Type Structures and Normalization by Evaluation for System F^{ω}

Andreas Abel

Department of Computer Science Ludwig-Maximilians-University Munich

Computer Science Logic (CSL'09)
Coimbra, Portugal
8 September 2009

Introduction

- Normalizers appear in compilers (e.g., type-directed partial evaluation [Danvy,Filinski])
- and HOL theorem provers (Isabelle, Coq, Agda).

Normalization by evaluation is a framework to turn an evaluator for closed expressions (stop at lambda) into a normalizer for open expressions (go under lambda).

- Has clear semantic foundations.
- Is strong for extensional normalization (eta).
- My goal: NbE for Calculus of Constructions and Coq.

- You have: an interpreter ((_)_).
- You buy: my reifyer (_ \ _ _).
- You get for free: a full normalizer!

- You have: an interpreter ((_)_).
- You buy: my reifyer (_ \ _ _).
- You get for free: a full normalizer!

- You have: an interpreter ((_)_).
- You buy: my reifyer (_ \ _ _).
- You get for free: a full normalizer!

- You have: an interpreter ((_)_).
- You buy: my reifyer (_ \ _ _).
- You get for free: a full normalizer!

How to Reify a Function

- Functions are thought of as black boxes.
- How to print the code of a function?
- Apply it to a fresh variable!

$$\downarrow(f) = \lambda x. \downarrow(f(x))
\downarrow(x \vec{d}) = x \downarrow(\vec{d})$$

 Computation needs to be extended to handle variables (unknowns).

Choices of Semantics

- \bullet β -normal forms (Agda 2, Ulf Norell)
- Weak head normal forms (Constructive Engine, Randy Pollack)
- Explicit substitutions (Twelf, Pfenning et.al.)
- Closures (your favorite pure functional language, Epigram 2)
- Virtual machine code (Coq: ZINC machine, Leroy/Gregoire)
- Native machine code (Cayenne: i386, Dirk Kleeblatt)

These are all (partial) applicative structures.

Applicative Structures

An applicative structure consists of:

- A set D.
- Application operation $_\cdot _: D \times D \to D$.
- Interpretation $(t)_{\eta} \in D$ for term t and environment η , satisfying:

$$\begin{array}{rcl} (x)_{\eta} & = & \eta(x) \\ (r s)_{\eta} & = & (r)_{\eta} \cdot (s)_{\eta} \\ (\lambda x t)_{\eta} \cdot d & = & (t)_{\eta[x \mapsto d]} \end{array}$$

Simple examples:

- **1** D = $(Tm/=_{\beta})$ terms modulo β -equality.

Applicative Structures with Variables

- For reification, enrich D with all neutral objects $x d_1 \dots d_n$, where x a variable and $d_1, \dots, d_n \in D$.
- Application satisfies:

$$(x\,\vec{d})\cdot d = x\,\vec{d}\,d$$

- Examples:
 - **1** D = $(Tm/=_{\beta})$ terms modulo β -equality.
 - 2 $D \cong Var \times D^* + [D \rightarrow D]$ Scott domain with neutrals.

β-NbE for Untyped Lambda-Calculus

Let $I = \lambda y$. y identity.

$$\downarrow \llbracket \lambda x. I x I \rrbracket = \lambda x_1. \downarrow (\llbracket \lambda x. I x I \rrbracket \cdot x_1) \\
= \lambda x_1. \downarrow (\llbracket \lambda x. I x I \rrbracket \cdot x_1) \\
= \lambda x_1. \downarrow (\llbracket I x I \rrbracket_{x \to x_1}) \\
= \lambda x_1. \downarrow (\llbracket I I x I \rrbracket_{x \to x_1}) \\
= \lambda x_1. \downarrow (\llbracket I \rrbracket \cdot \llbracket x \rrbracket_{x \to x_1} \cdot \llbracket I \rrbracket) \\
= \lambda x_1. \downarrow (\llbracket y \rrbracket_{y \to \llbracket x \rrbracket_{x \to x_1}} \cdot \llbracket I \rrbracket) \\
= \lambda x_1. \downarrow (\llbracket y \rrbracket_{y \to \llbracket x \rrbracket_{x \to x_1}} \cdot \llbracket I \rrbracket) \\
= \lambda x_1. \downarrow (\llbracket x \rrbracket_{x \to x_1} \cdot \llbracket I \rrbracket) \\
= \lambda x_1. \chi_1 (\lambda x_2. \downarrow x_2) \\
= \lambda x_1. \chi_1 (\lambda x_2. \chi_2)$$

System F^{ω}

- Girard's System F^{ω} is a term calculus for HOL.
 - Impredicative.
 - Computation on the type-level.
- Kinds (arities of type constructors).

