
Normalization by Evaluation for System F

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich

Department of Mathematics, Savoie University
Chambery, France
12 February 2010

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 1 / 27

Introduction

Normalizers appear in compilers (e.g., type-directed partial
evaluation [Danvy,Filinski])

and HOL theorem provers (Isabelle, Coq, Agda).

Normalization by evaluation is a framework to turn an
evaluator for closed expressions (stop at lambda) into a

normalizer for open expressions (go under lambda).

Has clear semantic foundations.

Is strong for extensional normalization (eta).

My goal: NbE for Calculus of Constructions and Coq.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 2 / 27

What is Normalization By Evaluation?

Semantics (Values)

reify ց

##GGGGGGGGGGGGGGGGGGGGGGG

Syntax (Terms)

eval L M

;;wwwwwwwwwwwwwwwwwwwwwwww

⊃ Normal Forms

You have: an interpreter (L M).

You buy: my reifyer (ց).

You get for free: a full normalizer!

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 3 / 27

What is Normalization By Evaluation?

Semantics (Values)

reify ց

##GGGGGGGGGGGGGGGGGGGGGGG

Syntax (Terms)

eval L M

;;wwwwwwwwwwwwwwwwwwwwwwww

⊃ Normal Forms

You have: an interpreter (L M).

You buy: my reifyer (ց).

You get for free: a full normalizer!

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 3 / 27

What is Normalization By Evaluation?

Semantics (Values)

reify ց

##GGGGGGGGGGGGGGGGGGGGGGG

Syntax (Terms)

eval L M

;;wwwwwwwwwwwwwwwwwwwwwwww

⊃ Normal Forms

You have: an interpreter (L M).

You buy: my reifyer (ց).

You get for free: a full normalizer!

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 3 / 27

What is Normalization By Evaluation?

Semantics (Values)

reify ց

##GGGGGGGGGGGGGGGGGGGGGGG

Syntax (Terms)

eval L M

;;wwwwwwwwwwwwwwwwwwwwwwww

⊃ Normal Forms

You have: an interpreter (L M).

You buy: my reifyer (ց).

You get for free: a full normalizer!

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 3 / 27

How to Reify a Function

Functions are thought of as black boxes.

How to print the code of a function?

Apply it to a fresh variable!

reify (f) = λx . reify(f (x))

reify (x ~d) = x reify(~d)

Computation needs to be extended to handle variables
(unknowns).

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 4 / 27

Choices of Semantics

1 β-normal forms (Agda 2, Ulf Norell)
2 Weak head normal forms (Constructive Engine, Randy Pollack)
3 Explicit substitutions (Twelf, Pfenning et.al.)
4 Closures (your favorite pure functional language, Epigram 2)
5 Virtual machine code (Coq: ZINC machine, Leroy/Gregoire)
6 Native machine code (Cayenne: i386, Dirk Kleeblatt)

These are all (partial) applicative structures.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 5 / 27

Applicative Structures

An applicative structure consists of:

A set D.

Application operation · : D × D → D.

Interpretation LtMη ∈ D for term t and environment η, satisfying:

LxMη = η(x)
Lr sMη = LrMη · LsMη

LλxtMη · d = LtMη[x 7→d]

Simple examples:
1 D = (Tm/=β) terms modulo β-equality.
2 D ∼= [D → D] reflexive (Scott) domain.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 6 / 27

Applicative Structures with Variables

Enrich D with all neutral objects x d1 . . . dn, where x a variable and
d1, . . . , dn ∈ D.

Application satisfies:
(x ~d) · d = x ~d d

Leroy/Gregoire call neutral objects accumulators.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 7 / 27

β-NbE for Untyped Lambda-Calculus

Let I = λy . y identity.

↓[[λx . I x I]]

= λx1. ↓([[λx . I x I]] · x1)

= λx1. ↓([[I x I]]x7→x1
)

= λx1. ↓([[I]] · [[x]]x7→x1
· [[I]])

= λx1. ↓([[y]]y7→[[x]]x7→x1
· [[I]])

= λx1. ↓([[x]]x7→x1
· [[I]])

= λx1. ↓(x1 · [[I]])

= λx1. x1 (↓[[I]])

= λx1. x1 (λx2. ↓([[I]] · x2))

= λx1. x1 (λx2. ↓[[y]]y7→x2
)

= λx1. x1 (λx2. ↓x2)

= λx1. x1 (λx2. x2)

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 8 / 27

Reification (Simply-Typed)

Given a type and a value of this type, produce a term.

Context Γ records types of free variables.

Inductively defined relation Γ ⊢ d ց v ⇑ A.

“In context Γ, value d reifies to term v at type A.”

Γ, x :A ⊢ d · x ց v ⇑ B
Γ ⊢ d ց λxv ⇑ A → B

Γ ⊢ di ց vi ⇑ Ai for all i

Γ ⊢ x ~d ց x ~v ⇑ ∗
Γ(x) = ~A → ∗

Inputs: Γ, d , A

Output: v (β-normal η-long).

