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Formal Languages

Formal Languages

(]

A language is a set of strings over some alphabet A.

Real life examples:
o Orthographically and grammatically correct English texts (infinite set).
o Orthographically correct English texts (even bigger set).
o List of university employees plus their phone extension.
AbelAndreas1731,CoquandThierry1030,DybjerPeter1035, . ..

Programming language examples:

o The set of grammatically correct JAVA programs.
e The set of decimal numbers.
o The set of well-formed string literals.

Languages can describe protocols, e.g. file access.
o A={o,r,w,c} (open, read, write, close)
e Read-only access: orc, oc, orrrc, orcorrrcoc, . ..
o lllegal sequences: c, rr, orr, oco, ooc, ...
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Formal Languages

Running Example: Even binary numbers

Even binary numbers: 0, 10, 100, 110, 1000, 1010, ...
Excluded: 00, 010 (non-canonical); 1, 11 (odd) ...
Alphabet A = {a, b} where a is zero and b is one.

So E = {a, ba, baa, bba, baaa, baba, . .. }.
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Formal Languages

Tries

An infinite trie is a node-labeled A-branching tree.
l.e., each node has one branch for each letter a € A.

Languages: representable by infinite Bool-labelled tries.

To check whether word a; - - - a, is in the language:
o We start at the root.
o At step i, we choose branch a;.
o At the final node, the label tells us whether the word is in the language
or not.

A trie memoizes a function f : List A — Bool.
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Trie of E
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Formal Languages

Regular Languages

@ A trie is regular if it has only finitely many different subtrees.

@ Each node of the trie corresponds to one of these languages:

E

Z
N
£
0
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even binary numbers
strings ending in a
strings not ending in b
the empty string

nothing (empty language)
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Formal Languages

Cutting duplications at depth 3
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Bending branches . ..
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Formal Languages

Final Automata

@ We have arrived at a familiar object: a final automaton.
@ Depending on what we cut, we get different automata for E.

o If we cut all duplicate subtrees, we get the minimal automaton.
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Formal Languages

Removing duplicate subtrees II. ..
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Formal Languages

Bending branches Il ...
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Formal Languages

Extensional Equality of Automata

o All automata for £ unfold to the same trie.
@ This gives a extensional notion of automata equality:

@ Recognizing the same language.
@ l.e., unfold to the same trie.
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Formal Languages

Automata, Formally

@ An automaton consists of
@ A set of states S.

@ A function v : S — Bool singling out the accepting states.
© A transition function § : S —+ A — S.

seS|vs|dsaldsb
E X € 4
€ v 0 0
0 X1 0 0
Z X| N Z
N v N Z

@ Language automaton

@ State = language ¢ accepted when starting from that state.
@ v/ Language ¢ is nullable (accepts the empty word)?
© ola={w | aw € ¢}: Brzozowski derivative.
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Formal Languages

Differential equations

@ Language E and friends can be specified by differential equations:

o v gives the initial value.

v = false
0bx = 0
VE = true
dex = 0
vE = false
0Ea = ¢
0Eb = Z

v N
ONa
ONDb
vZ
60Za
0Zb

@ For these simple forms, solutions exist always.

What is the general story?
Languages coinductively

Chambery 2017
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Final Coalgebras

o (Weakly) final coalgebra.

S— 1 L F(©S)

coit f F(coit f)

vF — . F(uF)
e Coiteration = finality witness.
force o coit f = F (coitf) o f
o Copattern matching defines coit by corecursion:
force (coit f s) = F (coit f) (f's)
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Coinductive Types and Copatterns

Automata as Coalgebra

@ Arbib & Manes (1986), Rutten (1998), Traytel (2016).

@ Automaton structure over set of states S:

o : S — Bool “output’: acceptance
t : S—=(A=Y9) transition

e Automaton is coalgebra with F(S) = Bool x (A — S).

