
An Agda Formalisation of Modalities and
Erasure in a Dependently Typed Language

Master’s thesis in Computer science and engineering

OSKAR ERIKSSON

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021
www.chalmers.se
www.gu.se

www.chalmers.se
www.chalmers.se

Master’s thesis 2021

An Agda Formalisation of Modalities and Erasure
in a Dependently Typed Language

Oskar Eriksson

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

An Agda Formalisation of Modalities and Erasure in a Dependently Typed Language

Oskar Eriksson

© Oskar Eriksson, 2021.

Supervisor: Andreas Abel, Department of Computer Science and Engineering
Examiner: Patrik Jansson, Department of Computer Science and Engineering

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone: +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2021

An Agda Formalisation of Modalities and Erasure in a Dependently Typed Language

Oskar Eriksson
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Modal types extend the expressivity of types by giving them different interpreta-
tions depending on the used modality. In this thesis, we develop a general modality
structure in the setting of a dependently typed language, notably containing depen-
dent products and sums as well as natural numbers, based on the work of Abel and
Bernardy [1]. The modality structure is based on a semiring, the elements of which
are used as annotations on terms and whose algebraic properties form the basis for
the modal type system.

In addition, we instantiate the general modality structure to a modality for erasure
in which annotations are interpreted as either computationally relevant, indicating
that the annotated term is used during evaluation, or computationally irrelevant,
indicating that the marked term is not useful during evaluation. Based on this
interpretation, we define an extraction function that translates terms to an untyped
lambda calculus, removing terms that have been marked for erasure. Using a logical
relation between terms of the two languages we then prove the extraction function
to be sound with respect to the semantics of the languages in the special case of
natural numbers.

Keywords: modal type theory, Martin-Löf type theory, erasure, logical relation,
modalities, Agda

iii

Acknowledgements
I would like to thank my supervisor Andreas Abel for suggesting this project and
guiding me in the right direction. I also want to thank Patrik Jansson and Örjan
Sunnerhagen for their helpful comments.

Oskar Eriksson, Gothenburg, June 2021

v

Table of Contents

1 Introduction 1
1.1 Thesis Outline . 1

2 Background 3
2.1 Martin-Löf Type Theory . 3

2.1.1 Dependent Types . 3
2.1.2 Universes . 4

2.2 Modal Type Theory . 4
2.3 Erasure . 4
2.4 Agda . 5

3 The Language λΣΠUN 7
3.1 Syntax . 7

3.1.1 Weakening . 8
3.1.2 Substitution . 8

3.2 Typing . 9
3.2.1 Typing Context . 9
3.2.2 Typing Judgements . 10

3.3 Reduction . 12

4 Modalities 15
4.1 Modalities . 15

4.1.1 Modality Contexts . 18
4.2 The Language λΣΠUN

M . 19
4.2.1 Syntax . 19
4.2.2 Typing . 20
4.2.3 Modality Usage . 21
4.2.4 Usage Inference . 23
4.2.5 Substitution . 24
4.2.6 Substitution Inference . 27
4.2.7 Reduction . 28

5 Erasure 31
5.1 A Modality for Erasure . 31
5.2 Target Language . 32
5.3 Program Extraction . 34

6 Soundness 37
6.1 A Logical Relation for Reducibility 37

vii

Table of Contents

6.2 A Logical Relation for Validity . 39
6.3 A Logical Relation for Erasure . 41
6.4 Soundness . 45

7 Discussion 47
7.1 Alternative Design Choices for the Usage Relation 47

7.1.1 Projections . 47
7.1.2 Natural Number Recursion . 48

7.2 Related Work . 48
7.3 Future Work . 49

References 51

viii

1. Introduction

Modal types, like their counterparts in logic, allow modifiers to be attached to types.
Given different sets of modifiers and different rules for the treatment of such modi-
fiers by the type system, this allows types to be given a range of different interpreta-
tions. These interpretations can range from being quantitive in nature, expressing,
for instance, linearity or erasure, to a variety of other interpretations such as data
privacy [1]. Often, modal type systems are designed with specific interpretations
in mind and the modifiers and rules are chosen based on this interpretation. An
example of this is McBride’s modality for erasure and linearity [2]. Others treat
modal types in a more general sense and use a more general set of rules to allow
different interpretations to be used in the same system.

In this thesis, we study a modal type system of the latter variety, based on the work
of Abel and Bernardy [1]. The setting is a small dependently typed lambda calculus
with dependent functions and pairs, natural numbers, unit and bottom types as well
a single universe. Modal modifiers are taken from a ring-like structure and treated
as annotations on types and terms. The algebraic rules of the ringoid form the basis
of the rules of the type system. This allows different instances of the ringoid to be
used to achieve different modal systems, all based on a single framework.

In addition, we give a concrete example of the use of our system by studying a
modality for erasure. In particular, we use the modality system to mark terms
that are not needed during runtime and remove such terms through an extraction
function. Using a logical relation, we then prove the extraction to be sound for
closed terms of the natural number type.

1.1 Thesis Outline
In Chapter 2, we first give a brief introduction to the concepts of Martin-Löf type
theory, modal type theory and erasure. We also introduce Agda, the proof assistant
used to formalise this work. We then introduce the base language of our work in
Chapter 3. In Chapter 4, we introduce the concept of modalities and extend the
syntax and type system of the base language with modality annotations. Chapter 5
instantiates this system to be used for erasures and defines extraction to an untyped
language. We also give a short example of erasure in our language to demonstrate
its use. In Chapter 6 we then introduce a logical relation which is used to prove
soundness of the extraction function before we conclude with some discussion about
our design choices and possible venues for future work in Chapter 7.

1

1. Introduction

2

2. Background

In this chapter we introduce some necessary background, starting with a quick
introduction to Martin-Löf type theory and modal type theory of which the studied
type system is an instance. Then, we give a brief introduction to the concept of
erasure before introducing the proof assistant and programing language Agda as
well as the formalisation of this work.

2.1 Martin-Löf Type Theory
Martin-Löf type theory (MLTT) is the foundation on which this work rests. It serves
both as the type system of the studied language λΣΠUN (which will be properly
introduced in Chapter 3) and as the underlying framework used in Agda, which is
here used for proof verification (see Section 2.4). MLTT builds on the simply typed
lambda calculus (STLC), with some base type(s), most notably by introducing the
concept of dependent types.

2.1.1 Dependent Types
The main advantage of MLTT over STLC is given by the inclusion of dependent
types. For this work, the most important ones are dependent product and dependent
sum types. Dependent product types (or Π-types) are generalisations of normal
function types. If A and B are types and x is a free variable in B then ∏a:A B(x = a)
is the dependent function type from A to B [3, pp. 26-29]. The dependency refers to
B, the type of the co-domain, depending on a, the (value of the) function argument.
Of course, if B does not depend on x the type reduces to a normal function type in
which the co-domain does not change with a.

Similarly to Π-types, dependent sums (or Σ-types) are generalisations of pair types1.
Again, if A and B are types and x is a free variable in B then ∑a:A B(x = a) is
the dependent pair type where the first component has type A and the second type
B(x = a) [3, pp. 39-41]. In this case, the type of the second component of the
pair depends on a, the value of the first. As for Π-types, non-dependent pairs are
received when B does not depend on the value of a.

Other types which often appear in MLTT, but which we will not consider here,
include the identity type, representing propositional equality, and W-types which
represent general inductive structures.

1We refer to this as pair type instead of the more common product type to avoid confusion with
dependent products.

3

2. Background

2.1.2 Universes
To increase the expressivity of the system, it is desirable to treat types as proper
terms. One consequence of this is that types are required to have types of their own
in order to be well-typed. This “type of types” is typically referred to as a (Russel)
universe [3, pp. 87-91]. In order to ensure consistency, the universe cannot be its
own type and so one often introduces a sequence of universes, with the first being
the type of all small, non-universe types and the following each being the type of
the previous.

2.2 Modal Type Theory
In modal logic, modal operators are used to qualify logical formulas with differ-
ent operators allowing qualified formulas to be interpreted in different ways. The
archetypal examples are the modal operators for necessity and possibility, used to in-
dicate that a formula must or might hold, but other examples are plentiful. Through
the Curry-Howard correspondence, modal type theory similarly allows types to be
qualified by modalities. Modalities enrich the type system through their different
interpretations, allowing the programmer to express, for instance, data privacy or
linearity [1] which are verified during type-checking.

A type system which allows expressing linearity is also an example of a quantitive
type theory. Quantitive type theory can, at least for our purposes, be seen as a
special case of modal type theory in which modalities are used to express some
quantitive information. Quantitive here refers to the resources consumed by a pro-
gram or how many times the resources are dereferenced at run-time. For instance,
in the case of linearity, this means that the type system can guarantee that some
resource (variable) is used exactly once.

2.3 Erasure
When writing programs, it is not uncommon that the programmer writes code that
does not contribute to the result of the program, whether by accident or enforced
by the programming language. An example of the latter kind is type information
which, while vital during type-checking, is typically not necessary after compilation.
In a dependently typed setting, types are not the only source of information that
is irrelevant during run-time, but also, for instance, proofs. An example is a data
type for vectors of length n which carry a proof of their length [4]. Since one would
typically define this data type inductively, a single vector would carry proofs of
the lengths of all sub-vectors as well, leading to increased memory consumption.
At best, if the length can be stored in constant memory, this only changes the
memory consumption by some multiplicative constant, but if, for instance, a unary
representation of numbers is used for the length, the memory consumption will go
from linear to quadratic in the length of the list.

4

2.4. Agda

Optimally, a compiler would be able to find any instance of run-time irrelevant in-
formation and remove it during compilation. This is typically referred to as erasing
the irrelevant information. In the case of types, this is can easily be done auto-
matically, but in general, requires either some form of static analysis [4] or help
from the programmer by annotating what content should be erased [5] (which is
then verified by the type-checker to be safe to erase). A combination of these two
approaches is also possible where programs are partially annotated which combined
with static analysis allows erasability of the whole program to be determined [6]. In
either case, the use of quantitive typing can advantageously be used to keep track
of erasable content since a quantity of zero indicates that a resource is never used
during evaluation.

2.4 Agda
Agda is a dependently typed programming language based on Martin-Löf type the-
ory [7]. Through the Curry-Howard correspondence, dependent products and sums
can be interpreted as universal and existential quantification respectively which
allows Agda to also be used as a proof assistant. Propositions are written as
Agda types and proofs as programs whose validity is verified by Agda during type-
checking.