$$\kappa ::= * \mid \kappa \to \kappa'$$

• Types and type constructors (simply-kinded lambda-calculus).

$$T, U, V ::= X \mid \lambda X : \kappa. T \mid T U \mid \rightarrow \mid \forall^{\kappa}$$

Objects (polymorphic lambda-calculus).

$$t, u, v ::= x \mid \lambda x : T \cdot t \mid t u \mid \Lambda X : \kappa \cdot t \mid t U$$

Kinding, Typing, and Equality

- Type level.
 - **1** Kinding context $\Xi ::= X_1 : \kappa_1, \ldots, X_n : \kappa_n$.
 - 2 Kinding $\Xi \vdash T : \kappa$.
 - **3** Equality $\Xi \vdash T = T' : \kappa$.
- Object level.
 - **1** Typing context $\Gamma ::= x_1 : T_1, \dots, x_n : T_n$.
 - 2 Typing Ξ ; $\Gamma \vdash t : T$.
 - **3** Equality Ξ ; $\Gamma \vdash t = t' : T$.

NbE for System F^{ω}

- Type normalization.
 - Organization of types into kinded type structure.
 - Kind-directed reification.
 - Soundness of NbE by glueing type structure.
- Object normalization.
 - Organization of objects into typed object structure.
 - 2 Type-directed reification.
 - Soundness of NbE by glueing object structure.

Type Structures

- Kripke family $\mathcal{T}_{=}^{\kappa}$ (monotonic in Ξ).
- Constants $\rightarrow \in \mathcal{I}_{\Xi}^{* \to * \to *}$, $\forall^{\kappa} \in \mathcal{I}_{\Xi}^{(\kappa \to *) \to *}$.
- Application $F \cdot G \in \mathcal{T}_{\Xi}^{\kappa'}$ for $F \in \mathcal{T}_{\Xi}^{\kappa \to \kappa'}$ and $G \in \mathcal{T}_{\Xi}^{\kappa}$.
- Evaluation $[\![T]\!]_{\rho}$ for $T \in \mathsf{Ty}_{\Xi}^{\kappa}$.
- Evaluation laws as for applicative structure.
- Examples for type structure:
 - **1** Syntax: $\mathcal{T}_{=}^{\kappa} = (\mathsf{Ty}_{=}^{\kappa} \mathsf{modulo} \mathsf{equality}).$
 - 2 Values: $T_{=}^{\kappa} = D$.
- Type structure *is term-like* if it has the variables $X \in \mathcal{T}_{\Xi}^{\Xi(X)}$ and neutrals.
- The category of type structures has products.

Fundamental Theorem in New Clothes

Theorem (Old)

Theorem (New)

Let $F \in \mathcal{S}_{\Xi}^{\kappa \to \kappa'}$ iff $F \cdot G \in \mathcal{S}_{\Xi'}^{\kappa'}$ for all $G \in \mathcal{S}_{\Xi'}^{\kappa}$, Ξ' extends Ξ . (We write $\mathcal{S}^{\kappa \to \kappa'} = \mathcal{S}^{\kappa} \to \mathcal{S}^{\kappa'}$.)

Then S is a type substructure of T.

Reification (Simply-Kinded)

- Consider term-like type structure T of values.
- Inductively defined relation $\Xi \vdash F \setminus V \uparrow \kappa$.
- "value $F \in \mathcal{T}_{=}^{\kappa}$ reifies to type constructor $V \in \mathsf{Ty}_{\equiv}^{\kappa}$ at kind κ ."

$$\frac{\Xi, X : \kappa \vdash F \cdot X \searrow V \Uparrow \kappa'}{\Xi \vdash F \searrow \lambda X : \kappa. \ V \Uparrow \kappa \rightarrow \kappa'}$$

$$\frac{\Xi \vdash G_i \searrow V_i \Uparrow \kappa_i \text{ for all } i}{\Xi \vdash X \vec{G} \searrow X \vec{V} \Uparrow *} \Xi(X) = \vec{\kappa} \to *$$

- Inputs: Ξ , F, κ
- Output: $V(\beta$ -normal η -long).

Reification (Step by Step)

Reifying neutral values step by step:

$$\Xi \vdash H \searrow U \Downarrow \kappa$$
 H reifies to U, inferring kind κ .

- Inputs: Ξ, H (neutral value).
- Outputs: U (neutral β -normal η -long), κ .
- Rules:

$$\frac{\Xi \vdash H \searrow U \Downarrow \kappa \to \kappa' \qquad \Xi \vdash G \searrow V \Uparrow \kappa}{\Xi \vdash H G \searrow U V \Downarrow \kappa'}$$

$$\frac{\Xi \vdash H \searrow U \Downarrow *}{\Xi \vdash H \searrow U \Uparrow *}$$

Normalization by Evaluation

• Compose evaluation with reification: Let $\Xi \vdash T : \kappa$.