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 9 / 27

Reification (Step by Step)

Reifying neutral values step by step:

Γ ⊢ e ց u ⇓ A e reifies to u, inferring type A.

Inputs: Γ, e (neutral value).
Outputs: u (neutral β-normal η-long), A.
Rules:

Γ ⊢ x ց x ⇓ Γ(x)

Γ ⊢ e ց u ⇓ A → B Γ ⊢ d ց v ⇑ A
Γ ⊢ e d ց u v ⇓ B

Γ ⊢ e ց u ⇓ ∗

Γ ⊢ e ց u ⇑ ∗

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 10 / 27

Normalization by Evaluation

Compose evaluation with reification:

nbeA(t) = the v with ⊢ LtMρid ց v ⇑ A

Completeness: NbE returns identical normal forms for all
βη-equal terms of the same type.

If Γ ⊢ t = t ′ : A then Γ ⊢ LtMρid ց v ⇑ A and
Γ ⊢ Lt ′Mρid ց v ⇑ A.

Soundness: NbE does not identify too many terms. The returned
normal form is βη-equal to the original term.

If Γ ⊢ t : A then Γ ⊢ LtMρid ց v ⇑ A and Γ ⊢ t = v : A.

Both proven by Kripke logical relations.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 11 / 27

A Logical Relation for Soundness

A Kripke logical relation A ∈ K
A of type A is a map from contexts Γ

to relations between values and terms of type A:

(Γ ∈ Cxt) → P(D × TmA
Γ)

Monotonicity: extending Γ increases the relation.
For each type A, define KLRs A, A by

AΓ = {(d , t) | Γ ⊢ d ց v ⇑ A and Γ ⊢ t = v : A for some v}
AΓ = {(e, t) | Γ ⊢ e ց v ⇓ A and Γ ⊢ t = v : A for some v}

Soundness: If Γ ⊢ t : A then (LtMρid , t) ∈ AΓ.
Define KLR [[A]] ⊆ A and show (LtMρid , t) ∈ [[A]]Γ (fundamental
theorem).

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 12 / 27

Candidate Space

Function space: given A ∈ K
A and B ∈ K

B, define

(A ⇒ B)Γ = {(f , r) ∈ D × TmA→B
Γ | (f · d , r s) ∈ BΓ′

if Γ′ extends Γ and (d , s) ∈ AΓ′}

A, A form an candidate space, i. e.:

∗ ⊆ ∗

A ⇒ B ⊆ A → B

A → B ⊆ A ⇒ B

We say A
 A (A realizes A, or A is a candidate for A) if
A ⊆ A ⊆ A.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 13 / 27

Justification of candidate space

Law ∗ ⊆ ∗
Γ ⊢ e ց u ⇓ ∗

Γ ⊢ e ց u ⇑ ∗

Law A ⇒ B ⊆ A → B

Γ, x :A ⊢ d · x ց v ⇑ B
Γ ⊢ d ց λxv ⇑ A → B

Law A → B ⊆ A ⇒ B

Γ ⊢ e ց u ⇓ A → B Γ ⊢ d ց v ⇑ A
Γ ⊢ e d ց u v ⇓ B

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 14 / 27

Justification of candidate space II

Let A the weakly normalizing terms of type A.
Let A the w.n. terms of shape x s1 . . . sn of type A.
Law ∗ ⊆ ∗

A ⊆ A

Law A ⇒ B ⊆ A → B

r x ∈ B implies r ∈ A → B

Law A → B ⊆ A ⇒ B

r ∈ A → B and s ∈ A imply r s ∈ B

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 15 / 27

Type interpretation

Define [[A]] by induction on A.

[[∗]] = ∗
[[A → B]] = [[A]] ⇒ [[B]]

Theorem: A
 [[A]].

Now, the fundamental theorem implies soundness of NbE.

Completeness by a similar logical relation.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 16 / 27

What Have We Got?

Abstractions in our proof:
1 Applicative structures abstract over values and β.

2 Fundamental theorem in a general form.

3 Candidate spaces abstract over “good” semantical types. (New!)

Other instances for A, A yield traditional weak β(η)-normalization.

Readily adapts to System F.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 17 / 27

Scaling to System F

Extending the notion of candidate space:

A[X/Y] ⊆ ∀Y A for a new X

∀Y A ⊆ A[B/Y] for any B

Extending type interpretation:

[[X]]ρ = ρ(X)

[[A → B]]ρ = [[A]]ρ → [[B]]ρ
[[∀XA]]ρ =

⋂
B
B[[A]]ρ[X 7→B]

Extending applicative structures, reification... (unproblematic).

