
Type-Based Termination,
Inflationary Fixed-Points, and

Mixed Inductive-Coinductive Types

Andreas Abel

Department of Computer Science
Ludwig-Maximilians-University Munich

Fixed Points in Computer Science (FICS 2012)
ETAPS 2012, Tallinn, Estonia

24 March 2012

Andreas Abel (LMU) Type-Based Termination AIM XV 1 / 1



Introduction

Aspects of Termination

What the talk is about:

X foundational approach to termination

X types and semantics

X compositional termination

X communicating termination (across function/module boundaries)

X MiniAgda

What the talk is not about:

7 smart termination orders

7 automatic termination inference

Andreas Abel (LMU) Type-Based Termination AIM XV 2 / 1



Type-Based Termination

Well-typed programs don’t go wrong

Desired: absence of run-time errors (don’t go wrong).

Property not compositional!

If f and a don’t go wrong, f a might still!

Milner: introduce types to “strengthen induction hypothesis”.

Polymorphic types allow to abstract out code t[u] let x = u in t.

Types make error-freeness compositional!

Andreas Abel (LMU) Type-Based Termination AIM XV 3 / 1



Type-Based Termination

Well-typed programs terminate

Desired: termination (or stream productivity).

Termination is not compositional!

If f and a terminate, f a might still diverge!
(E.g. f = a = λx . x x)

Welltyped programs terminate!?

X Simply-typed lambda-calculus
X Polymorphic lambda-calculus (System F)
7 Haskell (has recursion)
7 Agda, Coq (have separate termination checking)

What is the problem with a separate termination check?

Andreas Abel (LMU) Type-Based Termination AIM XV 4 / 1



Type-Based Termination

A simple, terminating function

Picks every other element from a list.

fun everyOther : List A → List A

{ everyOther nil = nil

; everyOther (cons a nil) = nil

; everyOther (cons a (cons a’ as)) = cons a (everyOther as)

}

Terminates, since as < cons a (cons a’ as).

Abstract out 0-1-many case distinction:

fun zeroOneMany : List A → C → (A → C) → ...

{ zeroOneMany nil z o m = z

; zeroOneMany (cons a nil) z o m = o a

; zeroOneMany (cons a (cons a’ as)) z o m = m a a’ as

}

Andreas Abel (LMU) Type-Based Termination AIM XV 5 / 1



Type-Based Termination

Abstractions not supported

Function using combinator zeroOneMany.

fun everyOther : List A → List A

{ everyOther l = zeroOneMany l

nil

(λ a → nil)

(λ a a’ as → cons a (everyOther as))

}

Terminating? Relation between as and l lost.

Inlining zeroOneMany?

7 Bad performance of checker.
7 Source code might not be available.

Trouble with abstraction? Types to the rescue!

Andreas Abel (LMU) Type-Based Termination AIM XV 6 / 1



Type-Based Termination

Type-based termination

Refine types: List A i contains lists up to length i.

A precise type with bounded universal [j < i] →...

fun zeroOneMany : List A i →
...

(many : [j < i] → A → A → List A j → C) → C

Relation between as : List A j and l : List A i tracked by types!

fun everyOther : List A i → List A i

{ everyOther l = zeroOneMany l

...

(λ a a’ as → cons a (everyOther as))

}

Andreas Abel (LMU) Type-Based Termination AIM XV 7 / 1



Type-Based Termination

Summary: Type-based termination

Type-based termination is compositional.

Need only type, not code, of used functions.

Module-wise termination check.

Little overhead to classic type checking.

Strength depends on language of sizes.

Here: foundational concept of size...

Andreas Abel (LMU) Type-Based Termination AIM XV 8 / 1



Inflationary Iteration

Sizes as iteration stages

Inductive types are least fixed points.

ListA ∼= µF with F X = >+ A× X .

Approximating the fixed-point from below:

µ0 F = ⊥
µα+1 F = F (µαF )
µλ F =

⋃
α<λ µ

αF

ListA i = µiF gives lists of length < i .