(o,t) : S — Bool x(A—S)
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Coinductive Types and Copatterns

Formal Languages as Final Coalgebra

s ©8 . Bool x (A S)
£:=coit{o,t) idx (coit{o,t) o )
(v,9)
Lang Bool x (A — Lang)
vol = o “nullable”
v(ls) = os
dol = (Lo )ot (Brzozowski) derivative
b (fs) = Lo(ts)

d(fs)a = ((tsa)
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Coinductive Types and Copatterns

Languages — Rule-Based

e Coinductive tries Lang defined via observations/projections  and ¢:
@ Lang is the greatest type consistent with these rules:
I : Lang /I : Lang a:A
vl : Bool dla:Lang
e Empty language ) : Lang.
o Language of the empty word ¢ : Lang defined by copattern matching:
ve = true : Bool
dea = 0 : Lang
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Coinductive Types and Copatterns

Corecursion

o Empty language () : Lang defined by corecursion:

v = false
dha = 0
@ Language union k U [ is pointwise disjunction:
vkUul) = vkvuvl
d(kul)a = dkaUodla

@ Language composition k - | A la Brzozowski:

vik-1) = vkAvl
on [ (Gka-hUGdla if vk
O(k-Na = { (0ka-1) otherwise

@ Not accepted because U is not a constructor.
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Sized Coinductive Types

Construction of greatest fixed-points

@ lteration to greatest fixed-point.

T2FM2FT) 2 2 F(T) = (| F'(T

n<w
e Naming v'F = Fi(T).
N F = T
v F = F(V"F)
W F = e V"F
@ Deflationary iteration.

Vi F = ﬂj<iF(yfF)
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Sized Coinductive Types

Sized coinductive types

@ Add to syntax of type theory

Size type of ordinals

i ordinal variables

V' F sized coinductive type
Size< | type of ordinals below i

e Bounded quantification Vj<i. A= (j : Size< i) — A.
@ Well-founded recursion on ordinals, roughly:
fovi(Vj<i.F) = vF
fixf :Vi.viF
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Sized Coinductive Types

Sized coinductive type of languages

Lang i = Bool x (Vj<i. A — Lang)

I: Langi I : Langi J<i a:A

v 1 Bool d1{j}a:Langj

() : Vi.Lang i by copatterns and induction on i:

v(0{i}) = false : Bool
s@{iN{ta = 04} - Langj

Note j < /.

On right hand side, () : Vj<i.Lang  (coinductive hypothesis).
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Sized Coinductive Types

Type-based guardedness checking

@ Union preserves size/guardeness:

k : Langi l:Langi
kU /l:Langi

v(kUl) = vkVvuvl
d(kuh{jta = dk{jjaudl{j;a

e Composition is accepted and also guardedness-preserving:

k : Langi l:Langi

k-I:Langi

vik-1) = vkAvl

i , (Gk{jta-NUdl{jla ifvk
!

O(k-N1{jta { (Ok{jta-1) otherwise
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(Not Necessarily Finite) Automata

@ Recapitulate automata a la Rutten (1998):

S : Set state set (could be infinite)
v : S — Bool accepting state?
o : SxA—=S transition function

@ Automaton is record/object.

record DA (S : Set) : Set where
field v : (s: S) — Bool
6§ :(s:5((a:A)—S

vs : V{i} (ss: List i S) — Bool
vs ss = List.any v ss

8s : V{i} (ss: List i S) (a: A) — List i S
8s ss a = List.map (A s — § s a) ss
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Constructing Automata

@ Automaton for the empty language 0:

0A:DA T
v DA s
5 DA s a

Zalse . 3

@ Automaton for the empty word &:

€A : DA Bool

v eA b = b
8 eA b a = false
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Constructing Automata

Accepting a specific character a.

data 3States : Set where

init acc err : 3States

charA : (a: A) — DA 3States

< <

(e

(/]

(charA a) init = false a

( ) acc = true @
(charA a) err = false —a
(charA a) init x = @
if | a xJ then acc else err

(charA a) acc x = err

(charA a)

err X = €rr

Andreas Abel (GU) Languages coinductively Chambery 2017

28 / 38



Unioning Automata

Union automaton.
@ Transition in lock-step in 51 X S».