The entirety of this work has been formalised and verified in Agda. In the electronic
version of this thesis, definitions and theorems marked in blue, link to an HTML
rendering of their formalisation. The full source code is also available online2.

The formalisation builds on a pre-existing Agda development which formalised a
study of decidability of type conversion for a small dependently typed language by
Abel et al. [8]. For our purposes, the most interesting parts of this formalisation are
the representation of λΣΠUN, the studied language, and parts of the logical relation
used in the proof of decidability. The next chapter introduces λΣΠUN properly,
focusing on its syntax, types and semantics, while the key parts of the logical relation
are introduced in Sections 6.1 and 6.2.

2https://doi.org/10.5281/zenodo.5036607

5

http://fhlkfy.github.io/modalities_and_erasure/README.html
https://doi.org/10.5281/zenodo.5036607

2. Background

6

3. The Language λΣΠUN

This chapter introduces the language λΣΠUN (pronounced “lambda-spun”) which will
be the base language for the modality extension in Chapter 4. The original appear-
ance of the language was in the study by Abel et al. [8] that the Agda development is
based on. We keep the description relatively short, referring to this work for further
details, though it should be noted that the language, and Agda formalisation, has
been extended with unit, bottom and Σ-types since the article was published. First,
the abstract syntax of λΣΠUN is introduced, then via an introduction to weakenings
and substitutions the typing judgements before concluding with the reduction rules
defining the semantics of the language.

3.1 Syntax

The language λΣΠUN is a dependently typed lambda calculus with six type formers.
These are the single universe (U), the type of natural numbers (N), unit (>) and
empty (⊥) types as well as dependent functions and pairs (Π and Σ-types). Among
the other terms are de Bruijn-style variables [9] in which variables with index i
are written xi, lambda abstractions and applications, the unit element ? as well as
unary natural numbers using the constructors zero and suc. The natural number
and empty types come with recursors natrec and emptyrec whereas Σ-types come
with projections fst and snd.

U ∈ Termn N ∈ Termn > ∈ Termn ⊥ ∈ Termn

F ∈ Termn G ∈ Termn+1

ΠF G ∈ Termn

F ∈ Termn G ∈ Termn+1

ΣF G ∈ Termn

i < n
xi ∈ Termn

t ∈ Termn+1

λ t ∈ Termn

t ∈ Termn u ∈ Termn

t u ∈ Termn

t ∈ Termn u ∈ Termn

(t, u) ∈ Termn

t ∈ Termn

fst t ∈ Termn

t ∈ Termn

snd t ∈ Termn

zero ∈ Termn

t ∈ Termn

suc t ∈ Termn ? ∈ Termn

A ∈ Termn t ∈ Termn

emptyrecA t ∈ Termn

A ∈ Termn+1 z ∈ Termn s ∈ Termn+2 t ∈ Termn

natrecAz s t ∈ Termn

Figure 3.1: Abstract syntax of λΣΠUN.

7

http://fhlkfy.github.io/modalities_and_erasure/Definition.Untyped.html#2016

3. The Language λΣΠUN

The syntax of λΣΠUN is defined inductively and given in Figure 3.1; Termn is the
set of terms containing at most n free variables. Defining the syntax in this way
allows the language to be well-scoped by construction, making the introduction
of unexpected free variables impossible. Four terms require at least one of their
subterms to introduce at least one additional variable, namely G in ΠF G and
ΣF G, both A and s in natrecAz s t, and t in λ t. These terms are the binders of
the language and are the only places in which new variables can be introduced. This
is one of the key points which enables well-scopedness.

3.1.1 Weakening
Since a term t in Termn contains at most n free variables it can also be considered
to be a term in Termm if m ≥ n. Weakenings formalises this idea by shifting de
Bruijn indices upwards, essentially introducing new variables (which do not actually
appear in t). Figure 3.2 defines Wkn

m, the set of weakenings that translates terms in
Termn to terms in Termm.

id ∈ Wkn
n

ρ ∈ Wkn
m

↑ρ ∈ Wkn
m+1

ρ ∈ Wkn
m

⇑ρ ∈ Wkn+1
m+1

Figure 3.2: Definition of weakenings.

The identity weakening id by itself has no effect when applied to a term but is used
as the basis when forming all other weakenings. Shifting a weakening ρ, denoted
↑ρ, increases the index of all variables by one and then applies ρ. Finally, lifting
a weakening, ⇑ρ increases the index of all variables except x0 which is left as is
and then applies ρ. It is intended for binders as it leaves the newly bound variable
untouched. For convenience, we define wk1 t to be the application of the weakening
↑id to t, that is, shifting all variable indices in t up by one.

3.1.2 Substitution
Weakenings have the effect of replacing variables in a term with other variables.
Substitutions generalise this by allowing variables to be replaced with any term
(with an appropriate amount of free variables). We treat substitutions σ ∈ Substn

m

as finite maps, mapping all variable indices up to some index n to terms in Termm.
Weakenings are considered a special case of substitutions that only maps variables
to variables and we generalise the lift and shift operations for weakenings to substi-
tutions. The notation t[σ] is used to denote the application of both substitutions
and weakenings to a term.

In addition to being constructed as a weakening, substitutions can be constructed
by extending an existing substitution σ with a term t. Such extensions, written

8

http://fhlkfy.github.io/modalities_and_erasure/Definition.Untyped.html#9358

3.2. Typing

σ, t, substitute all occurrences of x0 with t and all other variables by σ with indices
shifted down by one1. This allows substitutions to be viewed as lists, containing the
terms to be substituted and we will use headσ and tailσ for the head and tail of
such lists2.

In short, the application of a substitution σ to a term t is done as follows. If t = xi,
xi[σ] = σ(xi). Otherwise, the substitution is applied to each sub-term of t. Binders
in sub-terms are taken care of by lifting σ the corresponding number of times before
it is applied. For more details, see Abel et al. [8].

Concluding this section we now introduce shorthands for some common substitu-
tions. First, t[u] which denotes t[id, u], substitutes x0 in t with u and shifts all other
indices down by one. This corresponds to the substitutions which appear in the
Beta rule using de Bruijn style variables [9]. The same pattern extends to several
variables with t[v, u], which replaces x0 and x1 in t with u and v respectively and
shifts the remaining indices down by two, being a shorthand for t[id, v, u]. The sub-
stitution t[↑, u], denoting t[↑id, u], is similar to the single substitution above in that
it also replaces x0 with u, but does not shift the remaining indices.

3.2 Typing

This section describes the type system of λΣΠUN. We first introduce typing contexts,
used to keep track of the types of free variables, and then the five typing judgements
which make up the type system.

3.2.1 Typing Context
In open terms, determining (or even defining) well-typedness is problematic since
there is no way to find the types of free variables. Typing contexts solve this problem
by mapping (free) variables to their type. Like terms, the set of typing contexts,
Conn, is defined in terms of a natural number which here is used to denote its length
or the number of variables it is keeping track of. Contexts are defined inductively
over their length as shown in Figure 3.3.

ε ∈ Con0

Γ ∈ Conn A ∈ Termn

Γ, A ∈ Conn+1

Figure 3.3: Definition of typing contexts.

Note that when extending a context with a term it can only contain at most as many

1That is, (t, σ)x0 = t and (t, σ)xi+1 = σxi.
2That is, headσ = σx0 and (tailσ)xi = σxi+1.

9

http://fhlkfy.github.io/modalities_and_erasure/Definition.Untyped.html#706

3. The Language λΣΠUN

free variables as can be looked up in the context. This is the second key property
that ensures well-scopedness of λΣΠUN.

Contexts form lists of terms in which the head corresponds to the type of the variable
x0 and the tail contains the type of the remaining n− 1 variables. This is expressed
by the relation xi : A ∈ Γ, defined in Figure 3.4, which is interpreted as “Variable xi

has type A in Γ”. Note the use of weakenings to account for the extended context.

Γ ∈ Conn A ∈ Termn

x0 : (wk1A) ∈ (Γ, A)
Γ ∈ Conn A,B ∈ Termn xi : A ∈ Γ

i < n
xi+1 : (wk1A) ∈ (Γ, B)

Figure 3.4: Variable lookup relation for typing contexts.

3.2.2 Typing Judgements
The typing rules of λΣΠUN establish five judgements, ` Γ for well-formed contexts,
Γ ` A and Γ ` t : A for well-formed types and terms respectively as well as
Γ ` A = B and Γ ` t = u : A for type and term conversion respectively. The
definitions of these judgements are given in Figures 3.5 to 3.9. All depend on each
other and should thus be considered to be defined together though they have been
separated here for clarity.

` ε
` Γ Γ ` A
` Γ, A

Figure 3.5: Well-formed contexts.

` Γ
Γ ` U

` Γ
Γ ` N

` Γ
Γ ` ⊥

` Γ
Γ ` >

Γ ` F Γ, F ` G
Γ ` ΠF G

Γ ` F Γ, F ` G
Γ ` ΣF G

Γ ` A : U
Γ ` A

Figure 3.6: Inference rules for well-formed types of λΣΠUN.

For the most part, the rules for well-formed types and terms should not appear too
surprising but the rule for natrec may need some attention. In natrecAz s n, n is
the natural number which is being recursed over and A is the resulting type of the
computation, dependent on the value of n and thus binds one variable of type N.
The following term, z, represents the base case when n is zero and should thus have

10

http://fhlkfy.github.io/modalities_and_erasure/Definition.Typed.html#498
http://fhlkfy.github.io/modalities_and_erasure/Definition.Typed.html#718
http://fhlkfy.github.io/modalities_and_erasure/Definition.Typed.html#838

3.2. Typing

Γ ` F : U Γ, F ` G : U
Γ ` ΠF G : U

Γ ` F : U Γ, F ` G : U
Γ ` ΣF G : U

` Γ
Γ ` N : U

` Γ
Γ ` > : U

` Γ
Γ ` ⊥ : U

Γ ` t : A Γ ` A = B

Γ ` t : B
` Γ xi : A ∈ Γ

Γ ` xi : A
Γ ` F Γ, F ` t : G

Γ ` λ t : ΠF G

Γ ` t : ΠF G Γ ` u : F
Γ ` t u : G[u]

Γ ` F Γ, F ` G Γ ` t : F Γ ` u : G[t]
Γ ` (t, u) : ΣF G

Γ ` F Γ, F ` G Γ ` t : ΣF G

Γ ` fst t : F
Γ ` F Γ, F ` G Γ ` t : ΣF G

Γ ` snd t : G[fst t]
` Γ

Γ ` zero : N
Γ ` n : N

Γ ` sucn : N
` Γ

Γ ` ? : >
Γ ` A Γ ` t : ⊥

Γ ` emptyrecA t : A
Γ,N ` A Γ ` z : A[zero] Γ,N, A ` s : wk1 (A[↑, sucx0]) Γ ` n : N

Γ ` natrecAz s n : A[n]

Figure 3.7: Inference rules for well-formed terms of λΣΠUN.

type A with its dependency instantiated to zero. The next term, s, comes into play
in the case that n is not zero (that is, n is sucn′). It binds two variables; one of
type N and one of type A (dependent on the former). The first (which is bound to
x1) corresponds to the natural number used in the recursive call (that is, n′) and
the second to the recursive call itself (which is bound to x0). The type of s should
be the same as the type of natrec for this case, that is, A[sucn′] or, more accurately,
A[sucx1]. Because A and s are formed in different contexts, we cannot directly
require s to have this type and instead additionally apply weakenings to account for
the differences.

