Untyped Algorithmic Equality for Martin-Löf's Logical Framework with Surjective Pairs

Andreas Abel

Slide 1

joint work with Thierry Coquand

Arbeitstreffen Bern-München 2005 Munich, Germany December 08, 2005

Work supported by: TYPES & APPSEM-II (EU), CoVer (SSF)

Background: $\beta\eta$ -equality

- Checking dependent types requires equality test
- One approach: reduce to normal form and compare syntactically
- Works fine for β -equality
- Slide 2
- Problem with η -reduction: surjective pairing destroys confluence (Klop 1980)
- Even subject reduction fails:

$$z: \operatorname{Pair} A(\lambda x. Fx) \vdash (z L, z R) : \operatorname{Pair} A(\lambda_{-}. F(z L))$$

[I write Pair $A(\lambda xB)$ for $\Sigma x : A.B$]

Coquand's Equality Algorithm

- Incremental check for $\beta\eta$ -equality in dependently-typed λ -calculus (Coquand 1991)
- Alternates weak head normalization and comparison of head symbols

Slide 3

- We extend this algorithm to Σ -types with surjective pairing
- Challenge: termination and completeness
- Two major technical difficulties to overcome

Martin-Löf's Logical Framework (MLF)

• Expressions = Curry-style λ -terms

$$\begin{array}{lll} c & ::= & \mathsf{Fun} \mid \mathsf{EI} \mid \mathsf{Set} & \mathsf{constants} \\ r,s,t & ::= & c \mid x \mid \lambda xt \mid rs & \mathsf{expressions} \\ A,B,C & ::= & \mathsf{Set} \mid \mathsf{EI} \ t \mid \mathsf{Fun} \ A \ (\lambda xB) & \mathsf{types} \end{array}$$

Slide 4

• Examples

```
Fun A(\lambda xB) dependent function space \Pi x: A.B
Fun Set (\lambda a. \text{ Fun (El } a) \ (\lambda_-. \text{ El } a)) type of identity: \forall a: *.a \rightarrow a
```

Martin-Löf's logical framework (Typing)

• Judgements for typing and equality, e.g.,

 $\Gamma \vdash A : \mathsf{Type} \qquad A \text{ is a well-formed type}$

 $\Gamma \vdash t : A$ thas type A

Slide 5

• Example: application rule

 $\frac{\Gamma \vdash r : \operatorname{Fun} A \left(\lambda x B \right) \qquad \Gamma \vdash s : A}{\Gamma \vdash r \, s : B[s/x]}$

Untyped conversion?

• Untyped conversion rule problematic

$$\frac{\Gamma \vdash t : A \qquad \Gamma \vdash B : \mathsf{Type}}{\Gamma \vdash t : B} \ A =_{\beta\eta} B$$

- Injectivity of type constructors, e.g., $\mathsf{El}\,t =_{\beta\eta} \mathsf{El}\,t'$ implies $t =_{\beta\eta} t'$, needed for soundness proof.
- Not provable since equality cannot a priori be defined as $\searrow_* \swarrow$.

Judgemental equality

• Judgements for typing and equality, e.g.,

$$\Gamma \vdash A = A'$$
: Type A and A' are equal types
$$\Gamma \vdash t = t' : A \qquad \qquad t \text{ and } t' \text{ are equal terms of type } A$$

Slide 7 • Example: β - and η -rules

$$\frac{\Gamma, x \colon\! A \vdash t = t' \colon\! B \quad \Gamma \vdash s = s' \colon\! A}{\Gamma \vdash (\lambda x t) \, s = t'[s'/x] \colon\! B[s/x]}$$

$$\frac{\Gamma \vdash t = t' : \operatorname{Fun} A\left(\lambda x B\right)}{\Gamma \vdash \left(\lambda x . \, t \, x\right) = t' : \operatorname{Fun} A\left(\lambda x B\right)} \,\, x \not \in \operatorname{FV}(t)$$

Lambda Algebra

• Entities

$$\begin{array}{cccc} v,f,V,F & \in & \mathsf{D} & & \text{elements of the algebra} \\ \rho & & \in & \mathsf{Var} \to \mathsf{D} & & \text{environments} \end{array}$$

