite iteration.
e Example: List A = pu“F
e FFX ={nil,consaas|a€ A as € X}

Transfinite Iteration:

WF = 0
potlE = F(u"F)
wF = Upan nF

e F monotone: u®F C pPF for a < B.

Sized type: List*A = u*F.

Sized types, syntactically

e Data types are equipped with a size index (upper bound)

E.g., List® A denotes lists of length < ¢ with elements in A

Constructors (polymorphic):

nil @ VaVA. List'™' A

) , cons : ViVA. A — List® — List't! A
e Size expressions must have the form 2 + n (2 size variable, n natural number) or

oo (unbounded size).

Subtyping: List’A < List't1A < ... < List® A.

Recursion over sized types, semantically
e Prove that fix s = s (fixs) € A(8) by transfinite induction on (.

1. Base: fixs € A(0) (bottom-check)
2. Step: fixs € A(«) implies fixs € A(a+ 1)
3. Limit: fixs € A(\) if fixs € A(a) forall & < A.

— —

e Proof skeleton:

1. Base: holds e.g., for A(a) = List*B — C.
2. Step: holds if s € A(a)) — A(a + 1).
3. Limit: holds for upper-semicontinuous A [CSL 06].

Recursion over sized types, syntactically

e Recursion restricted to this pattern:

f Ve A() — C(v)
fl: AG+1)= (..f(t: A()...
o g(fAQ) = C()...): C+1)

e Termination of recursion ensured by types.

e Example:

filter : VaVA. (A — Bool) — List'A — List"A
filter p nil = nil
filter p (consa as : List' ™' A) =
if p(a) thenconsa (filterp (as : List' A))
else filterp (as : List"A)

3 The Object Language: STL

The Simply-Typed A-Calculus

e An even purer functional language (no data types, no recursion, no polymor-
phism)

e Programs consist of functions and application.

r,s,t = variable
| Az:at abstraction of x in ¢
| rs application
e Types:
a,b,c = o base type

| a—b function type

Computation in STL

e Only reduction rule:
(Az:a.t)s — [s/z]t

e Example:
(Az:((0 = 0) = (0 — 0)). x(Az:0.2)) (Ay: (0 — 0). y)
— [(Ay:(0o— o). y)/z](z (Az:0.2))
= (MAy:(0—0).y) (A\z:0.2)
— [(Az:0.2)/yly = Az:0.2
e Normal form v ::= Az:a.v | z vy ... v,

A Big-Step Interpreter for STL

e For term ¢, [[t] computes its normal form.

[] =
[Az:a.r] Az:a.[r]

[r sl

([s]“/)t i [r] = Az:a.t
[] [s] otherwise

e Substitution [[s]*/z]t of one normal form s into another normal form ¢ may
trigger new reductions.

Hereditary Substitutions

e Normalizing substitution of normal forms: [s*/z]t

a

[s*/x]x = s
[s*/x]y =y ifz#y
[s*/z](Ay:b.r) = Ay:b.[s*/x]r where y fresh for s,z
[s%/x](t u) = ([ab/y]r")e ift = (\y:b'r")b—e
ta otherwise
where t = [s%/x]t
i = [s%/z]u

e Invariant: |b — ¢| < |a| in line 4.

What is happening in hereditary substitutions?

e In [s%/z]t, size of type |a| is “fuel”.

As long as there is fuel, new her. substitutions can be performed.

Each new substitution starts with less fuel.

E.g. [wo=v=¢/z](x v1 v2)

Possibly new subst. of v; into w: fuel = |a].

Substitution of vy into the result: fuel = |b).

[s*/x]t terminates by lexicographic order (|al, |t]).

What happens for ill-typed terms?

e [s%/x]t also terminates for ill-typed or non-normal s, t.
o But fuel might run out before normal form is reached.
e Result might be non-normal form.

e Example:
[(Ax: (0o — o). xx) (Ax:0.22)]

— [(Az:o.zx)°7°/x](2)
— (Az:o.zx)°7° (Ax:i0.xX)°°
— [(Az:0.zx)°/x]|(z2)
— (Az:o.z2)° (Az:0.22)°
4 De Bruijn Implementation
Representation of STL in F
e STL-types represented as a sized type.
o : Tyt
1+1

arr @ Ty > Ty' — Ty
e Ifa: Ty’ then |a| < 2.

e STL-terms represented by nested data type Tm* A:

var : A—Tm"" 4
app : Tm'A—Tm'A—Tm A
abs : Ty® > Tm"(1+A4)—Tm A

e Tm® A contains terms of height < 2 with free variables in A.

Results of hereditary substitution

e Result of a hereditary substitution can either be a term with remaining fuel or a
term with no fuel.

Res' A=Tm>™ A x (14 Ty")

NeRes : TMC A — Res' A

Nfres : TM™® A — Ty" — Res' A
e Extracting the term from a result:

tm: Res’A — Tm™ 4

Simultaneous hereditary substitutions
e For TmA, only simultaneous substitution

TmA — (A — TmB) — TmB
is directly definable.
e Valuations for all variables:

Val'A B = A — Res'B

SBya : IMTA—-Ty' - Val'(1+A4)A
liftya : Val' AB — Val* (14+ A) (1+ B)

The F_-Code

subst : V2. Ty' = VA. Tm® A - Tm>*(1+ A) - Tm™ A
subst a st = tm (simsubst ¢ (sgy, sa))

where simsubst : V. VAYB. Tm’A — Val'™' AB — Res'™' B
simsubst ¢ p = match ¢ with

varz +— px
absbr +— absges b (simsubst r (liftyal p))
apptu +— let t = simsubst t p

U = simsubst u p

in match ¢ with
nfres (absd’ 1’) (arrbc)
— NfRes (subst b (tm @) r') ¢
_ = aPPRes L U

5 Conclusion
Conclusion

e A natural implementation of a normalizer

Structurally recursive

Termination statically ensured by the type system

Host language: F (but ML-Polymorphism sufficient)

Slogan:

In each recursive program there is a structurally recursive one strug-
gling to get out.—Conor McBride