Γ ` A = B : U
Γ ` A = B

Γ ` A
Γ ` A = A

Γ ` A = B

Γ ` B = A

Γ ` A = B Γ ` B = C

Γ ` A = C

Γ ` F Γ ` F = H Γ, F ` G = E

Γ ` ΠF G = ΠH E

Γ ` F Γ ` F = H Γ, F ` G = E

Γ ` ΣF G = ΣH E

Figure 3.8: Type conversion rules of λΣΠUN.

The rules for term and type conversion contain the usual rules of congruence, β and
η-equality as well as some rules ensuring reflexivity, symmetry and transitivity. For
this work, the conversion judgements have little impact so we do not discuss these
further. For the most part, only the judgements for well-formed types and terms
will be considered in what follows.

11

http://fhlkfy.github.io/modalities_and_erasure/Definition.Typed.html#1231
http://fhlkfy.github.io/modalities_and_erasure/Definition.Typed.html#3390

3. The Language λΣΠUN

Γ ` t : A
Γ ` t = t : A

Γ ` t = u : A
Γ ` u = t : A

Γ ` t = u : A Γ ` u = v : A
Γ ` t = v : A

Γ ` t = u : A Γ ` A = B

Γ ` t = u : B
Γ ` F Γ ` F = H : U Γ, F ` G = E : U

Γ ` ΠF G = ΠH E : U
Γ ` f = g : ΠF G Γ ` a = b : F

Γ ` f a = g b : G[a]
Γ ` F Γ ` F = H : U Γ, F ` G = E : U

Γ ` ΣF G = ΣH E : U

Γ ` F Γ, F ` t : G Γ ` a : F
Γ ` (λ t) a = t[a] : G[a]

Γ ` F Γ ` f : ΠF G Γ ` g : ΠF G
Γ, F ` (wk1 f)x0 = (wk1 g)x0 : G

Γ ` f = g : ΠF G

Γ ` F Γ, F ` G Γ ` t = u : ΣF G

Γ ` fst t = fstu : F
Γ ` F Γ, F ` G Γ ` t : F Γ ` u : G[t]

Γ ` fst (t, u) = t : F
Γ ` F Γ, F ` G Γ ` t = u : ΣF G

Γ ` snd t = sndu : G[fst t]
Γ ` F Γ, F ` G Γ ` t : F Γ ` u : G[t]

Γ ` snd (t, u) = u : G[fst (t, u)]
Γ ` F

Γ, F ` G
Γ ` t : ΣF G
Γ ` u : ΣF G

Γ ` fst t = fstu : F
Γ ` snd t = sndu : G[fst t]

Γ ` t = u : ΣF G

Γ ` m = n : N
Γ ` sucm = sucn : N

Γ,N ` A Γ,N ` A = A′

Γ,N, A ` s = s′ : wk1 (A[↑, sucx0])
Γ ` z = z′ : A[zero]

Γ ` n = n′ : N
Γ ` natrecAz s n = natrecA′ z′ s′ n′ : A[n]

Γ,N ` A Γ ` z : A[zero] Γ,N, A ` s : wk1 (A[↑, sucx0])
Γ ` natrecAz s zero = z : A[zero]

Γ,N ` A Γ ` z : A[zero] Γ,N, A ` s : wk1 (A[↑, sucx0]) Γ ` n : N
Γ ` natrecAz s (sucn) = s[n, natrecAz s n] : A[sucn]
Γ ` A = B Γ ` t = u : ⊥

Γ ` emptyrecA t = emptyrecB u : A
Γ ` t : > Γ ` u : >

Γ ` t = u : >

Figure 3.9: Term conversion rules of λΣΠUN.

3.3 Reduction

The semantics of λΣΠUN is defined from a set of call-by-name small-step reduction
rules. Similarly to the typing judgements, one judgement is used for the reduction of
types (Γ ` A −→ B) and one for terms (Γ ` t −→ u : A). The reduction judgements
are typed, meaning that reductions are constricted by typing rules and in particular
that conversion follows from reduction [8]. The rules for both relations are shown
in Figure 3.10.

The customary reflexive, transitive closure of the reduction relations, for reducing
terms zero or more steps, is likewise typed and defined in Figure 3.11. As shown by

12

http://fhlkfy.github.io/modalities_and_erasure/Definition.Typed.html#4067

3.3. Reduction

Γ ` A −→ B : U
Γ ` A −→ B

Γ ` t −→ u : A Γ ` A = B

Γ ` t −→ u : B
Γ ` t −→ u : ΠF G Γ ` a : F

Γ ` t a −→ u a : G[a]
Γ ` F Γ, F ` t : G Γ ` a : F

Γ ` (λ t) a −→ t[a] : G[a]
Γ ` F Γ, F ` G Γ ` t −→ u : ΣF G

Γ ` fst t −→ fstu : F
Γ ` F Γ, F ` G Γ ` t : F Γ ` u : G[t]

Γ ` fst (t, u) −→ t : F
Γ ` F Γ, F ` G Γ ` t −→ u : ΣF G

Γ ` snd t −→ sndu : G[fst t]
Γ ` F Γ, F ` G Γ ` t : F Γ ` u : G[t]

Γ ` snd (t, u) −→ u : G[fst (t, u)]
Γ,N ` A Γ ` z : A[zero] Γ,N, A ` s : wk1 (A[↑, sucx0]) Γ ` n −→ n′ : N

Γ ` natrecAz s n −→ natrecAz s n′ : A[n]
Γ,N ` A Γ ` z : A[zero] Γ,N, A ` s : wk1 (A[↑, sucx0])

Γ ` natrecAz s zero −→ z : A[zero]
Γ,N ` A Γ ` z : A[zero] Γ,N, A ` s : wk1 (A[↑, sucx0]) Γ ` n : N

Γ ` natrecAz s (sucn) −→ s[n, natrecAz s n] : A[sucn]
Γ ` A Γ ` t −→ u : ⊥

Γ ` emptyrecA t −→ emptyrecAu : A

Figure 3.10: Small-step reduction rules of λΣΠUN.

the below theorems, these relations are deterministic and reduce terms to weak head
normal form (WHNF) but not further. Terms in WHNF thus make up the values of
λΣΠUN. For open terms, these are any term in which a free variable prevents further
reduction rules from being applied, but for closed terms, these consist of all types,
zero, suc, ?, pairs and lambda abstractions.

Theorem 3.1. If Γ ` A −→∗ B with A in WHNF, then A = B. Likewise, if
Γ ` t −→ u : A with t in WHNF, then t = u.

Proof. By induction on induction on the reduction relations.

Γ ` A
Γ ` A −→∗ A

Γ ` A −→ A′ Γ ` A′ −→∗ B
Γ ` A −→∗ B

Γ ` t : A
Γ ` t −→∗ t : A

Γ ` t −→ t′ : A Γ ` t′ −→∗ u : A
Γ ` t −→∗ u : A

Figure 3.11: Reflexive, transitive closures of reduction relations of λΣΠUN.

13

http://fhlkfy.github.io/modalities_and_erasure/Definition.Typed.html#8871
http://fhlkfy.github.io/modalities_and_erasure/Definition.Typed.Properties.html#6985
http://fhlkfy.github.io/modalities_and_erasure/Definition.Typed.html#12262

3. The Language λΣΠUN

Theorem 3.2. If Γ ` A −→∗ B and Γ ` A −→∗ B′ with B and B′ in WHNF, then
B = B′. Likewise, if Γ ` t −→∗ u : A and Γ ` t −→ u′ : A with u and u′ in WHNF,
then u = u′.

Proof. By induction on the reduction relations.

14

http://fhlkfy.github.io/modalities_and_erasure/Definition.Typed.Properties.html#10244

4. Modalities

In this chapter, we will extend λΣΠUN with modality annotations. We first give a
general definition of modalities as a ringoid and discuss its main properties. Using
this, we then introduce λΣΠUN

M , a family of languages, parameterised by the modality
structure M, which extends λΣΠUN with modality annotations. Though their use will
change with the specific modality used, these languages will all share a type system
built on the properties of the modality structure. One particular interpretation of
these annotations, which we will use extensively, is as indicating the amount of
resources needed to form terms. With this interpretation, we think of the language
as using quantitive types. Although this is not the only use case for modalities,
thinking of them as resources helps form intuition for their behaviour and we will
often refer to them as such.

4.1 Modalities
In order to build a general theory for modal types, we need our modalities to satisfy
a certain set of properties. We begin by giving the definition of modalities and
proceed with explaining how the specifics of the definitions will be used afterwards.

Definition 4.1 (Modalities). A modality ringoid is a 7-tuple (M,+, ·,∧, nri, 0, 1),
consisting of (from left to right) a set M , three binary operations (addition, mul-
tiplication and meet), one natural number-indexed ternary operation and zero and
unit elements, satisfying the following properties:

• (M,+, ·, 0, 1) forms a semiring: Addition is commutative and associative with
0 as identity. Multiplication is associative with 1 as identity and 0 as absorbing
element and is left and right distributive over addition.

• (M,∧) forms a semilattice: Meet is commutative, associative and idempotent.
The semilattice induces the usual partial ordering relation: p ≤ q iff p = p∧ q.

• The ternary operation satisfies nr0 p q r = 0 and nri+1 p q r = p∧(q+r ·nri p q r).
Further, there exists a fixpoint i0 such that nri0+1 p q r = nri0 p q r.

• Both multiplication and addition are left and right distributive over meet.

• The semiring is positive in the sense that 0 ≤ p+ q implies 0 ≤ p and 0 ≤ q.