Slide 8 • Operations

$$\begin{array}{lll} f \cdot v & \in & \mathsf{D} & \text{ application in the algebra} \\ t \rho & \in & \mathsf{D} & \text{ denotation of expression } t \text{ in environment } \rho \end{array}$$

Lambda Algebra Axiomatization

Congruences

$$\begin{array}{rcl} c\rho & = & c \\ x\rho & = & \rho(x) \\ (r\,s)\rho & = & r\rho\cdot(s\rho) \end{array}$$

Slide 9 Computation (β)

$$(\lambda xt)\rho \cdot v = t(\rho, x=v)$$

Injectivity

$$\begin{array}{lll} \mathsf{EI} \cdot v &=& \mathsf{EI} \cdot v' & \text{implies } v = v' \\ \\ \mathsf{Fun} \cdot V \cdot F &=& \mathsf{Fun} \cdot V' \cdot F' & \text{implies } V = V' \text{ and } F = F' \end{array}$$

PER Model

- ullet Assume a basic partial equivalence relation (PER) ${\cal S}$ on D
- ullet Interpretation of types in D as sub-PERs of ${\mathcal S}$

$$\begin{split} & [\mathsf{Set}] & = & \mathcal{S} \\ & [\mathsf{El} \cdot v] & = & \mathcal{S} \\ & [\mathsf{Fun} \cdot V \cdot F] & = & \{ (f,f') \mid (f \cdot v,f' \cdot v') \in [F \cdot v] \text{ for all } (v,v') \in [V] \} \end{split}$$

Slide 10

• Soundness of typing and equality rules

If
$$\Gamma \vdash t$$
 : A then $(t \rho, t \rho) \in [A\rho]$ for all $\rho \in [\Gamma]$.
If $\Gamma \vdash t = t' : A$ then $(t \rho, t' \rho) \in [A\rho]$ for all $\rho \in [\Gamma]$.

• Implication: $(t \rho, t' \rho) \in \mathcal{S}$

Substitution and Extensionality

• Difficulty 1: Soundness proof of application rule

$$\frac{\Gamma \vdash r : \operatorname{Fun} A \left(\lambda x B \right) \qquad \Gamma \vdash s : A}{\Gamma \vdash r \, s : B[s/x]}$$

- requires substitution property $(B[s/x])\rho = B(\rho, x = s\rho)$.
- Slide 11 Hence, need λ -model instead of λ -algebra.
 - Additional axiom: weak extensionality

(
$$\xi$$
) $(\lambda xt)\rho = (\lambda xt')\rho'$
if $t(\rho, x=v) = t'(\rho', x=v)$ for all $v \in D$

• Irrelevance $t(\rho, x = v) = t\rho$ if $x \notin FV(t)$, needed for η , now admissible.

Alternative λ -Model Axiomatization

• Benzmüller, Brown, Kohlhase (JSL 2004):

Congruences

$$\begin{array}{rcl} x\rho & = & \rho(x) \\ (r\,s)\rho & = & r\rho\cdot(s\rho) \end{array}$$

Slide 12

Computation
$$(\beta)$$

$$t\rho = t'\rho$$
 if $t =_{\beta} t'$

Irrelevance

$$t\rho \ = \ t\rho' \qquad \text{if } \rho(x) = \rho'(x) \text{ for all } x \in \mathsf{FV}(t)$$

• Also has substitution property $(t[s/x])\rho = t(\rho, x = s\rho)$.

Comparing Notions of λ -Model

- Every λ -model is a BBK-model.
- Not every BBK-model is a λ -model.
- Instance: closed terms modulo $\beta\eta$.
- Plotkin 1974: ω -rule fails in $\lambda\beta\eta$ -calculus.

Slide 13

$$(\omega) \quad \frac{r \, t =_{\beta \eta} s \, t \text{ for all closed } t}{r =_{\beta \eta} s}$$

- Hence, ξ not valid.
- What about closed terms modulo β ?

