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Introduction

Introduction

Guarded recursive types (Nakano, LICS 2000)

(Negative) recursive types in type theory

Applications in semantics (abstracting step-indexing)

Applications in FRP (causality)

This talk: strong normalization
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Guarded types

Types and terms.

A,B ::= A→ B | IA | X | µXA
t, u ::= x | λxt | t u | next t | t ∗ u

Type equality: congruence closure of ` µXA = A[µXA/X ].

Typing Γ ` t : A.

Γ ` t : A

Γ ` next t : IA

Γ ` t : I (A→ B) Γ ` u : IA

Γ ` t ∗ u : IB

Γ ` t : A ` A = B

Γ ` t : B
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Reduction

Redex contraction t 7→ t ′.

(λxt) u 7→ t[u/x ]
next t ∗ next u 7→ next (t u)

Full one-step reduction t −→ t ′: Compatible closure of 7→.
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Recursion from recursive types

Guarded recursion combinator can be encoded.

f : IA→ A
B := µX .IX → A = IB → A
x : IB = I (IB → A)
x ∗ next x : IA
f (x ∗ next x) : A

ω := λx . f (x ∗ next x) : IB → A = B
Y := ω (nextω) : A

Y −→ f (nextω ∗ next (nextω)) −→ f (next (ω (nextω))) = f (next Y)

Full reduction −→ diverges.
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Restricted reduction

Restore normalization: do not reduce under next.

Relaxed: reduce only under next up to a certain depth.

Family −→n of reduction relations.

t 7→ t ′

t −→n t ′
t −→n t ′

next t −→n+1 next t ′

Plus compatibility rules for all other term constructors.

−→n is monotone in n (more fuel gets you further).

Goal: each −→n is strongly normalizing.
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Strong normalization as well-foundedness

t ∈ snn if −→n reduction starting with t terminates.

∀t ′. t −→n t ′ =⇒ t ′ ∈ snn

t ∈ snn

snn is antitone in n, since −→n occurs negatively.

More reductions =⇒ less termination.
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Inductive SN

Lambda-calculus:

~u ∈ SN

x ~u ∈ SN

t ∈ SN

λxt ∈ SN

t[u/x ]~u ∈ SN u ∈ SN

(λxt) u ~u ∈ SN

With evaluation contexts E ::= | E u:

∈ SN

E ∈ SN u ∈ SN

E u ∈ SN

E ∈ SN

E [x ] ∈ SN

t ∈ SN

λxt ∈ SN

E [t[u/x ]] ∈ SN u ∈ SN

E [(λxt) u] ∈ SN
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Inductive SN (ctd.)

Strong contraction t 7→SN t ′.

u ∈ SN

(λxt) u 7→SN t[u/x ]

“Strong head reduction” t −→SN t ′.

t 7→SN t ′

E [t] −→SN E [t ′]

SN with strong head reduction.

t −→SN t ′ t ′ ∈ SN

t ∈ SN
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SN with guarded types

Extending evaluation contexts: E ::= · · · | E ∗ u | next t ∗ E
Extending strong contraction:

u ∈ SNn

(λxt) u 7→SN
n t[u/x ] next t ∗ next u 7→SN

n next (t u)

Adding index to strong head reduction:

t 7→SN
n t ′

E [t] −→SN
n E [t ′]

t −→SN
n t ′ t ′ ∈ SNn

t ∈ SNn

Adding rule for introduction:

next t ∈ SN0

t ∈ SNn

next t ∈ SNn+1

SNn is antitone in n.
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Notions of s.n. coincide?

Rules for SNn are closure properties of snn.

SNn ⊆ snn follows by induction on SNn.

Converse snn ⊆ SNn does not hold!

Counterexamples are ill-typed s.n. terms, e.g.,

(λx . x) ∗ y or (next x) y .

Solution: consider only well-typed terms.

Proof of t ∈ snn =⇒ t ∈ SNn by case distinction on t: neutral
(E [x ]), introduction (λxt, next t), or weak head redex.
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Saturated sets (semantic types)

Types are modeled by sets A of s.n. terms.

Semantic function space should contain λs and terms that weak head
reduce to λs.

n-closure An of A inductively:

t ∈ A
t ∈ An

E ∈ SNn

E [x ] ∈ An

t −→SN
n t ′ t ′ ∈ An

t ∈ An

A is n-saturated (A ∈ SATn) if An ⊆ A.

Saturated sets are non-empty (contain e.g. the variables).
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Constructions on semantic types

Function space and “later”:

A → B = {t | t u ∈ B for all u ∈ A}

InA = {next t | t ∈ A if n > 0}n

If A,B ∈ SATn then A → B ∈ SATn.

I0A ∈ SAT0.

If A ∈ SATn then In+1A ∈ SATn+1.

Abel Vezzosi (Chalmers/GU) SN Guarded Types ITU 2014 13 / 19



Introduction

Type interpretation

Type interpretation JAKn ∈ SATn

JA→ BKn =
⋂

n′≤n(JAKn′ → JBKn′)

JIAK0 = I0 SN0 = {next t}0
JIAKn+1 = In+1 JAKn
JµXAKn = JA[µXA/X ]Kn

By lex. induction on (n, size(A)) where size(IA) = 0.

Requires recursive occurrences of X to be guarded by a I.
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Type soundness

Context interpretation:

ρ ∈ JΓKn ⇐⇒ ρ(x) ∈ JAKn for all (x :A) ∈ Γ

Identity substitution id ∈ JΓKn since x ∈ JAKn.

Type soundness: if Γ ` t : A then tρ ∈ JAKn for all n and ρ ∈ JΓKn.

Corollary: t ∈ SNn for all n.
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Formalization in Agda

Intensional type theory does not support quotients well: in our case,
types modulo type equality.

=⇒ use infinite type expressions instead (coinduction).

Only guarded types admit an interpretation.

Typing judgement needs to be restricted to guarded types.

=⇒ use mixed inductive-coinductive representation of types to
express guard condition.

A,B ::= A→ B | IA′

A′,B ′ ::=co A

Intensional (propositional) equality too weak for coinductive types.

=⇒ add an extensionality axiom for our coinductive type.
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Well-typed terms

We used intrinsically well-typed terms (data structure indexed by
typing context and type expression).

Second Kripke dimension (context) required “everywhere”, e.g., in SN
and JAK.
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Conclusions

Strong normalization is a new result, albeit expected.

Main focus: Agda formalization.

Needed dedication (mostly Andrea’s).

Forthcoming APLAS 2014 paper (literate Agda, fully
machine-checked).

Fuzzy hope that HoTT will improve equality situation for coinductive
types.
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