This definition mostly follows that of Abel and Bernardy [1] with the exception of the
ternary operation and the positivity constraint. The latter is more reminiscent of the

15

http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.html#271

4. Modalities

structure employed by Atkey [10]. The reasons for these inclusions are, as we shall
see, for the treatment of recursion (natrec in particular) and the Σ-type projections
respectively. As hinted by the definition, we will often use the metavariables p, q
and r to range over elements of a modality set. We will typically use the word
modalities to refer to such elements rather than the ringoid structure. For the
modality structure itself, the metavariable M will be used. We will see the reasons
for introducing these operations as well as the properties we impose when we define
the typing rules of our language, but we give an intuitive notion of how the operations
will be used already.

The addition and multiplication operations are the primary ways in which modalities
from several terms can be combined. Addition is used to find the resource use of a
term by combining the resources of sub-terms while multiplication indicates multiple
occurrences of some resource-consuming term. An example of the latter is function
application in which the argument may occur several times in the function body.
The zero and unit elements correspond, in this view, to no occurrences and a single
occurrence respectively.

Meet can, in general, be used to match modalities between branches in conditional
terms but for the most part, we will use it in terms of the partial ordering relation
it induces. This relation should be interpreted as the smaller element being less
specific than the larger in the same sense as for subtyping. In particular, if p ≤ q,
we will allow p to be used wherever q is expected. This view is supported by the
following theorems which state that the relation is indeed a partial order, that all
three binary operations are monotone with regards to it and that the meet operation
is a decreasing function. The last property indicates why meet can be used to ensure
compatibility between case branches.

Theorem 4.2. ≤ forms a partial order, that is, it is reflexive, transitive and anti-
symmetric.

Proof. Reflexivity, transitivity and antisymmetry follow from the idempotency, as-
sociativity and commutativity of meet respectively.

Theorem 4.3. Multiplication, addition and meet are monotone with respect to ≤,
that is, if p ≤ q and p′ ≤ q′ then pp′ ≤ qq′ (and analogous for addition and meet).
As usual, multiplication signs are omitted.

Proof. The addition and multiplication cases follow from distributivity over meet.
The meet case follows from the commutativity, associativity and idempotence of
meet.

Theorem 4.4. Meet is a decreasing function, that is, p ∧ q ≤ p and p ∧ q ≤ q.

16

http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Properties.html#1242
http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Properties.html#1605
http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Properties.html#4037

4.1. Modalities

Proof. Follows from the definition of the ordering relation and the idempotency and
associativity of meet.

Finally, as already hinted at, nri will be used to compute the modality usage of
recursive terms. More specifically, we will make use of this operator at the fixpoint
and we define p ~r q := nri0 p q r as a more convenient notation for this. Because
the operation provides a solution to a specific recurrence relation (see theorem 4.7)
we will refer to ~r as the recurrence operator. As the notation suggests, we will
view this as a binary operation on the first two arguments of nr, indexed by the
third. This view is supported by the following distributivity properties which leave
the third argument untouched.

Theorem 4.5. Multiplication is right distributive over ~r, (p~r q) · p′ = (p · p′)~r

(q · p′). Further, addition is super-distributive1 over ~r, (p ~r q) + (p′ ~r q
′) ≤

(p+ p′)~r (q + q′).

Proof. The corresponding properties for nri are shown by induction on i. The the-
orem then follows by instantiating these proofs at the fixpoint.

The definition of ~r in terms of a fixpoint of an iteratively defined function also
provides us with the following properties:

Theorem 4.6. The recurrence operator is monotone in both its arguments and its
index. If p ≤ p′, q ≤ q′ and r ≤ r′, p~r q ≤ p′ ~r′ q′.

Proof. The corresponding property for nri follows from the monotonicity of addition,
multiplication and meet. The theorem then follows by instantiating this proof at
the fixpoint.

Theorem 4.7. The recurrence operator satisfies the recurrence relation p ~r q =
p ∧ (q + r(p~r q)).

Proof. Follows directly from the existence of a fixpoint and the iterative property
of nri.

The significance of this recurrence relation is probably not immediately obvious but
is, as we will see later, imperative for the proper treatment of the natural number
recursor.

1Super and sub-distributivity are weaker notions of distributivity in which equality is replaced with
≥ and ≤ respectively.

17

http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Properties.html#7920
http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Properties.html#6463
http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Properties.html#4670

4. Modalities

4.1.1 Modality Contexts
For the same reasons that we use a typing context to keep track of the types of
free variables, we will make use of modality contexts to keep track of the modality
associated with each variable. We denote the set of modality contexts by ConM

n , sig-
nalling that the context corresponds to modality structure M, and define it similarly
to typing contexts in Figure 4.1. Continuing the similarities to typing contexts, we
will use γ, δ and η to denote modality contexts, that is, lower case of the letters
used for typing contexts.

ε ∈ ConM
0

γ ∈ ConM
n p ∈M

γ, p ∈ ConM
n+1

Figure 4.1: Definition of modality contexts.

Addition and meet are lifted to act pointwise on contexts of equal length and scaling
with modality p is similarly defined by multiplying each element in the context with
p from the left. The recurrence operator is likewise lifted pointwise on its first two
arguments, still being indexed by a single modality element2. We will also require
the following partial order for modality contexts.

Definition 4.8 (Partial order of modality contexts). γ ≤ δ iff γ = γ ∧ δ.

As for the operators, this is simply the corresponding definition for modalities lifted
to act pointwise on modality contexts.

For convenience, we will use 0 to indicate the zero context, where all elements are 0,
and ei to mean a context that is equal to 0 at all points except its ith element is unit.
In Section 4.2.5 we will treat modality contexts as vectors. From that perspective,
ei corresponds to a vector in the standard basis. For non-empty contexts, we also
introduce tail (γ, p) = γ and head (γ, p) = p as well as γ(xi) for looking up the
modality associated with xi.

We conclude this section by noting that the properties of modalities also hold for
contexts.

Theorem 4.9. The commutativity, associativity, idempotency, distributivity and
positivity properties of modalities hold also for modality contexts. Further, for any
modality p, and any context γ, p0 = 0, 1γ = γ. Additionally, theorems 4.2 to 4.7
hold also for modality contexts with necessary changes.

Proof. By induction on the length of contexts using the corresponding properties

2This is another reason for treating it as a binary operator.

18

http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Context.html#594
http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Context.html#1967
http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Context.Properties.html

4.2. The Language λΣΠUN
M

for modalities.

4.2 The Language λΣΠUN
M

For the remainder of this chapter, we will use the above definition of modalities to
define λΣΠUN

M , starting with a modification of the syntax with annotations. We then
look at the type system and adapt it to take these annotations into account and
ensure their consistency. Having defined the language, we will then explore some
properties of the system. In particular, we will show modality analogues to typing
properties such as the substitution lemma and subject reduction.

4.2.1 Syntax
As already mentioned, the main change we will make to λΣΠUN syntax-wise when
defining λΣΠUN

M is adding annotations to some terms. Thinking of modalities as
resources, these are used to indicate the amount of resources consumed by the term
in some sense. As we will see later, the projections for Σ-types cannot be freely used
as they would in a modality-free language. For this reason, λΣΠUN

M also introduces
prodrecp A t u, a recursor for Σ-types. The informal semantics of this term is that any
occurrences of x1 and x0 in u will be replaced with the first and second components
of the pair t respectively (as seen in Figure 4.2, u binds two variables).

Terms are as before indexed by the number of free variables in order to keep the
language well-scoped, but is now also indexed by a modality ringoid M from which
modality annotations are drawn. The syntax of λΣΠUN

M is given in Figure 4.2; in
order to highlight the differences from λΣΠUN, only those terms which have been
changed are included.

F ∈ TermM
n G ∈ TermM

n+1
p, q ∈M

Πq
p F G ∈ TermM

n

F ∈ TermM
n G ∈ TermM

n+1
q ∈M

Σq F G ∈ TermM
n

t ∈ TermM
n+1

p ∈M
λp t ∈ TermM

n

t ∈ TermM
n u ∈ TermM

n p ∈M
t pu ∈ TermM

n

A ∈ TermM
n+1 z ∈ TermM

n s ∈ TermM
n+2 t ∈ TermM

n
p, r ∈M

natrecr
p Az s t ∈ TermM

n

t ∈ TermM
n u ∈ TermM

n+2
p ∈M

prodrecp t u ∈ TermM
n

A ∈ TermM
n t ∈ TermM

n p ∈M
emptyrecp A t ∈ TermM

n

Figure 4.2: Abstract syntax of λΣΠUN
M (subset).

The Π-type takes two annotations. The first (p) signifies the modality associated

19

http://fhlkfy.github.io/modalities_and_erasure/Definition.Untyped.html#2016

4. Modalities

with the function argument. In terms of resources, this is the number of times the
function argument is used to produce the function result. The second annotation (q)
instead indicates the resources needed to construct the type G. For a non-dependent
function, this annotation would be 0. The annotation for Σ-types shares the same
purpose. Only one annotation is needed because, in contrast to functions, pairs do
not introduce new variables.

Lambda abstractions and applications both come with one annotation each, indi-
cating the resources used by the function argument and the number of times the
argument is consumed respectively. We will see that for well-typed terms these are
required to both match each other and the corresponding annotation in the Π-type.

The recursors all take one or two modalities. In natrec, p signifies how many times s
uses its first argument (n) and r how many times it uses the second (the recursive call
to natrec). The product recursor similarly uses its annotation to indicate how many
times the components of the product are used in u but uses the same annotation for
both components. We will see the reason for this later. The empty type recursor also
uses its annotation to indicate the number of times its argument is used. However,
unlike the other recursors, the argument is not consumed to produce a result and
the annotation is thus allowed to be set to any value, essentially allowing the term
to be formed with any arbitrary amount of resources. The motivation for allowing
this is that the occurrences of emptyrec already implies a contradictory context.

4.2.2 Typing
The type system of λΣΠUN

M is divided into two main parts. The judgements for well-
formed types and terms (which are almost the same as those of λΣΠUN) and the
judgement for well-usage of modalities which will be introduced in the next section.

In practice, the addition of modalities has little effect on the concept of well-
formedness as most work is handled by the well-usage judgement. The only added
complication is that the typing rules for lambda abstractions and applications re-
quire their corresponding modalities to match that of the Π-type. For clarity, Fig-
ure 4.3 show all rules for well-formedness of types and terms which involve terms
with modality annotations. We omit the rules for conversion except for those cor-
responding to the newly added prodrec-term which we show in Figure 4.4.

