Formal Languages, Coinductively Formalized

Andreas Abel

Department of Computer Science and Engineering
Chalmers and Gothenburg University

Termination and Circular Proofs
Department of Mathematics (LAMA)
Université Savoie Mont Blanc, Chambery, France
19 July 2017

Andreas Abel (GU) Languages coinductively Chambery 2017 1/38

Contents

@ Formal Languages

@ Coinductive Types and Copatterns
© Sized Coinductive Types

@ Automata

© Bisimiliarity

@ Conclusions

Andreas Abel (GU) Languages coinductively Chambery 2017 2 /38

Formal Languages

Formal Languages

(]

A language is a set of strings over some alphabet A.

Real life examples:
o Orthographically and grammatically correct English texts (infinite set).
o Orthographically correct English texts (even bigger set).
o List of university employees plus their phone extension.
AbelAndreas1731,CoquandThierry1030,DybjerPeter1035, . ..

Programming language examples:

o The set of grammatically correct JAVA programs.
e The set of decimal numbers.
o The set of well-formed string literals.

Languages can describe protocols, e.g. file access.
o A={o,r,w,c} (open, read, write, close)
e Read-only access: orc, oc, orrrc, orcorrrcoc, . ..
o lllegal sequences: c, rr, orr, oco, ooc, ...

Andreas Abel (GU) Languages coinductively Chambery 2017 3 /38

Formal Languages

Running Example: Even binary numbers

Even binary numbers: 0, 10, 100, 110, 1000, 1010, ...
Excluded: 00, 010 (non-canonical); 1, 11 (odd) ...
Alphabet A = {a, b} where a is zero and b is one.

So E = {a, ba, baa, bba, baaa, baba, . .. }.

Andreas Abel (GU) Languages coinductively Chambery 2017 4 /38

Formal Languages

Tries

An infinite trie is a node-labeled A-branching tree.
l.e., each node has one branch for each letter a € A.

Languages: representable by infinite Bool-labelled tries.

To check whether word a; - - - a, is in the language:
o We start at the root.
o At step i, we choose branch a;.
o At the final node, the label tells us whether the word is in the language
or not.

A trie memoizes a function f : List A — Bool.

Andreas Abel (GU) Languages coinductively Chambery 2017 5 /38

Trie of E

Andreas Abel (GU) Languages coinductively Chambery 2017 6 /38

Formal Languages

Regular Languages

@ A trie is regular if it has only finitely many different subtrees.

@ Each node of the trie corresponds to one of these languages:

E

Z
N
£
0

Andreas Abel (GU)

even binary numbers
strings ending in a
strings not ending in b
the empty string

nothing (empty language)

Languages coinductively Chambery 2017

7/ 38

Languages coinductively Chambery 2017 8 /38

Formal Languages

Cutting duplications at depth 3

Andreas Abel (GU) Languages coinductively Chambery 2017 9 /38

Bending branches . ..

Andreas Abel (GU) Languages coinductively Chambery 2017 10 / 38

Formal Languages

Final Automata

@ We have arrived at a familiar object: a final automaton.
@ Depending on what we cut, we get different automata for E.

o If we cut all duplicate subtrees, we get the minimal automaton.

Andreas Abel (GU) Languages coinductively Chambery 2017

11 / 38

Formal Languages

Removing duplicate subtrees II. ..

Andreas Abel (GU) Languages coinductively Chambery 2017 12 / 38

Formal Languages

Bending branches Il ...

Andreas Abel (GU) Languages coinductively Chambery 2017 13 / 38

Formal Languages

Extensional Equality of Automata

o All automata for £ unfold to the same trie.
@ This gives a extensional notion of automata equality:

@ Recognizing the same language.
@ l.e., unfold to the same trie.

Andreas Abel (GU) Languages coinductively Chambery 2017

14 / 38

Formal Languages

Automata, Formally

@ An automaton consists of
@ A set of states S.