For monotone F it holds that

µαF =
⋃
β<α

F (µβF )

Andreas Abel (LMU) Type-Based Termination AIM XV 9 / 1



Inflationary Iteration

Recursion principle

Transfinite recursion on sizes:

f : ∀i .A i → A (i + 1)

fix f : ∀i .A i

Base case: A 0 = >.

Limit case:
⋂
α<λ Aα ⊆ Aλ.

Typical use: A i = µiF → C i .

Basis of almost all work on type-based termination.

Can we avoid the side conditions?

Andreas Abel (LMU) Type-Based Termination AIM XV 10 / 1



Inflationary Iteration

Inflationary least fixed points

Take proven equation as definition of µαF !

µαF =
⋃
β<α

F (µβF )

Irrelevant: Reaches fixed point also for non-monotone F .

Relevant: No case on 0, + 1, and λ (limit).

Sizes α, β need not be classical ordinals.

Allows recursive definition of inductive types:

List A i = [j < i] & Maybe (A & List A j)

Bounded existential [j < i] & ... and cartesian product A & B.

Andreas Abel (LMU) Type-Based Termination AIM XV 11 / 1



Inflationary Iteration

Recursion principle

Well-founded recursion on sizes:

f : ∀i . (∀j < i .A j)→ A i

fix f : ∀i .A i

No conditions on A!

Definable in MiniAgda:

cofun fix : ([i : Size] → ([j < i] → A j) → A i) →
[i : Size] → A i

{ fix f i = f i (λ j → fix f j)

}

Andreas Abel (LMU) Type-Based Termination AIM XV 12 / 1



Inflationary Iteration

Inflationary greatest fixed points

Coinductive types are greatest fixed points.

ναF =
⋂
β<α

F (νβF )

StreamA i = ν iF with F X = A× X

StreamA i are streams of depth i .

Can be unrolled safely up to i times.

Stream A i = [j < i] → A & Stream A j

Andreas Abel (LMU) Type-Based Termination AIM XV 13 / 1



Inflationary Iteration

Programming streams

Deconstructing and constructing streams:

Stream A i = [j < i] → A & Stream A j

let tail [i : Size] (s : Stream A (i+1)) : Stream A i
= case (s i) { (a, as) → as }

cofun repeat (a : A) [i : Size] → Stream A i

{ repeat a i = λj → (a, repeat a j)
}

repeat is productive because j < i.

Andreas Abel (LMU) Type-Based Termination AIM XV 14 / 1



Inflationary Iteration

The famous Fibonacci stream

Zipping two streams with function f.

cofun zipWith : [i : Size] → (A → B → C) →
Stream A i → Stream B i → Stream C i

{ zipWith i f sa sb = λj →
case (sa j, sb j)
{ ((a, as), (b, bs)) → (f a b, zipWith j f as bs)

}

}

Fibonacci stream 0, 1, 1, 2, 3, 5, 8, 13, ...

cofun fib : [i : Size] → Stream Nat i

{ fib i = λ j → (0,

λ k → (1,

zipWith k add

(fib k)

(tail k (fib j))))

}

Andreas Abel (LMU) Type-Based Termination AIM XV 15 / 1



Mixed Induction-Coinduction

Mixed Induction-Coinduction

Classification of recursive data types

Inductive µ (lists, trees, Brouwer ordinals)
Coinductive ν (streams, processes)
Coinductive-inductive νµ (stream processors)
Other mixes...

How do mixed types fit into our framework?

Andreas Abel (LMU) Type-Based Termination AIM XV 16 / 1



Mixed Induction-Coinduction

Stream processors

Stream processors [Ghani, Hancock, Patterson] code continuous maps
on streams.

data SP a b = Get (a → SP a b)

| Put b (SP a b)

Get: We can either read an a from the input stream and enter a new
state depending on a, or

Put: write a b on the output stream and enter a new state.

run executes a SP.

run :: SP a b → [a] → [b]

run (Get f) (a : as) = run (f a) as

run (Put b sp) as = b : run sp as

Andreas Abel (LMU) Type-Based Termination AIM XV 17 / 1



Mixed Induction-Coinduction

Stream processors (cont.)