Weak head evaluation

• Weak head values

$$\begin{array}{lll} n & ::= & c\,\vec{t} \mid x\,\vec{t} & \text{neutral expressions} \\ w & ::= & n \mid \lambda xt & \text{weak head values} \end{array}$$

Slide 14 • Weak head evaluation (call-by-name)

$$\begin{array}{rcl} (r\,s)\!\!\downarrow &:=& r\!\!\downarrow @s \\ &t\!\!\downarrow &:=& t & t \text{ not application} \\ \\ n@s &:=& n\,s \\ (\lambda xt)@s &:=& (t[s/x])\!\!\downarrow \end{array}$$

Untyped Algorithmic β_{η} -Equality

- $\beta\eta$ -conversion test for normalizable weak head values $w \sim w'$
- Two neutral expressions

$$\frac{}{c \sim c} \qquad \frac{}{x \sim x} \qquad \frac{n \sim n' \qquad s \downarrow \sim s' \downarrow}{n \, s \sim n' \, s'}$$

Slide 15

• At least one λ

$$\frac{t \downarrow \sim t' \downarrow}{\lambda x t \sim \lambda x t'} \qquad \frac{t \downarrow \sim n \, x}{\lambda x t \sim n} \qquad \frac{n \, x \sim t' \downarrow}{n \sim \lambda x t'}$$

• Relation \sim is a PER

Transitivity of Algorithmic Equality

- Lemma:
 - 1. If $\mathcal{D}_1 :: w \sim n \vec{x}$ and $\mathcal{D}_2 :: n \sim n'$ then $w \sim n' \vec{x}$ (plus symmetrical proposition).
 - 2. If $\mathcal{D}_1 :: w_1 \sim w_2$ and $\mathcal{D}_2 :: w_2 \sim w_3$ then $w_1 \sim w_3$.

- Proof by simultaneous induction on \mathcal{D}_1 and \mathcal{D}_2 .
- \bullet 1. is needed for the following case of 2.

$$\mathcal{D}_{1}' = \frac{\mathcal{D}_{1}'}{t \downarrow \sim n x} \qquad \mathcal{D}_{2}$$

$$\mathcal{D}_{1} = \frac{t \downarrow \sim n x}{\lambda x t \sim n} \qquad n \sim n'$$

Completeness of Algorithmic Equality

- Recall: $\vdash t = t' : A \text{ implies } (t, t') \in \mathcal{S}$
- Take model instance

 $= \beta$ -equivalence classes $f \cdot v = \overline{f v}$ $t\rho \quad \ = \ \, \overline{t[\rho]}$ = lifted algorithmic equality \sim

Slide 17

• algorithmic equality on β -equivalence classes

$$\overline{t} \sim \overline{t'} :\iff t =_{\beta} v \text{ and } t' =_{\beta} v' \text{ for some } v, v' \text{ with } v \sim v'$$

Standardization

• Using standardization, $\overline{t} \sim \overline{t'}$ implies $t \downarrow \sim t' \downarrow$.

 $\Gamma \, \vdash t = t' : A$

 $t \!\downarrow \stackrel{\mathsf{v}}{\sim} t' \!\downarrow$

• Summary (ρ_0 is identity valuation):

 $\iota = \iota : A$ $\downarrow \quad \text{Soundness of judgement}$ $(t\rho_0, t'\rho_0) \in [A\rho_0]$ $\downarrow \quad [A\rho_0] \subseteq \mathcal{S}$ $\bar{t} \sim \overline{t'}$ Standardization

Extension to Σ -types

• Expressions

$$\begin{array}{lll} c & & ::= & \cdots \mid \mathsf{Pair} & & \mathsf{constants} \\ r,s,t & & ::= & \cdots \mid (r,s) \mid t \, \mathsf{L} \mid t \, \mathsf{R} & & \mathsf{expressions} \\ A,B,C & ::= & \cdots \mid \mathsf{Pair} \, A \, (\lambda x B) & & \mathsf{types} \end{array}$$

Slide 19

- Example: Pair $A(\lambda xB)$ dependent type of pairs $(\Sigma x:A.B)$
- Surjective pairing rule

$$\frac{\Gamma \vdash r = r' : \mathsf{Pair}\,A\left(\lambda x B\right)}{\Gamma \vdash \left(r \,\mathsf{L},\; r \,\mathsf{R}\right) = r' : \mathsf{Pair}\,A\left(\lambda x B\right)}$$