@ Accept if 51 or s, is accepting.

&b V{Sl 52} (dal : DA 51) (d32 : DA 52) — DA (51 X 52)
\Y (da1 b dag) (51 , 52) = vda s V v day s
8 (day ® dap) (s1,s) a = 8daysia, Sdapsa

Power automaton: being in several states at the same time.

powA : V{S} (da: DA S) — DA (List co S)
v (powA da) ss = vsdass
5 (powA da) ss a = 8sdassa
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Automaton for Language Composition

Compose two automata, picking initial state s, of das.

°
a
b
°
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Automaton for Language Composition

A composed state is one s; : S; and possibly several ss, C S,.

composeA : V{51 S}
(d31 - DA 51) (52 : 52) (d32 - DA 52) — DA (51 x List oo 52)

We accept if in a final state in S,
or the final state S; if the initial state in S, is accepting.

v (composeA da; s; dap) (s1, ss2) =
(v da; s1 A vday sp) V vs das ssp

If in final state in S; we also transition from initial state in S».

5 (composeA daj sp daz) (s1,ss) a =
8 da; s1 a, 8s dap (if v daj s1 then s i@ ss; else ss5) a
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Automaton for Language Iteration

o Kleene star of automaton with initial state s;.

@ New initial (and final state) nothing.

o Additionally transit from final states to successors of sg.
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Automata: Taking Stock

We now can translate regular expressions to deterministic automata.

Model implementations of automata very direct.

°
°

@ All constructions preserve finiteness.

@ TODO: connect to efficient implementation.
°

All constructions have been formally verified in Agda.
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Bisimiliarity

Bisimilarity
@ Equality of infinite tries is defined coinductively.
@ = s the greatest relation consistent with

| = k | =k a:A
vli=vk 0la=dka

@ Equivalence relation via provable =refl, =2sym, and “trans.

trans o (pil=Zk)= (g k=Zm)—>1=m
=y (Ztranspq) = =trans(=vp)(=rq)  vi=vk
~)(Ztranspg)a = Ztrans(=dpa)(=oga) : ola=oma

Congruence for language constructions.

k=K 1=/
(kUK)= (U

=U
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Proving bisimilarity
@ Composition distributes over union.
dist : VkIm. k-(lUm)=(k-1)U (k-m)

@ Proof. Observation ¢ _ a, case k nullable, / not nullable.

d(k-(lum))a

= |oka-(lUm) Uo(lum)a by definition

= ((Ska~IU(5ka~m)‘U(5/aU(5ma) by coind. hyp. (wish)
= (Jka-l1Udla)U(dka-mUdma) by union laws

= 0((k-)U(k-m))a by definition

e Formal proof attempt.
~§ dist a = trans (2U [dist] ...) ...

e Not coiterative / guarded by constructors!
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Guardedness-preserving bisimilarity proofs

@ Sized bisimilarity = is greatest family of relations consistent with

I~k I~k j<i a:A _
vi=vk dlazy dka N

@ Equivalence and congruence rules are guardedness preserving.

=trans (Pl k)= (g kEm) 12 m
=~y (Ztrans p q) = =trans(Z=vp)(=rq) vi=vk
=5 (Ztranspq)ja = Ztrans(=0pja)(=iqja) : dla= ima

@ Coinductive proof of dist accepted.

=~§ dist j a = =trans j (=U | (dist j) | (=refl ) ...
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Conclusions

Conclusions

Tracking guardedness in types allows

e natural modular corecursive definition
e natural bisimilarity proof using equation chains

Implemented in Agda (ongoing)
Abel et al (POPL 13): Copatterns
Abel/Pientka (ICFP 13): Well-founded recursion with copatterns

Abel (CMCS 16): Equational Reasoning about Formal Languages in
Coalgebraic Style
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