@ A function v : S — Bool singling out the accepting states.
© A transition function § : S —+ A — S.

seS|vs|dsaldsb
E X € 4
€ v 0 0
0 X1 0 0
Z X| N Z
N v N Z

@ Language automaton

@ State = language ¢ accepted when starting from that state.
@ v/ Language ¢ is nullable (accepts the empty word)?
© ola={w | aw € ¢}: Brzozowski derivative.

Andreas Abel (GU) Languages coinductively Chambery 2017 15 / 38

Formal Languages

Differential equations

@ Language E and friends can be specified by differential equations:

o v gives the initial value.

v = false
0bx = 0
VE = true
dex = 0
vE = false
0Ea = ¢
0Eb = Z

v N
ONa
ONDb
vZ
60Za
0Zb

@ For these simple forms, solutions exist always.

What is the general story?
Languages coinductively

Chambery 2017

16 / 38

Final Coalgebras

o (Weakly) final coalgebra.

S— 1 L F(©S)

coit f F(coit f)

vF — . F(uF)
e Coiteration = finality witness.
force o coit f = F (coitf) o f
o Copattern matching defines coit by corecursion:
force (coit f s) = F (coit f) (f's)
Languages coinductively Chambery 2017 17 / 38

Coinductive Types and Copatterns

Automata as Coalgebra

@ Arbib & Manes (1986), Rutten (1998), Traytel (2016).

@ Automaton structure over set of states S:

o : S — Bool “output’: acceptance
t : S—=(A=Y9) transition

e Automaton is coalgebra with F(S) = Bool x (A — S).

(o,t) : S — Bool x(A—S)

Andreas Abel (GU) Languages coinductively Chambery 2017 18 / 38

Coinductive Types and Copatterns

Formal Languages as Final Coalgebra

s ©8 . Bool x (A S)
£:=coit{o,t) idx (coit{o,t) o)
(v,9)
Lang Bool x (A — Lang)
vol = o “nullable”
v(ls) = os
dol = (Lo)ot (Brzozowski) derivative
b (fs) = Lo(ts)

d(fs)a = ((tsa)

Andreas Abel (GU) Languages coinductively Chambery 2017 19 / 38

Coinductive Types and Copatterns

Languages — Rule-Based

e Coinductive tries Lang defined via observations/projections and ¢:
@ Lang is the greatest type consistent with these rules:
I : Lang /I : Lang a:A
vl : Bool dla:Lang
e Empty language) : Lang.
o Language of the empty word ¢ : Lang defined by copattern matching:
ve = true : Bool
dea = 0 : Lang

Andreas Abel (GU) Languages coinductively Chambery 2017 20 / 38

Coinductive Types and Copatterns

Corecursion

o Empty language () : Lang defined by corecursion:

v = false
dha = 0
@ Language union k U [is pointwise disjunction:
vkUul) = vkvuvl
d(kul)a = dkaUodla

@ Language composition k - | A la Brzozowski:

vik-1) = vkAvl
on [(Gka-hUGdla if vk
O(k-Na = { (0ka-1) otherwise

@ Not accepted because U is not a constructor.

Andreas Abel (GU) Languages coinductively Chambery 2017 21 /38

Sized Coinductive Types

Construction of greatest fixed-points

@ lteration to greatest fixed-point.

T2FM2FT) 2 2 F(T) = (| F'(T

n<w
e Naming v'F = Fi(T).
N F = T
v F = F(V"F)
W F = e V"F
@ Deflationary iteration.