Nbe^{$$\kappa$$}(T) = the V with $\Xi \vdash [T] \setminus V \uparrow \kappa$

Soundness:

If
$$\Xi \vdash T : \kappa \text{ then } \Xi \vdash T = \mathsf{Nbe}^{\kappa}(T) : \kappa$$

Completeness:

If
$$\Xi \vdash T = T' : \kappa \text{ then Nbe}^{\kappa}(T) \equiv \text{Nbe}^{\kappa}(T')$$
.

Glueing Type Structure

 $\bullet \ \ \text{Glueing candidate} \ \underline{\text{GI}}, \overline{\text{GI}} \subseteq \mathcal{T} \times \text{Ty}$

$$\begin{array}{l} \overline{\mathrm{GI}}_{\Xi}^{\kappa} = \{(F,T) \in \mathcal{T}_{\Xi}^{\kappa} \times \mathrm{Ty}_{\Xi}^{\kappa} \mid \Xi \vdash F \searrow V \Uparrow \kappa \text{ and } \Xi \vdash T = V : \kappa\} \\ \underline{\mathrm{GI}}_{\Xi}^{\kappa} = \{(H,T) \in \mathcal{T}_{\Xi}^{\kappa} \times \mathrm{Ty}_{\Xi}^{\kappa} \mid \Xi \vdash H \searrow U \Downarrow \kappa \text{ and } \Xi \vdash T = U : \kappa\} \end{array}$$

Laws:

$$\begin{array}{lll} \underline{\mathbf{G}}\mathbf{I}^* & \subseteq & \overline{\mathbf{G}}\overline{\mathbf{I}}^* \\ \underline{\mathbf{G}}\mathbf{I}^{\kappa} \to \overline{\mathbf{G}}\overline{\mathbf{I}}^{\kappa'} & \subseteq & \overline{\mathbf{G}}\overline{\mathbf{I}}^{\kappa \to \kappa'} \\ \underline{\mathbf{G}}\mathbf{I}^{\kappa \to \kappa'} & \subseteq & \overline{\mathbf{G}}\overline{\mathbf{I}}^{\kappa} \to \underline{\mathbf{G}}\overline{\mathbf{I}}^{\kappa'} \end{array}$$

- Glueing type structure $G^* = GI^*$ and $G^{\kappa \to \kappa'} = G^{\kappa} \to G^{\kappa'}$.
- Lemma: $GI^{\kappa} \subset G^{\kappa} \subset \overline{GI}^{\kappa}$.

Soundness of NbE for Types

Theorem (Soundness of NbE)

If
$$\Xi \vdash T : \kappa \text{ then } \Xi \vdash T = \mathsf{Nbe}^{\kappa}(T) : \kappa$$
.

Proof.

- Using the fundamental theorem for G.
- $(\llbracket T \rrbracket, T) \in \mathsf{G}^{\kappa}_{\Xi} \text{ for } \Xi \vdash T : \kappa.$
- ($\llbracket T \rrbracket$, T) $\in \overline{\mathsf{GI}}_{\Xi}^{\kappa}$.
- $\Xi \vdash [\![T]\!] \setminus V \uparrow \kappa$ and $\Xi \vdash T = V : \kappa$ for some Inf V.
- $\Xi \vdash T = \mathsf{Nbe}^{\kappa}(T) : \kappa$.

Completeness of NbE for Types

Theorem (Completeness of NbE)

If
$$\Xi \vdash T = T' : \kappa \text{ then } \mathsf{Nbe}^{\kappa}(T) = \mathsf{Nbe}^{\kappa}(T').$$

- Consider type structure $T \times T$ of pairs (F, F').
- Groupoidal structure:
 - **1** Transitivity operation $(F_1, F_2) * (F_2, F_3) = (F_1, F_3)$.
 - 2 Symmetry operation $(F, F')^{-1} = (F', F)$.
- Model equality $\Xi \vdash T = T' : \kappa$ in type groupoid.

Object Level

- Fix some type structure T.
- Define object structure $D_{\Delta}^{\Xi \vdash A}$ for $A \in \mathcal{T}_{\Xi}^*$.
- Fundamental theorem.
- Type-directed reification.
- Glueing object structure.
- Soundness of NbE ...

Conclusions

- Related work: Altenkirch, Hofmann, and Streicher (1997) describe
 NbE for System F using category theory.
- This work: Abstract NbE for System F^{ω} using type structures.
- "Algebraic" reorganization of a normalization proof.
- Future work: scale to the Calculus of Constructions.