Apart from the already mentioned annotation matching, the main things of interest
here are the new rules corresponding to the prodrec-term. Similarly to natrec, in
prodrecp A t u, A is the type dependent on the value of the pair t (which should have
a Σ-type). The term u binds two variables which correspond to the first and second
components of the pair respectively. The type of u is A[↑2 id, (x1, x0)] which is A
with x0 substituted with the pair (x1, x0) and all remaining variables shifted up by
one. The reason for this shift is to account for the different contexts in which A and
u are formed.

20

4.2. The Language λΣΠUN
M

Γ ` F Γ, F ` G
Γ ` Πq

p F G : U
Γ ` F Γ, F ` G
Γ ` Σq F G : U

Γ ` F Γ, F ` t : G
Γ ` λp t : Πq

p F G

Γ ` t : Πq
p F G Γ ` u : F

Γ ` t pu : G[u]
Γ ` F Γ, F ` G Γ ` t : F Γ ` u : G[t]

Γ ` (t, u) : Σq F G

Γ ` F Γ, F ` G Γ ` t : Σq F G

Γ ` fst t : F
Γ ` F Γ, F ` G Γ ` t : Σq F G

Γ ` snd t : G[fst t]
Γ ` F Γ, F ` G Γ,Σq F G ` A Γ ` t : Σq F G Γ, F,G ` u : A[↑2id, (x1, x0)]

Γ ` prodrecp A t u : A[t]
Γ,N ` A Γ ` z : A[zero] Γ,N, A ` s : wk1 (A[↑, sucx0]) Γ ` n : N

Γ ` natrecr
p Az s n : A[n]

Γ ` A Γ ` t : ⊥
Γ ` emptyrecp A t : A

Γ ` F Γ, F ` G
Γ ` Πq

p F G

Γ ` F Γ, F ` G
Γ ` Σq F G

Figure 4.3: Inference rules for well-formed terms and types of λΣΠUN
M (ex-

cerpt).

Γ ` F
Γ ` t = t′ : Σq F G

Γ, F ` G Γ,Σq F G ` A = A′

Γ, F,G ` u = u′ : A[↑2id, (x1, x0)]
Γ ` prodrecp A t u = prodrecp A

′ t′ u′ : A[t]
Γ ` F Γ, F ` G

Γ ` t′ : G[t]
Γ,Σq F G ` A Γ ` t : F

Γ, F,G ` u : A[↑2id, (x1, x0)]
Γ ` prodrecp A (t, t′)u = u[t, t′] : A[(t, t′)]

Figure 4.4: Conversion inference rules for prodrec.

4.2.3 Modality Usage
The judgements for well-formed types and terms which we considered in the last
section are not enough to ensure that modality annotations are correct. For this, we
define the relation γ . t in Figure 4.5 and interpret it to mean that context γ contains
enough resources to form term t. In particular, thinking of contexts as keeping track
of the number of variable occurrences, free variables of t cannot occur more times
than specified by γ. The definition is in large parts based on the typing relation
used by Abel for resource typing in a smaller dependently typed language [11].

In most cases, the reasons behind these rules are quite straightforward. Constant
terms, such as U and zero never have any variable occurrences and so we require
nothing of the variables which is represented by the zero-modality context. A single
variable amounts to unit usage for that variable and no usage for all other variables.

21

http://fhlkfy.github.io/modalities_and_erasure/Definition.Typed.html#838
http://fhlkfy.github.io/modalities_and_erasure/Definition.Typed.html#6785

4. Modalities

0 . U 0 . N 0 . > 0 . ⊥
γ . F δ, q . G

γ + δ . Πq
p F G

γ . F δ, q . G

γ + δ . Σq F G ei . xi

γ, p . t

γ . λp t

γ . t δ . u

γ + pδ . t pu

γ . t δ . u

γ + δ . (t, u)
0 . t

0 . fst t
0 . t

0 . snd t
γ . t δ, p, p . u

pγ + δ . prodrecp A t u

0 . zero
γ . t

γ . suc t
γ . z δ, p, r . s η . n

(γ ∧ η)~r (δ + pη) . natrecr
p Az s n

γ . t

pγ . emptyrecp A t 0 . ?
γ . t

δ ≤ γ
δ . t

Figure 4.5: Definition of the usage relation.

Terms which are simple collections of sub-terms, such as Πq
p F G and suc t (which

“collects” only one sub-term) require the combined usage of the sub-terms which
is received by adding their respective contexts. Whenever these sub-terms bind
new variables and there are corresponding modality annotations, we ensure that the
newly bound variable is given exactly the amount of resources as annotated. See,
for instance, the lambda rule which requires x0 in t to use p resources. We also have,
as previously mentioned, a subsumption rule which allows the use of less specific
modality contexts.

The more complicated cases are application, the recursors and the projections. The
application rule states that δ resources are needed to construct u. Since t pu indicates
that u will be substituted p times into t, the needed resources will be p times larger in
addition to the resources needed to form t. The product recursor works similarly by
multiplying the resources needed to form t by the number of occurrences in u. The
reason for assuming that both components have the same number of occurrences in
u is that we cannot infer the resources needed to form either of the two components
by themself. We defer the discussion on the projections and natural number recursor
to Section 4.2.7 after proving the subject reduction theorem which will simplify the
explanation.

In the following, we will make use of the following two properties of the usage
relation. The first is the customary inversion lemma.

Theorem 4.10 (Inversion lemma). If γ . t, then:

• If t = U,N,>,⊥, zero or ?, then γ ≤ 0.

• If t = xi, then γ ≤ ei.

22

http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Usage.html#767
http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Usage.Inversion.html#681

4.2. The Language λΣΠUN
M

• If t = Πq
p F G or Σq F G, then ∃δ, η. δ . F and η, q . G and γ ≤ δ + η.

• If t = λp t′, then ∃δ. δ, p . t′ and γ ≤ δ.

• If t = t′ pu, then ∃δ, η. δ . t′ and η . u and γ ≤ δ + pη.

• If t = (t′, u), then ∃δ, η. δ . t′ and η . u and γ ≤ δ + η.

• If t = fstu or sndu, then 0 . u and γ ≤ 0.

• If t = prodrecp A t
′ u, then ∃δ, η. δ . t′ and η, p, p . u and γ ≤ pδ + η.

• If t = sucu, then ∃δ. δ . u and γ ≤ δ.

• If t = emptyrecp Au, then ∃δ. δ . u and γ ≤ pδ.

• If t = natrecr
p Az s n, then ∃δ, η, θ. δ . z and η, p, r . s and θ . n and γ ≤

(δ ∧ θ)~r (η + pθ).

Proof. For each term, by induction on the derivation of the appropriate cases of the
usage relation. For each term, there are two cases, the term’s corresponding usage
rule and the subsumption rule.

The second property involves the point-wise nature of the contexts and allows the
contents of two valid contexts to be freely interchanged.

Theorem 4.11. If γ . t and δ . t, then for any i, γ′i . t where γ′i(xj) = γ(xj) if
j 6= i and γ′i(xi) = δ(xi).

Proof. By mutual induction on γ . t and δ . t.

A preferable alternative to this theorem would be γ ∨ δ . t where ∨ denotes the
pointwise supremum (dual to meet). Since we do not have this operation available
and it is not necessarily definable for a general modality3, the above theorem has
to suffice. Another alternative to this property will be provided by theorem 4.14
which allows us to calculate an upper bound for γ and δ (though not necessarily the
supremum).

4.2.4 Usage Inference
Assuming that annotations are correct, all information about what resources are
needed to construct the term can be inferred just by looking at the annotations. We
define the following function for this purpose:

3For instance, the supremum is not definable for a linearity modality.

23

http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Usage.Properties.html#1046

4. Modalities

Definition 4.12 (Modality inference). The function |_| : TermM
n → ConM

n , in-
ferring a modality context of a term is defined recursively over terms as follows:

|U| := 0 |zero| := 0
|N| := 0 |suc t| := |t|
|>| := 0

∣∣∣natrecr
p Az s n

∣∣∣ := (|z| ∧ |n|)~r

(
tail (tail |s|) + p |n|

)
|⊥| := 0

∣∣(t, u)
∣∣ := |t|+ |u|∣∣∣Πq

p F G
∣∣∣ := |F |+ tail |G| |fst t| := 0

|Σq F G| := |F |+ tail |G| |snd t| := 0

|xi| := ei

∣∣∣prodrecp A t u
∣∣∣ := p |t|+ tail (tail |u|)

|λp t| := tail |t| |?| := 0

|t pu| := |t|+ p |u|
∣∣∣emptyrecp A t

∣∣∣ := p |t|

This definition is mostly straightforward and the similarities with the usage relation
itself should be obvious. It should be noted that the inference function makes no
distinction between well-resourced and non-well-resourced terms and thus always
computes some context whether a valid one exists or not. As the following theorem
states, the computed context is indeed valid for all well-typed and well-resourced
terms.

Theorem 4.13. If Γ ` t : A and γ . t, then |t| . t.

Proof. By strutural induction on the typing derivation, using the inversion lemma
and theorem 4.11.

Additionally, the computed context is an upper bound on valid contexts.

Theorem 4.14. If γ . t then γ ≤ |t|.

Proof. By structural induction on the derivation of γ . t.

Taken together, theorems 4.13 and 4.14 state that for any term which is well-typed
and well-resourced, the inferred modality context is not only valid, it is also the
largest (most specific) context which is valid. This means that, in some sense, |t|
is the best modality context of t. Looking at the similarities between the inference
function and the inversion lemma this result should come as no surprise as the upper
bounds in the inversion lemma directly correspond to the inferred contexts.

4.2.5 Substitution
We have already touched very briefly on the consequences of applying a substitution
in terms of resource usage when motivating the usage rule for applications. Then,

24

http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Usage.html#2014
http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Usage.Properties.html#9367
http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Usage.Properties.html#7543

4.2. The Language λΣΠUN
M

in the case of substituting a single variable with a term, we claimed that the added
resources should be those needed to construct the term, multiplied by the modality
corresponding to the substituted variable. We will now build on this intuition to see
what happens for a general substitution, building up to a modality analogue of the
substitution lemma for typing contexts.

When we apply a substitution σ to a term t, all occurrences of variable xi are
replaced with the term σxi. Given that σxi requires δi resources to be formed (that
is, δ . σxi), each occurrence of xi will add δi resources. If we also have γ . t, the
total amount of resources added by substituting xi is γ(xi) · δi. The combined effect
of all variable substitutions is thus that the resources associated with xj in t[σ] are∑

i γ(xi)δi(xj). This is simply the multiplication of γ with a matrix Ψ in which the
ith column is δi.