Vi F = ﬂj<iF(yfF)

Andreas Abel (GU) Languages coinductively Chambery 2017

22 / 38

Sized Coinductive Types

Sized coinductive types

@ Add to syntax of type theory

Size type of ordinals

i ordinal variables

V' F sized coinductive type
Size< | type of ordinals below i

e Bounded quantification Vj<i. A= (j : Size< i) — A.
@ Well-founded recursion on ordinals, roughly:
fovi(Vj<i.F) = vF
fixf :Vi.viF

Andreas Abel (GU) Languages coinductively Chambery 2017

23 / 38

Sized Coinductive Types

Sized coinductive type of languages

Lang i = Bool x (Vj<i. A — Lang)

I: Langi I : Langi J<i a:A

v 1 Bool d1{j}a:Langj

() : Vi.Lang i by copatterns and induction on i:

v(0{i}) = false : Bool
s@{iN{ta = 04} - Langj

Note j < /.

On right hand side, () : Vj<i.Lang (coinductive hypothesis).

Andreas Abel (GU) Languages coinductively Chambery 2017

24 / 38

Sized Coinductive Types

Type-based guardedness checking

@ Union preserves size/guardeness:

k : Langi l:Langi
kU /l:Langi

v(kUl) = vkVvuvl
d(kuh{jta = dk{jjaudl{j;a

e Composition is accepted and also guardedness-preserving:

k : Langi l:Langi

k-I:Langi

vik-1) = vkAvl

i , (Gk{jta-NUdl{jla ifvk
!

O(k-N1{jta { (Ok{jta-1) otherwise

Andreas Abel (GU) Languages coinductively Chambery 2017

25 / 38

(Not Necessarily Finite) Automata

@ Recapitulate automata a la Rutten (1998):

S : Set state set (could be infinite)
v : S — Bool accepting state?
o : SxA—=S transition function

@ Automaton is record/object.

record DA (S : Set) : Set where
field v : (s: S) — Bool
6§ :(s:5((a:A)—S

vs : V{i} (ss: List i S) — Bool
vs ss = List.any v ss

8s : V{i} (ss: List i S) (a: A) — List i S
8s ss a = List.map (A s — § s a) ss

Andreas Abel (GU) Languages coinductively Chambery 2017

26 / 38

Constructing Automata

@ Automaton for the empty language 0:

0A:DA T
v DA s
5 DA s a

Zalse . 3

@ Automaton for the empty word &:

€A : DA Bool

v eA b = b
8 eA b a = false

Andreas Abel (GU) Languages coinductively

Chambery 2017

27 / 38

Constructing Automata

Accepting a specific character a.

data 3States : Set where

init acc err : 3States

charA : (a: A) — DA 3States

< <

(e

(/]

(charA a) init = false a

() acc = true @
(charA a) err = false —a
(charA a) init x = @
if | a xJ then acc else err

(charA a) acc x = err

(charA a)

err X = €rr

Andreas Abel (GU) Languages coinductively Chambery 2017

28 / 38

Unioning Automata

Union automaton.
@ Transition in lock-step in 51 X S».

@ Accept if 51 or s, is accepting.

&b V{Sl 52} (dal : DA 51) (d32 : DA 52) — DA (51 X 52)
\Y (da1 b dag) (51 , 52) = vda s V v day s
8 (day ® dap) (s1,s) a = 8daysia, Sdapsa

Power automaton: being in several states at the same time.

powA : V{S} (da: DA S) — DA (List co S)
v (powA da) ss = vsdass
5 (powA da) ss a = 8sdassa

Andreas Abel (GU) Languages coinductively Chambery 2017 29 / 38

Automaton for Language Composition

Compose two automata, picking initial state s, of das.

°
a
b
°

Andreas Abel (GU) Languages coinductively Chambery 2017 30/ 38

Automaton for Language Composition

A composed state is one s; : S; and possibly several ss, C S,.

composeA : V{51 S}
(d31 - DA 51) (52 : 52) (d32 - DA 52) — DA (51 x List oo 52)

We accept if in a final state in S,
or the final state S; if the initial state in S, is accepting.

v (composeA da; s; dap) (s1, ss2) =
(v da; s1 A vday sp) V vs das ssp

If in final state in S; we also transition from initial state in S».