η -Reduction Destroys Subject Reduction

• Pair intro: types of s and t do not determine type of (s,t)

$$\frac{\Gamma \vdash s : A \qquad \Gamma \vdash t : B[s/x]}{\Gamma \vdash (s,t) : \mathsf{Pair}\,A\left(\lambda x B\right)}$$

Slide 20

- E.g., if $B[s/x] = \operatorname{\sf Eq} A \, s \, s$, then $B \in \{\operatorname{\sf Eq} A \, x \, x, \, \operatorname{\sf Eq} A \, x \, s, \, \dots\}$
- Change typing through η -expansion

$$\frac{z:\operatorname{Pair} A\left(\lambda xB\right)}{z\:\mathsf{L}:A} \quad \frac{z:\operatorname{Pair} A\left(\lambda xB\right)}{z\:\mathsf{R}:B[z\:\mathsf{L}/x]} \\ \overline{\left(z\:\mathsf{L},\;z\:\mathsf{R}\right)\::\:\operatorname{Pair} A\left(\lambda _{-}.B[z\:\mathsf{L}/x]\right)}$$

• Subtyping does not solve this problem

Extended Algorithmic Equality

• Neutral expressions

$$\frac{n \sim n'}{n \, \mathsf{L} \sim n' \, \mathsf{L}} \qquad \frac{n \sim n'}{n \, \mathsf{R} \sim n' \, \mathsf{R}}$$

• At least one pair

Slide 21

$$\begin{split} \frac{r \! \downarrow \sim r' \! \downarrow \qquad s \! \downarrow \sim s' \! \downarrow}{(r,s) \sim (r',s')} \\ \\ \frac{r \! \downarrow \sim n \, \mathsf{L} \qquad s \! \downarrow \sim n \, \mathsf{R}}{(r,s) \sim n} \qquad \frac{n \, \mathsf{L} \sim r' \! \downarrow \qquad n \, \mathsf{R} \sim s' \! \downarrow}{n \sim (r',s')} \end{split}$$

Transitivity

- Problem 2: Alg. Eq. not transitive
- $\lambda x. zx \sim z$ and $z \sim (z L, z R)$, but not $\lambda x. zx \sim (z L, z R)$
- \bullet Solution: "Transitivization" $\stackrel{+}{\sim}$ through additional rules

$$\frac{t\downarrow \stackrel{+}{\sim} n\,x \qquad n\,\mathsf{L} \stackrel{+}{\sim} r \qquad n\,\mathsf{R} \stackrel{+}{\sim} s}{\lambda xt \stackrel{+}{\sim} (r,s)}$$

+ symmetrical rule

- If t, t' are of the same type, $t \stackrel{+}{\sim} t'$ does not use extra rules
- \bullet Equality \sim *is* transitive for expressions of the same type

Proof of Transitivity

- Alternative 1: Direct. Technical, needs complicated measure.
- Alternative 2: Show that $\stackrel{+}{\sim}$ is equivalent to $=_{\eta}$ on β -normal forms.

Slide 23

- Soundness: $v \stackrel{+}{\sim} v'$ implies $v =_{\eta} v'$.
- Completeness 1: $v\stackrel{+}{\sim} v$ for β -normal form v.
- Completeness 2: $v_1 \longrightarrow_{\eta} v_1'$ and $v_1' \stackrel{+}{\sim} v_2$ implies $v_1 \stackrel{+}{\sim} v_2$.

Summary of Completeness Proof

Proof Economics

Slide 25	Injectivity Inversion of typing	required required
	Standardization	required
	Subject reduction	not required
	Confluence (Church-Rosser)	not required
	Normalization	not required
	Certificate	good economics!

Related Work

- Vaux (2004): PER model for MLF with intersection
- Aspinall/Hofmann (TAPL II), Goguen (2005): completeness of algorithmic equality using standard meta theory
- Coquand, Pollack, and Takeyama (2003): extension of MLF by records with manifest fields

- Harper and Pfenning (2005): algorithmic equality for ELF directed by simple types (obtained by erasure)
- Schürmann and Sarnat (2004): extension to Σ-types
- Adams (2001): Luo's LF with Σ -kinds and type-directed equality

Future Work

- \bullet Logical framework with proof-irrelevant propositions
- \bullet Type-directed equality without erasure

Slide 27

Thanks to Frank Pfenning, Carsten Schürmann, and Lionel Vaux