Following the work of Wood and Atkey [12], we thus think of modality substitutions
as matrices and in this regard consider modality contexts to be vectors. More
concretely, a substitution σ ∈ Substn

m is represented by Ψ ∈Mn×m, that is, an n×m-
matrix with elements from M . The identity substitution naturally corresponds to
the identity matrix with 1 on the diagonal and 0 elsewhere. For the other weakenings,
shifting introduces a variable with no occurrences so a row of 0 is prepended while
lifting prepends both a row and a column of zeros with 1 in the top left corner, see
Figure 4.6.

As another example, for a single substitution (the substitution performed by t[u])
we simply add the resources needed to construct u to the left of the identity matrix4

as in Figure 4.6. It is not difficult to see that applying this matrix to γ, p will result
in γ + pδ, the same expression that is used in the usage rule for applications.


0 · · · 0

Ψ00 · · · Ψ0(m−1)
...

Ψ(n−1)0 · · · Ψ(n−1)(m−1)




1 0 · · · 0
0 Ψ00 · · · Ψ0(m−1)
...
0 Ψ(n−1)0 · · · Ψ(n−1)(m−1)




δ(x0) 1 0 · · · 0
δ(x1) 0 1 · · · 0
...

δ(xn) 0 0 · · · 1



Figure 4.6: Substitution matrices corresponding to, from left to right, shift-
ing a substitution matrix Ψ, lifting a substitution matrix Ψ and the single
substitution t[u] with δ . u.

For the most part, matrix multiplication behaves as one would expect in this setting
and substitution matrices capture most properties of the modality operators with
some minor changes.

Theorem 4.15 (Properties of substitution matrices). Substitution matrix mul-
tiplication satisfies the following properties:

4And for several simultaneous substitutions, such as the one performed by t[v, u], one simply
extends the identity matrix further.

25

http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Substitution.Properties.html#1239

4. Modalities

• The identity matrix is a left identity to matrix multiplication.

• The zero-context is a right zero (modulo context length), Ψ0 = 0.

• Matrix multiplication is associative, Φ(Ψγ) = (ΦΨ)γ.

• Matrix multiplication distributes over addition and scaling, Ψ(pγ + qδ) =
p ·Ψγ + q ·Ψδ.

• Matrix multiplication sub-distributes over meet and the recurrence operator,
Ψ(γ ∧ δ) ≤ Ψγ ∧Ψδ and Ψ(γ ~r δ) ≤ (Ψγ)~r (Ψδ).

• Matrix multiplication is monotone, if γ ≤ δ then Ψγ ≤ Ψδ.

Proof. By induction on the length of contexts using corresponding properties for
modalities and modality contexts.

Before we can formulate our substitution lemma we need to introduce the concept
of well-resourced substitutions.

Definition 4.16 (Well-resourced substitution). A substitution σ ∈ Substn
m is

well-resourced in substitution matrix Ψ ∈ Mn×m, written Ψ I σ iff ∀i < n. Ψei .
σxi.

Recall that, in a linear algebra setting, ei is a basis vector in the standard basis and
has the effect of picking out the ith column from the matrix. The definition thus
states that well-resourcedness requires each column vector of Ψ to be a valid modality
context to the corresponding term in σ which is consistent with our reasoning above.

We would, like to solidify our examples from earlier by showing that the construc-
tions yield valid matrices, but first, we need to take a quick detour from the substi-
tution matrices and introduce the following lemma.

Theorem 4.17. If γ . t then γ′ . t[⇑n (↑ id)] where γ′(xi) = γ(xi) for i < n,
γ′(xn) = 0 and γ′(xi) = γ(xi+1) for i > n.

Proof. By structural induction on t.

Put more simply, applying a single shift weakening lifted n times has the effect of
inserting a 0 at index n in the modality context. The reason for this seemingly odd
theorem is to take care of the liftings that are done when substitutions are pushed
down into the binders. This property will follow from the substitution lemma, but
that will require a proof that the weakening matrix constructions above are valid
which in turn rests on this property.

26

http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Substitution.html#1738
http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Usage.Weakening.html#741

4.2. The Language λΣΠUN
M

Theorem 4.18. The matrix constructions discussed above, in particular, those of
Figure 4.6 are well-formed with respect to their corresponding substitutions.

Proof. The five constructions are shifted and lifted substitutions, the identity sub-
stitution and single and multiple-term substitutions.

• The shifting case uses theorem 4.17 with n = 0.

• Lifting has two cases, Ψe0 . σx0 follows from the linearity properties of matrix
multiplication and the properties of the modality ringoid. The case Ψei+1 .
σxi+1 additionally uses the well-formedness of the shifting matrix.

• The single substitution t[u] similarly has two cases, Ψe0 . σx0 follows directly
from δ . u and the remaining cases from the identity matrix being the left
identity of matrix multiplication.

• The multiple substitution case follows a similar structure as the single substi-
tution case.

The dependency of the lifting and identity cases requiring the shifting case should
be seen as an artefact of the Agda implementation using the shifting operation in
the construction of lifted matrices and the identity matrix rather than an inherent
dependency.

We can now finally conclude this section with the substitution lemma.

Theorem 4.19 (Substitution lemma). For any term t ∈ TermM
n , modality context

γ ∈ ConM
n and substitutions σ ∈ Substn

m and Ψ ∈ Mn×m, if Ψ I σ and γ . t then
Ψγ . t[σ].

Proof. By structural induction on the derivation of γ . t using theorem 4.18 for
lifted substitutions.

4.2.6 Substitution Inference
Using our earlier method of inferring valid modality contexts, it is, also possible to
infer a valid substitution matrix to a given substitution.

Definition 4.20 (Substitution matrix inference). The substitution matrix in-
ference function, ‖_‖ : Substn

m →Mn×m, is defined such that ‖σ‖ is an n×m-matrix
where the ith column is given by |σxi|.

As one would expect, the inferred matrix of any substitution in which every substi-
tuted term is well-typed and well-resourced will be a valid substitution matrix.

27

http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Substitution.Properties.html#10382
http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Substitution.Properties.html#13711
http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Substitution.html#1882

4. Modalities

Theorem 4.21. If ∀xi. ∃A, γ. Γ ` σxi : A ∧ γ . σxi then ‖σ‖ I σ.

Proof. By theorem 4.13 applied to each column of ‖σ‖.

4.2.7 Reduction
At this point, we are almost ready to provide the final sanity-check on the proposed
theory, namely that modalities are preserved under reduction. This is the modality
analogue to the type preservation or subject reduction theorem.

First, though, we need to introduce the reduction rules. As with the typing rules,
the modality extension does not have much effect on the reduction rules. The only
real consideration is ensuring that annotations match in the same way as was done
in the rules for well-formed terms. Still, Figure 4.7 shows all reduction rules in which
modality annotations are involved.

Γ ` t −→ u : Πq
p F G Γ ` a : F

Γ ` t pa −→ u pa : G[a]
Γ ` F Γ, F ` t : G Γ ` a : F

Γ ` (λp t) pa −→ t[a] : G[a]
Γ ` F Γ, F ` G Γ ` t −→ u : Σq F G

Γ ` fst t −→ fstu : F
Γ ` F Γ, F ` G Γ ` t −→ u : Σq F G

Γ ` snd t −→ sndu : G[fst t]
Γ,N ` A Γ ` z : A[zero] Γ,N, A ` s : wk1 (A[↑, sucx0]) Γ ` n −→ n′ : N

Γ ` natrecr
p Az s n −→ natrecr

p Az s n
′ : A[n]

Γ,N ` A Γ ` z : A[zero] Γ,N, A ` s : wk1 (A[↑, sucx0])
Γ ` natrecr

p Az s zero −→ z : A[zero]
Γ,N ` A Γ ` z : A[zero] Γ,N, A ` s : wk1 (A[↑, sucx0]) Γ ` n : N

Γ ` natrecr
p Az s (sucn) −→ s[n, natrecr

p Az s n] : A[sucn]
Γ ` F Γ, F ` G

Γ, F,G ` u : A[↑2id, (x1, x0)]
Γ,Σq F G ` A

Γ ` t −→ t′ : Σq F G

Γ ` prodrecp A t u −→ prodrecp A t
′ u : A[t]

Γ ` F
Γ ` t : F

Γ, F ` G
Γ ` t′ : G[t]

Γ,Σq F G ` A
Γ, F,G ` u : A[↑2id, (x1, x0)]

Γ ` prodrecp A (t, t′)u −→ u[t, t′] : A[(t, t′)]
Γ ` A Γ ` t −→ u : ⊥

Γ ` emptyrecp A t −→ emptyrecp Au : A

Figure 4.7: Reduction rules of λΣΠUN
M (excerpt).

Now, as promised, we have the modality preservation theorems.

28

http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Substitution.Properties.html#21263
http://fhlkfy.github.io/modalities_and_erasure/Definition.Typed.html#8871

4.2. The Language λΣΠUN
M

Theorem 4.22 (Subject reduction). If γ . t and Γ ` t −→ u : A then γ . u.
Further, if δ . A and Γ ` A −→ B then δ . B.

Proof. By structural induction on the reduction using the inversion lemma for
modalities, the substitution lemma and theorem 4.18.

We conclude this chapter by returning to the discussion of the usage rules for the
projections and the natural number recursor. For further discussion on alternative
approaches, see Section 7.1.

For some modalities, there is a general problem with freely allowing projections to
be used because they drop resources. This becomes a problem in settings where
an exact number of resources is required. For instance, a pair in a linear setting
requires both components to be used exactly once, and allowing projections to be
used freely makes this impossible to satisfy.

Another way of looking at this problem is by considering the subject reduction
theorem. For this to hold in the case fst (t, u) → t we require that t is formed in
a context that is equal to (or, by subsumption, larger than) the context forming
fst (t, u). If γ . t and δ . u we would thus need γ + δ ≤ γ if no restriction was
imposed on the usage rule for the projections5. This is problematic whenever δ ≤ 0
does not hold, but since only the combined usage of both components is available,
ensuring this with a side condition is not possible. Thus, we instead impose the
restriction that the pair is formed under the zero context which together with the
positivity of the modality ringoid ensures that the projections are well-behaved.