Continuity: An output must appear after finite input.
7 No infinite succession of Gets.
X Infinite sequence of Puts possible.

f : A→ SP

get f : SP
< ω

b : B sp : SP

put b sp : SP
≤ ω

Model SP by nesting µ into ν.

SP = νX .µY. (A→ Y )× (B × X )

We can restart getting after a put.

SP = µY. (A→ Y )× (B × SP)

Andreas Abel (LMU) Type-Based Termination AIM XV 18 / 1



Mixed Induction-Coinduction

Lexicographic recursion

Nested inflationary fixed-points:

SP α β =
⋂
α′<α

⋃
β′<β

(A→ SP α β′) + (B × SP α′ ∞)

∞ is closure ordinal.

Type defined by lexicographic recursion.

Pushing quantifiers in:

SP α β = (A→
⋃
β′<β

SP α β′) + (B ×
⋂
α′<α

SP α′ ∞)

Coinductive occurrence prefixed by universal/existential.

Sizing scheme ((α′,∞) vs. (α, β′)) represents nesting νµ.

Andreas Abel (LMU) Type-Based Termination AIM XV 19 / 1



Mixed Induction-Coinduction

Stream Processors in MiniAgda

Type def. and pattern synonyms:

SP i j = Either (A → [j’ < j] & SP i j’)
(B & ([i’ < i] → SP i’ #))

pattern get f = left f

pattern put b sp = right (b, sp)

run defined by lexicographic recursion over i , j .

cofun run : [i, j : Size] → SP i j →
Stream A # → Stream B i

{ run i j (get f) as = case f (head # as)
{ (j’, sp) → run i j’ sp (tail # as) }

; run i j (put b sp) as = λi’ → (b, run i’ # (sp i’) as)

}

Andreas Abel (LMU) Type-Based Termination AIM XV 20 / 1



Mixed Induction-Coinduction

Wrapping up

Type-based termination is compositional and local.

Inflationary iteration provides simple foundation.

(Co)induction is replaced by well-founded recursion on size.

Mixed types just fall in our lap.

Andreas Abel (LMU) Type-Based Termination AIM XV 21 / 1



Mixed Induction-Coinduction

There is more to it

Size language has 0,+1,∞,max and possibly +.

Bounded quantification induces subtyping, e.g.:

ListA i =
⋃
j<i

(>+ A× ListA j) covariant in A and i

Size is tree height/depth.
Other size assignments!?

Termination measures are lexicographic products of sizes.
What else do we need?

Most sizes are inferable.
Integrate size solving with higher-order unification!

Andreas Abel (LMU) Type-Based Termination AIM XV 22 / 1



Mixed Induction-Coinduction

Termination and Metavariables

Agda: a dependently typed language with interactive proof/program
development.

Metavariables stand for missing code

. . . filled in by Agda or the user.

Only well-typed solutions accepted.

Easy, because type checking is local.

Global properties like positivity and termination not checked.

Agda refuses to solve recursive metas; solution might be diverging.
=⇒ Integrate all static checks into type system!
=⇒ Smaller implementation, no corner cases, orthogonality.

Andreas Abel (LMU) Type-Based Termination AIM XV 23 / 1



Mixed Induction-Coinduction

Related Work

Type-based termination (transfinite recursion): see paper.

Circular proofs (well-founded recursion):
Dam, Sprenger, Simpson, Schoepp

Certifying termination proofs

Coinduction a la Nakano: Atkey, Birkedal et al.

Andreas Abel (LMU) Type-Based Termination AIM XV 24 / 1


	Introduction
	Type-Based Termination
	Inflationary Iteration
	Mixed Induction-Coinduction