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 18 / 27

System F

Church-Style System F

Terms and Typing

Γ ⊢ x : Γ(x)

Γ, x :A ⊢ t : B
Γ ⊢ λx :A. t : A → B

Γ ⊢ r : A → B Γ ⊢ s : A
Γ ⊢ r s : B

Γ ⊢ t : A
Γ ⊢ ΛXt : ∀XA

X 6∈ FV(Γ)
Γ ⊢ t : ∀XA

Γ ⊢ t B : A[B/X]

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 19 / 27

System F

Judgemental Equality for System F

The typed equational theory of System F is induced by

Γ, x :A ⊢ t : B Γ ⊢ s : A
Γ ⊢ (λx :A. t) s = t[s/x] : B

Γ ⊢ t : A → B
Γ ⊢ λx :A. t x = t : A → B

x 6∈ FV(t)

Γ ⊢ t : A X 6∈ FV(Γ)

Γ ⊢ (ΛXt) B = t[B/X] : A[B/X]

Γ ⊢ t : ∀XA
Γ ⊢ ΛX . t X = t : ∀XA

X 6∈ FV(t)

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 20 / 27

System F

Evaluation

We assume an evaluation function L−Mη ∈ Tm → D, satisfying

LxMη = η(x)
Lr sMη = LrMη · LsMη
Lr AMη = LrMη · Aη

Lλx :A. tMη · d = LtMη[x 7→d]

LΛXtMη · A = LtMη[X 7→A]

Lt[s/x]Mη = LtMη[x 7→LsMη]

Lt[A/x]Mη = LtMη[x 7→Aη]

LtMη = LtMη′ if η(x) = η′(x) for all x ∈ FV(t)

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 21 / 27

System F

Contextual reification

We can read back values as terms; this is called reification.

Γ ⊢ d ց t ⇑ A d reifies to t at type A,
Γ ⊢ d ց t ⇓ A d reifies to t , inferring type A.

Rules:

Γ ⊢ x ց x ⇓ Γ(x)

Γ ⊢ e ց r ⇓ A → B Γ ⊢ d ց s ⇑ A
Γ ⊢ e d ց r s ⇓ B

Γ ⊢ e ց r ⇓ ∀XA
Γ ⊢ e B ց r B ⇓ A[B/X]

Γ ⊢ e ց r ⇓ X
Γ ⊢ e ց r ⇑ X

Γ, x :A ⊢ f · x ց t ⇑ B
Γ ⊢ f ց λx :A. t ⇑ A → B

Γ ⊢ F · X ց t ⇑ A
Γ ⊢ F ց ΛXt ⇑ ∀XA

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 22 / 27

System F

Candidate space

For each type A, define KLRs A, A by

AΓ = {(d , t) | Γ ⊢ d ց v ⇑ A and Γ ⊢ t = v : A for some v}
AΓ = {(e, t) | Γ ⊢ e ց v ⇓ A and Γ ⊢ t = v : A for some v}

A, A form an candidate space fulfilling the conditions

A → B ⊆ A → B

A → B ⊆ A → B

∀Y A ⊆ A[B/Y] for any B

A[X/Y] ⊆ ∀Y A for a new X

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 23 / 27

System F

Type interpretation

We interpret quantification by an intersection which is indexed
only by the realizable semantic types.

[[X]]ρ = ρ(X)

[[A → B]]ρ = [[A]]ρ → [[B]]ρ
[[∀XA]]ρ =

⋂
B
B [[A]]ρ[X 7→B]

Types realize their interpretation: If σ(X)
 ρ(X) for all X , then
Aσ
 [[A]]ρ.

Proof: Induction on A, using the closure conditions of the
candidate space.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 24 / 27

System F

Soundness of NbE for System F

Now, prove the fundamental theorem for System F.

Let σ(X)
 η(X) for all X .

If Γ ⊢ t : A and (η(x), σ(x)) ∈ [[Γ(x)]]η for all x then
(LtMη , tσ) ∈ [[A]]η.

As before, this entails soundness.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 25 / 27

System F

Related Work

Altenkirch, Hofmann, and Streicher (1997) describe another
version of NbE for System F.

Each type is interpreted by a syntactical type A, a semantical type
A, and a normalization function nfA for terms of type A.

Construction carried out in category theory.

Other work on NbE: Martin-Löf, Schwichtenberg, Berger, Danvy,
Filinski, Dybjer, Scott, Aehlig, Joachimski, Coquand, and many
more.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 26 / 27

System F

Conclusions

This work: NbE for System F with conventional means.

Follows the structure of a weak normalization proof.

Variation of Girard’s scheme.

Future work: scale to the Calculus of Constructions.

Acknowledgments: This work was carried out during a
visit to Frédéric Blanqui and Cody Roux at LORIA, Nancy,
France, financed by the Bayerisch-Französisches
Hochschulzentrum.

Thanks to Christophe and Pierre for the invitation.

Andreas Abel (LMU Munich) Normalization by Evaluation for System F LAMA ’10 27 / 27

	System F