For the natural number recursor, there are two reduction cases of interest. For
natrecr

p Az s zero → z we need the context forming natrec (say, χ) to be at least as
large as the context forming z. In the successor case, we need χ to be at least as
large as the context forming s[n, natrecr

p Az s n]. If γ . z, δ, p, r . s and η . sucn we
thus need (using the substitution lemma) χ ≤ γ and χ ≤ δ + pη + rχ. Although
satisfying these two constraints allow us to show subject reduction, it does not take
the resources required by the natural number into account (only those corresponding
to s using n). For this, we need to ensure that at least η resources are available
thus additionally requiring χ ≤ η. These inequalities are the reason for including
the recurrence operator in our modality definition as the constraints can be satisfied
by letting χ = (γ ∧ η)~r (δ + pη).

Theorem 4.23. The recurrence operator satisfies the necessary inequalities. That
is, (γ ∧ η)~r (δ + pη) ≤ γ and (γ ∧ η)~r (δ + pη) ≤ δ + pη + r((γ ∧ η)~r (δ + pη))
and (γ ∧ η)~r (δ + pη) ≤ η.

Proof. Using theorems 4.4 and 4.7.

5That is, the rule follows the style of e.g. suc.

29

http://fhlkfy.github.io/modalities_and_erasure/Definition.Typed.Usage.html#887
http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Usage.Properties.html#14299

4. Modalities

Additionally, the recurrence operator gives the greatest (least specific) solution of
the inequalities for any modality instance where 0 is the greatest element.

Theorem 4.24. If χ ≤ γ and χ ≤ δ + pη + rχ and χ ≤ η and ∀q. q ≤ 0 then
χ ≤ (γ ∧ η)~r (δ + pη).

Proof. By induction on the contexts using the recurrence property and existence of
fixpoint of nri p q r.

30

http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Usage.Properties.html#17174

5. Erasure

We will now turn our attention to a concrete application of the theory introduced
in the previous chapter, namely that of erasure. We will first define a modality for
erasure that allows the programmer to annotate computationally irrelevant parts of
the program and the type system to track what parts of a program are erasable.
We will then introduce a small untyped lambda calculus which will serve as the
target language of an extraction function which has the purpose of erasing erasable
content.

5.1 A Modality for Erasure
To track erasability, the type system only needs to discern between two things:
whether a variable is computationally relevant or not. The modality for erasure
thus contains two annotations, each representing one of these two cases. From
a quantitive standpoint, this corresponds to no usage and any usage respectively
which inspires the following definition of a modality for erasure.

Definition 5.1 (Erasure modality). The set 0ω := {0, ω} with binary operators
for addition (+), multiplication (·) and meet (∧) defined by Table 5.1 and nr defined
by nr0 p q r = 0, nri+1 p q r = p ∧ (q + r · nri p q r) constitutes the erasure modality
annotations.

Table 5.1: Definition of addition, multiplication and meet for the erasure
modality as well as the recurrence operator (p~r q), independent of the value
of r.

(+) 0 ω (·) 0 ω (∧) 0 ω (~r) 0 ω
0 0 ω 0 0 0 0 0 ω 0 0 ω
ω ω ω ω 0 ω ω ω ω ω ω ω

The ω-annotation signifies computationally relevant resources and 0, computation-
ally irrelevant resources, indicating that these can be erased. The partial order for
0ω is the reflexive closure of ω ≤ 0. Through subsumption, this allows ω to be used
to annotate any (even zero) usage, thus allowing erasable content to be marked as
computationally relevant if desired. On the other hand, 0 can only be used where
no variable usage occurs in a non-erased position, thus ensuring safe erasability (see
theorem 5.3).

Before we are able to use these annotations in λΣΠUN
M , we first need to show that

they satisfy definition 4.1 which is the result of the following theorem.

31

http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Erasure.html#242
http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Erasure.html#446

5. Erasure

Theorem 5.2 (Erasure modality). The set of erasure annotations, 0ω, with cor-
responding operators as defined by definition 5.1 with 0 as zero and ω as unit forms
a modality ringoid.

Proof. All properties are easily shown by case distinction on 0 and ω. For nrn p q r,
the fixpoint is reached after one iteration and p~r q turns out to be independent of
r and coincides with addition and meet, see Table 5.1.

Having shown that 0ω forms a modality, we can instantiate λΣΠUN
0ω , an extension

of λΣΠUN with erasure annotations. This system, and the erasure ringoid itself,
naturally satisfy the properties of Chapter 4 but the specific structure of 0ω gives
some additional properties. The first is the already mentioned property that well-
resourced variables never are erasable in head position.

Theorem 5.3. If γ . xi then γ(xi) = ω.

Proof. Using the variable case of the inversion lemma for modalities (theorem 4.10)
and that ω is the least element of 0ω.

The second property of the erasure modality which we require is that addition of
annotations yields smaller (less specific) annotations. Through subsumption, this
allows addition of two contexts to be used whenever either one was expected. The
same property also holds for the recurrence operator since it coincides with addition.

Theorem 5.4. Addition and the recurrence operator are decreasing function both on
erasure annotations and erasure contexts, that is, p+ q ≤ p, p+ q ≤ q and similarly
for contexts (and analogous for p~r q).

Proof. For annotations, by case distinction or by theorem 4.4, noting that addition,
the recurrence operation and meet coincide. For contexts, by induction on the
context length using the corresponding property for annotations.

5.2 Target Language
In order for erasure annotations to be useful, a compiler of sorts that removes
erasable terms is needed. This will be the topic of the next section. Here, we
introduce λN×> which is the target language that λΣΠUN

0ω will be compiled to.

The target language for our erasure extraction is an untyped lambda calculus which,
with the exception of types, includes most constructs of λΣΠUN

0ω . Terms are, as
for λΣΠUN, natural number indexed to ensure correct boundness of variables. The
abstract syntax for terms, TermN×>

n , is given in Figure 5.1, meta-variables v and w
are used to range over λN×> terms. The binders are, disregarding the lack of types,

32

http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Erasure.html#6954
http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Erasure.Properties.html#4114
http://fhlkfy.github.io/modalities_and_erasure/Definition.Modality.Erasure.Properties.html#777

5.2. Target Language

the same as for λΣΠUN
M , that is, v in λ v, s in natrec z sm and w in prodrec v w. In

addition to natural numbers, products and unit, the syntax includes , representing
an undefined value. This term is necessary as the erased value of types, of which
there are no other proper representation in the target language and will also be used
in the extraction function to represent erased variables. In addition to the similar
syntax, weakenings and substitutions are defined analogously to λΣΠUN

M .

i < n
xi ∈ TermN×>

n

v ∈ TermN×>
n+1

λ v ∈ TermN×>
n

v ∈ TermN×>
n w ∈ TermN×>

n

v w ∈ TermN×>
n

zero ∈ TermN×>
n

v ∈ TermN×>
n

suc v ∈ TermN×>
n

z ∈ TermN×>
n s ∈ TermN×>

n+2 m ∈ TermN×>
n

natrec z sm ∈ TermN×>
n

v ∈ TermN×>
n w ∈ TermN×>

n

(v, w) ∈ TermN×>
n

v ∈ TermN×>
n

fst v ∈ TermN×>
n

v ∈ TermN×>
n

snd v ∈ TermN×>
n

v ∈ TermN×>
n w ∈ TermN×>

n+2

prodrec v w ∈ TermN×>
n ? ∈ TermN×>

n ∈ TermN×>
n

Figure 5.1: Abstract syntax of the target language.

Likewise, the semantics follow the call-by-value, weak-head reduction style of λΣΠUN
M .

The reduction rules, shown in Figure 5.2, thus have many similarities to those of
λΣΠUN
M while being untyped. Values are again terms in WHNF, which for closed

terms are lambda abstractions, natural numbers, pairs, ? and . We also define
t −→∗ u to be the reflexive, transitive closure of the reduction relation.

v −→ v′

v w −→ v′w (λ v)w −→ v[w]
v −→ v′

fst v −→ fst v′
v −→ v′

snd v −→ snd v′

fst (v, w) −→ v snd (v, w) −→ w

v −→ v′

prodrec v w −→ prodrec v′w

prodrec (v, v′)w −→ w[v, v′]
v −→ v′

natrec z s v −→ natrec z s v′

natrec z s zero −→ z natrec z s (suc v) −→ s[natrec z s v, v]

Figure 5.2: Small-step reduction rules for λN×>.

As for λΣΠUN
M , the reduction relation is deterministic and reduces all terms to WHNF:

Theorem 5.5. If t −→ u with t in WHNF, then t = u.

33

http://fhlkfy.github.io/modalities_and_erasure/Erasure.Target.html#302
http://fhlkfy.github.io/modalities_and_erasure/Erasure.Target.html#4551
http://fhlkfy.github.io/modalities_and_erasure/Erasure.Target.Properties.Reduction.html#2574

5. Erasure

Proof. By induction on the reduction relation.

Theorem 5.6. If t −→∗ u and t −→∗ u′ with u and u′ in WHNF, then u = u′.

Proof. By induction on the reduction relation.

5.3 Program Extraction
With the target language in place, we can now define our compilation scheme. It
takes the form of a program extraction function taking terms of λΣΠUN

0ω to terms of
λN×>.

Definition 5.7 (Program extraction). The program extraction function _• :
Term0ω

n → TermN×>
n is defined recursively on the source language terms as follows:

U• := (t, u)• := (t•, u•)
N• := (fst t)• := fst t•

>• := (snd t)• := snd t•

⊥• := zero• := zero
(Πq

p F G)• := (suc t)• := suc t•

(Σq F G)• := (natrecr
p Az s n)• := natrec z• s• n•

x•i := xi ?• := ?

(λp t)• := λ t• (emptyrecp A t)• :=

(t 0u)• := t• (prodrec0A t u)• := u•[,]
(t ωu)• := t• u• (prodrecω A t u)• := prodrec t• u•

The similar structure between λΣΠUN
0ω and λN×> makes the definition mostly straight-

forward. Since the target language is untyped, any type is necessarily extracted to
 . For most other terms, extraction preserves the structure of the term and simply
recurses down over the sub-terms. More interesting are the places at which erasure
occurs and this scheme no longer applies. For applications, a computationally irrel-
evant applied argument is simply replaced with and the extraction continues over
the function body. The other case in which erasure takes place is for the product
recursor. Here, is similarly used by substituting it for both components of the
(irrelevant) product. Intuitively, the soundness of these erasure schemes is justified
by theorem 5.3.

Also noteworthy are the places where erasure does not take place. These are the
natural number recursor and the lambda abstractions, neither of which make use of
their respective annotations. In the case of natrec, a similar erasure technique to the
one used by the product recursor would appear feasible at first glance. The problem
with this method is that a distinction between the zero and successor branches can-
not be made without evaluating n. This means that the natrec structure necessarily

34

http://fhlkfy.github.io/modalities_and_erasure/Erasure.Target.Properties.Reduction.html#2283
http://fhlkfy.github.io/modalities_and_erasure/Erasure.Extraction.html#444

5.3. Program Extraction

needs to be kept which makes any erasing attempt seemingly impossible. For the
lambda abstractions, the structure of the term is also necessary to keep, in this case
for the term to stay a value in both languages. We will briefly return to this in
Section 7.2.

