Untyped Algorithmic Equality
for Martin-Lof's Logical Framework

with Surjective Pairs

Andreas Abel

joint work with Thierry Coquand

Slide 1

Arbeitstreffen Bern-Miinchen 2005
Munich, Germany
December 08, 2005

Work supported by: TYPES & APPSEM-II (EU), CoVer (SSF)

Background: (n-equality

e Checking dependent types requires equality test

e One approach: reduce to normal form and compare
syntactically

e Works fine for -equality

Slide 2 e Problem with n-reduction: surjective pairing destroys
confluence (Klop 1980)

e Even subject reduction fails:
z:PairA(Az. Fa) F (2L, zR) : PairA(A. F (zL))

[I write Pair A (AzB) for Xz:A. B]

Coquand’s Equality Algorithm

e Incremental check for Sn-equality in dependently-typed
A-calculus (Coquand 1991)

e Alternates weak head normalization and comparison of head
symbols

Slide 3 e We extend this algorithm to Y-types with surjective pairing
e Challenge: termination and completeness

e Two major technical difficulties to overcome

Martin-Lof’s Logical Framework (MLF)

e Expressions = Curry-style A-terms

c == Fun|El| Set constants
T, 8, t = clal|zt|rs expressions
A, B,C = Set|Elt|FunA(AzB) types

Slide 4

e Examples

Fun A (\zB) dependent function space Ilz: A. B
Fun Set (Aa. Fun (Ela) (A-.Ela)) type of identity: Va:x.a — a

Martin-Lof’s logical framework (Typing)

e Judgements for typing and equality, e.g.,

I' = A:Type A is a well-formed type

'kFt: A t has type A
Slide 5 e Example: application rule
I'-r:FunA(AzB) 'kFs: A
I'brs: Bls/z]
Untyped conversion?
e Untyped conversion rule problematic
'kt A I' F B :Type
TF¢:B A=on B
e Injectivity of type constructors, e.g., EIt =g, Elt’ implies
Slide 6

t =gy t', needed for soundness proof.

e Not provable since equality cannot a priori be defined as ..

Judgemental equality

e Judgements for typing and equality, e.g.,

I' -A=A":Type A and A’ are equal types
FkFt=¢t:A t and ¢’ are equal terms of type A

Slide 7 e Example: - and n-rules

Iz:A+-t=t:B I'Fs=s:4
Ik (A\xt)s =t'[s'/x] : B[s/x]

PrHt=t:FunA(\xB)
't (A\x.tz) =t : Fun A(AzB)

x &€ FV(t)

Lambda Algebra

e Entities
v, [f,V,FF € D elements of the algebra
P € Var— D environments

Slide 8 e Operations

f-v € D application in the algebra

tp e D denotation of expression ¢ in environment p

Lambda Algebra Axiomatization

Congruences
cp = ¢
zp = p(x)
(rs)p = rp-(sp)
Slide 9 Computation (3)
Gat)p-v = tpz=v)
Injectivity
El-v = EI-v implies v = v’
Fun-V-F = Fun-V'-F' impliesV =V’ and F = F'
PER Model

e Assume a basic partial equivalence relation (PER) S on D

Interpretation of types in D as sub-PERs of &

[Set] = S
Slid [El - v] = S
ide 10 Fun-V-F] = {(f,f)](F-v,f o)) € [F o] for all (v,0') € [V]}

Soundness of typing and equality rules

T ¢ : A then (tp, t p) € [Ap] for all p € [T].
IfT Ft=1t:Athen (tp, t'p) € [Ap] for all p € [T].

Implication: (tp, t'p) € S

Substitution and Extensionality

Difficulty 1: Soundness proof of application rule

I'Fr:FunA(A\xB) F'kFs: A
I'Frs: B[s/x]

e requires substitution property (B[s/z])p = B(p,x=sp).
Slide 11 e Hence, need \-model instead of A-algebra.

Additional axiom: weak extensionality

€ Qzt)p = (Aat)pf
if t(p,x=v) =t (p',x=v) for all v € D

e Irrelevance t(p,z=v) = tp if x ¢ FV(t), needed for n, now
admissible.

Alternative A-Model Axiomatization

e Benzmiiller, Brown, Kohlhase (JSL 2004):

Congruences
zp = p(x)
(rs)p = rp-(sp)
Slide 12 Computation (3)
tp = tp ift =5t
Irrelevance
tp = tp if p(z) = p'(x) for all z € FV(¢)

e Also has substitution property (t[s/x])p = t(p, z=sp).

Comparing Notions of A-Model

Every A-model is a BBK-model.
Not every BBK-model is a A-model.

Instance: closed terms modulo (7.

Plotkin 1974: w-rule fails in A\3n-calculus.

Slide 13
1ae Tt =gy, st for all closed ¢

7"2[3778

(w)

Hence, £ not valid.