5 (composeA daj sp daz) (s1,ss) a =
8 da; s1 a, 8s dap (if v daj s1 then s i@ ss; else ss5) a

Andreas Abel (GU) Languages coinductively Chambery 2017 31 /38

Automaton for Language Iteration

o Kleene star of automaton with initial state s;.

@ New initial (and final state) nothing.

o Additionally transit from final states to successors of sg.

Andreas Abel (GU) Languages coinductively Chambery 2017 32 /38

Automata: Taking Stock

We now can translate regular expressions to deterministic automata.

Model implementations of automata very direct.

°
°

@ All constructions preserve finiteness.

@ TODO: connect to efficient implementation.
°

All constructions have been formally verified in Agda.

Andreas Abel (GU) Languages coinductively Chambery 2017 33 /38

Bisimiliarity

Bisimilarity
@ Equality of infinite tries is defined coinductively.
@ = s the greatest relation consistent with

| = k | =k a:A
vli=vk 0la=dka

@ Equivalence relation via provable =refl, =2sym, and “trans.

trans o (pil=Zk)= (g k=Zm)—>1=m
=y (Ztranspq) = =trans(=vp)(=rq) vi=vk
~)(Ztranspg)a = Ztrans(=dpa)(=oga) : ola=oma

Congruence for language constructions.

k=K 1=/
(kUK)= (U

=U

Andreas Abel (GU) Languages coinductively Chambery 2017 34 / 38

Proving bisimilarity
@ Composition distributes over union.
dist : VkIm. k-(lUm)=(k-1)U (k-m)

@ Proof. Observation ¢ _ a, case k nullable, / not nullable.

d(k-(lum))a

= |oka-(lUm) Uo(lum)a by definition

= ((Ska~IU(5ka~m)‘U(5/aU(5ma) by coind. hyp. (wish)
= (Jka-l1Udla)U(dka-mUdma) by union laws

= 0((k-)U(k-m))a by definition

e Formal proof attempt.
~§ dist a = trans (2U [dist] ...) ...

e Not coiterative / guarded by constructors!

Andreas Abel (GU) Languages coinductively Chambery 2017 35 /38

Guardedness-preserving bisimilarity proofs

@ Sized bisimilarity = is greatest family of relations consistent with

I~k I~k j<i a:A _
vi=vk dlazy dka N

@ Equivalence and congruence rules are guardedness preserving.

=trans (Pl k)= (g kEm) 12 m
=~y (Ztrans p q) = =trans(Z=vp)(=rq) vi=vk
=5 (Ztranspq)ja = Ztrans(=0pja)(=iqja) : dla= ima

@ Coinductive proof of dist accepted.

=~§ dist j a = =trans j (=U | (dist j) | (=refl) ...

Andreas Abel (GU) Languages coinductively Chambery 2017 36 / 38

Conclusions

Conclusions

Tracking guardedness in types allows

e natural modular corecursive definition
e natural bisimilarity proof using equation chains

Implemented in Agda (ongoing)
Abel et al (POPL 13): Copatterns
Abel/Pientka (ICFP 13): Well-founded recursion with copatterns

Abel (CMCS 16): Equational Reasoning about Formal Languages in
Coalgebraic Style

Andreas Abel (GU) Languages coinductively Chambery 2017 37 /38

http://www.cse.chalmers.se/~abela/jlamp17.pdf
http://www.cse.chalmers.se/~abela/jlamp17.pdf

Related work

e Hagino (1987): Coalgebraic types
o Cockett et al.: Charity

@ Dmitriy Traytel (PhD TU Munich, 2015): Languages coinductively in
Isabelle

e Kozen, Silva (2016): Practical coinduction
@ Hughes, Pareto, Sabry (POPL 1996)
e Papers on sized types (1998-2015): e.g. Sacchini (LICS 2013)

Andreas Abel (GU) Languages coinductively Chambery 2017 38 /38

	Formal Languages
	Coinductive Types and Copatterns
	Sized Coinductive Types
	Automata
	Bisimiliarity
	Conclusions