What about closed terms modulo (37

Weak head evaluation

e Weak head values

S o .
n u= ct|axt neutral expressions

w = nl|Art weak head values

Slide 14 e Weak head evaluation (call-by-name)

(rs)l = rl@s
t] =t t not application
nQs = ns
(Axt)@s = (t[s/z])]

Untyped Algorithmic (7-Equality

e (1-conversion test for normalizable weak head values w ~ w’

e Two neutral expressions

n~mn sl ~és']
c~c T ~T ns~mn's
Slide 15
e At least one \
tl ~t] tl ~nax nx~t|
Axt ~ \xt’ Axt ~n n ~ Axt’
e Relation ~ is a PER
Transitivity of Algorithmic Equality
e Lemma:
1. Dy mw~nZand Dy :n~n' then w~n'Z
(plus symmetrical proposition).
2. If Dy :: wq ~ we and Dy :: wo ~ w3 then wy ~ ws.
Slide 16

e Proof by simultaneous induction on D; and Ds.

e 1. is needed for the following case of 2.

Dy
D,
tl ~nzx .
Di=——— n~mn
! Axt ~n

Completeness of Algorithmic Equality

e Recall: ¢ =1: A implies (t,t') € S

e Take model instance

D = [-equivalence classes
f-v = fu
Slide 17 p—
to = tp]
S = lifted algorithmic equality ~
e algorithmic equality on -equivalence classes
t~t <= t=gvandt =g for some v,v" with v ~ v’
Standardization
e Using standardization, £ ~ ¢/ implies t| ~ t'|.
e Summary (pg is identity valuation):
FkEt=¢:A
Soundness of judgement
Slide 18
(tpo,t'po) € [Apo]
[Apo] € S
t~t

Standardization

tl ~ 1]

Extension to X-types

e Expressions

c m= | Pair constants
r, 8, t n= -+ |(r,s)|tL|tR expressions

A, B,C == ---|PairA(\zB types
Slide 19 | () Y

e Example: Pair A (AxB) dependent type of pairs (3z: A. B)
e Surjective pairing rule

I'-r=7":PairA(AzB)
Tk (rL, rR)=1': Pair A(\zB)

n-Reduction Destroys Subject Reduction

e Pair intro: types of s and ¢ do not determine type of (s,)

ks: A I'+t: Bls/x]
I+ (s,t) : Pair A(AzB)

Slide 20 e Eg., if Bls/t] =EqAss, then B€ {EqAzz, EqAxs, ...}
e Change typing through n-expansion

z :PairA(AzB) z:PairA(\zB)
zL: A zR: B[z L/x]
(zL, zR) : Pair A(A_. BlzL/x])

e Subtyping does not solve this problem

10

Extended Algorithmic Equality

e Neutral expressions

n~mn' n~n'
nL~n'L nR~n'R

e At least one pair

Slide 21
i~ s~
(Tv 5) ~ (T/v 5,)
rl ~nlL sl ~nR nL~7r'| nR~s'|
(rys) ~n n e~ (r',s)
Transitivity

e Problem 2: Alg. Eq. not transitive

e \x.zx ~ zand z ~ (zL,2R), but not Az.zx ~ (2L, zR)

e Solution: “Transitivization” ~ through additional rules

+ + +

Slide 22 tl ~nx nL~r nR~s

Azt % (r,)

+ symmetrical rule

o If ¢,t' are of the same type, ¢ L # does not use extra rules

e Equality ~ is transitive for expressions of the same type

11

Proof of Transitivity

e Alternative 1: Direct. Technical, needs complicated measure.

e Alternative 2: Show that ~ is equivalent to =, on -normal
forms.

Slide 23 — Soundness: v ~ v’ implies v =, v
— Completeness 1: v < v for B-normal form v.

+ . . +
— Completeness 2: v —, v} and v| ~ vy implies v{ ~ vs.
n V1 1

Summary of Completeness Proof

PHt=t:A
Soundness of judgement
(tpo,t'po) € [Apo]
Slide 24 [Apo] € S
iy

Standardization

t] L]
Transitivity (with T F¢,¢' : A)

tl~t]

12

Slide 25

Slide 26

Proof Economics

Injectivity

Inversion of typing
Standardization

Subject reduction
Confluence (Church-Rosser)

Normalization

required
required
required
not required
not required

not required

Certificate

Related Work

good economics!

e Vaux (2004): PER model for MLF with intersection

e Aspinall/Hofmann (TAPL IT), Goguen (2005): completeness of

algorithmic equality using standard meta theory

e Coquand, Pollack, and Takeyama (2003): extension of MLF by

records with manifest fields

e Harper and Pfenning (2005): algorithmic equality for ELF

directed by simple types (obtained by erasure)

e Schilrmann and Sarnat (2004): extension to X-types

e Adams (2001): Luo’s LF with ¥-kinds and type-directed

equality

13

Future Work

e Logical framework with proof-irrelevant propositions

e Type-directed equality without erasure

Slide 27

Thanks to Frank Pfenning, Carsten Schirmann, and Lionel Vauz

14