To conclude this chapter, we take a look at a small example to see how the erasure
system is used. Probably the smallest illuminating example is the lambda term
λx.λy.y (with named variables) which uses y once and does not use x at all. Trans-
lating this term to λΣΠUN

0ω we thus annotate the first lambda abstraction with 0 and
the second with ω and get λ0 λω x0. This term on its own is, as just discussed, a
value so all that happens when it is extracted is that the annotations are removed,
(λ0 λω x0)• = λλx0. If we apply some arguments to this extraction we can see
the value of erasure. For instance, ((λ0 λω x0) 0(λω x0)) ωzero, where we first apply
the identity function λω x0 and then zero, reduces to zero. Extracting this term,
we get (((λ0 λω x0) 0(λω x0)) ωzero)• = ((λλx0)) zero. The first, unused, argument
was replaced with , the erasure annotations were removed and everything else was
untouched. The gain in doing this was that the unused argument λω x0 was replaced
with the smaller argument , resulting in a smaller term. In this case, the gain was
quite small, but for a sufficiently large unused argument, the improvement achieved
by the erasure system would become significant.

35

5. Erasure

36

6. Soundness

The goal of this chapter is to prove the extraction function of the previous section to
be sound with regards to the semantics of λΣΠUN

0ω . The method of choice is through
a logical relation, relating terms of λΣΠUN

0ω to terms of λN×> which we will define in
Section 6.3. This relation will be based on the logical relation employed by Abel et
al. to prove decidability of conversion for λΣΠUN [8]. We thus first give a somewhat
simplified introduction to the parts of this relation which we will use in Sections 6.1
and 6.2.

6.1 A Logical Relation for Reducibility
What we refer to as the logical relation used by Abel et al. [8] actually consists of
several relations which can be divided into two groups: reducibility and validity. The
general definition scheme for these relations is through induction-recursion in which
one relation is defined inductively, and the following recursively on the derivation
of the first. Another commonality of the relations is that they are indexed by a
type level, ` which for λΣΠUN

M ranges over 0 and 1 with 0 being the level of small
types and 1 the level of large types. The relations are defined inductively over `
with the definition for large types generally being equal to that for small types. The
exception to this is the universe U which unlike all other types can only be seen as
a large type.

The presentation we give here for the reducibility relations and in the next section
for the validity relations is somewhat simplified on two accounts. Primarily, parts of
the relation which concern type or term conversion are omitted as they will not be
relevant in the definition of our logical relation. Secondly, we limit the presentation
to the simplified case of closed terms. The reason for this is that our soundness
statement (and our logical relation) is restricted to closed terms. We again refer
the interested reader to Abel et al. [8] for the full details. With slight modifications
to account for the changed syntax, all proofs in this and the following section are
attributed to this work.

The first group of the logical relation is that of reducible types and terms1. The
general structure of the definition is similar to that of well-formed types and terms
from Section 3.2 in that the definitions are mutually dependent but we again separate
them here for clarity. The judgements take the forms ε
` A and ε
` t : A/A for
reducible type A and reducible term t of type A in type level ` respectively. In the
latter judgement, A is the derivation that A is a reducible type that the judgement

1The full definition additionally includes reduciblity of type and term equality.

37

6. Soundness

〈U〉 `′ < `
ε
` U

ε ` A ε ` A −→∗ N
〈N〉

ε
` A

ε ` A ε ` A −→∗ >
〈>〉

ε
` A

ε ` A ε ` A −→∗ ⊥
〈⊥〉

ε
` A

ε ` A ε ` F
ε ` A −→∗ Πq

p F G
ε, F ` G F : ε
` F
∀a. ε
` a : F/F ⇒ ε
` G[a]

〈Π〉
ε
` A

ε ` A ε ` F
ε ` A −→∗ Σq F G

ε, F ` G F : ε
` F
∀a. ε
` a : F/F ⇒ ε
` G[a]

〈Σ〉
ε
` A

ε
`′ A
〈emb〉 `′ < `

ε
` A

Figure 6.1: Definition of reducible types.

is defined recursively on. We write A : ε
` A to indicate that A is a derivation of
ε
` A and similarly for the other judgements.

Reducible types are defined inductively according to Figure 6.1, we use the labels on
the left to refer to each specific derivation in the definition of the other judgements.
The universe type, U is always a reducible type of type level 1, the lack of premise
comes from there being no terms that reduce to U. The type level side condition
could alternatively be written l = 1, constraining the derivation to large types. The
following three rules state that any well-formed type that reduces to either N, >
or ⊥ is a reducible type. The cases corresponding to Π and Σ types additionally
require that F is a reducible type and that G[a] is a reducible type2 whenever a is
a reducible term of type F . Finally, any small type can also be considered a large
type, by which we allow any derivation for small types to be embedded to large
types.

We now define reducible terms ε
` t : A/A by recursion on A as follows:

• If A = 〈U〉 then ε
` t : U/A holds iff there exists t′ in WHNF such that
ε ` t −→ t′ : U .

• If A = 〈N〉 then ε
` t : A/A holds iff there exists t′ in WHNF such that
ε ` t −→ t′ : N and

– t′ = zero or

– t′ = sucu and ε
` u : A/A holds.

• If A = 〈>〉 then ε
` t : A/A holds iff there exists t′ in WHNF such that
ε ` t −→ t′ : >.

2The full definition requires these properties to hold under any weakening applied to F and G.
This has been omitted because only closed terms are considered.

38

http://fhlkfy.github.io/modalities_and_erasure/Definition.LogicalRelation.html#15306
http://fhlkfy.github.io/modalities_and_erasure/Definition.LogicalRelation.html#15561

6.2. A Logical Relation for Validity

• If A = 〈⊥〉 then ε
` t : A/A does not hold3.

• If A = 〈Π〉 then there are derivations F : ε
` F and4 G : ∀a. ε
` a : F/F ⇒
ε
` G[a]. We then define ε
` t : A/A to hold iff there exists t′ in WHNF
such that ε ` t −→ t′ : Πq

p F G and5 ∀a. ε
` a : F/F ⇒ ε
` t
′ pa : G[a]/G (a).

• If A = 〈Σ〉 then there are derivations F : ε
` F and G : ∀a. ε
` a : F/F ⇒
ε
` G[a]. We then define ε
` t : A/A to hold iff there exists t′ in WHNF
such that ε ` t −→ t′ : Σq F G and ∀a. ε
` a : F/F ⇒ ε
` fst t′ : F/F ∧ ε
`

snd t′ : G[a]/G (a).

• If A = 〈emb〉 then there is a derivation A ′ : ε
`′ A and ε
` t : U/A is
defined to hold iff ε
`′ t : A/A ′ holds.

Before we move on to the remaining parts of the logical relation we give some
properties of the reducibility relations. First, the escape lemma which states that
reducibility entails well-formedness.

Theorem 6.1 (Escape). If A : ε
` A then ε ` A. If additionally, ε
` t : A/A
then ε ` t : A.

Proof. By induction on A .

The second main property is irrelevance which refers to the actual derivation of
reducibility being irrelevant.

Theorem 6.2 (Irrelevance). If A : ε
` A and A ′ : ε
`′ A and ε
` t : A/A
then ε
`′ t : A/A ′.

Proof. By mutual induction on A and A ′ using theorem 3.2.

6.2 A Logical Relation for Validity
Though the escape lemma shows that reducible types and terms are well-formed, it
is not yet possible to show the converse (this property is the fundamental lemma
of the logical relation). In order to show this, the reducibility relations need to be
generalised to hold under substitutions. This extended property forms the logical
relation for validity of which there are four judgments which we will consider. These

3The requirements for term reducibility for this case reduces to impossibility for closed terms since
there are no closed terms of the empty type.

4Here, G represents a (possibly) infinite number of derivations for each reducible term a. We write
G (a) for the specific derivation using a, which implicitly is required to be reducible.

5Again, the full definition requires the following property (and the analogous one for 〈Σ〉) to hold
under any weakening.

39

http://fhlkfy.github.io/modalities_and_erasure/Definition.LogicalRelation.Properties.Escape.html#577
http://fhlkfy.github.io/modalities_and_erasure/Definition.LogicalRelation.Irrelevance.html#4274

6. Soundness

are valid contexts,
v Γ, valid substitutions6, ε
s σ : Γ/T , valid types Γ
v
`

A/T , and valid terms Γ
v
` t : A/T /A . The first three all depend on each

other, requiring them to be defined together, but are as usual separated here. The
induction-recursion scheme is used also here with context validity being defined
inductively and substitution validity defined by recursion on that derivation.

Starting with valid contexts, the inductive definition is given in Figure 6.2. This
definition simply states that the empty context is valid and that a valid context
can be extended with valid types. Similarly to the definition of reducible types, the
labels on the left are used to refer to a specific derivation.

〈ε〉

v ε

T :
v Γ Γ
v
` A/T〈cons〉

v Γ, A

Figure 6.2: Definition of validity of contexts.

Validity of substitutions, ε
s σ : Γ/T is then defined by recursion on the context
validity derivation as follows:

• If T = 〈ε〉 then ε
s σ : ε/T holds.

• If T = 〈cons〉 then there are derivations T :
v Γ and A : Γ
v
` A/T and

we define ε
s σ : ε/T to hold iff S : ε
s tailσ : Γ/T and ε
` headσ :
A[tailσ]/A (tailσ) hold.

The definition is similar to the validity of contexts. Empty substitutions are always
valid and non-empty substitutions are valid if the head is a reducible term and the
tail is a valid substitution.

Validity of types is defined such that Γ
v
` A/T holds iff ∀σ. ε
s σ : Γ/T ⇒ ε
`

A[σ] and validity for terms Γ
v
` t : A/T /A similarly holds iff ∀σ. ε
s σ : Γ/T ⇒

ε
` t[σ] : A[σ]/A (σ). Both cases simply state that a type or term is valid iff it
is reducible when applied to any valid substitution. This allows the fundamental
theorem of the logical relation to be proven.

Theorem 6.3 (Fundamental lemma for validity and reducibility).

• If Γ ` A then ∃T . Γ
v
1 A/T .

• If Γ ` t : A then ∃T ,A . Γ
v
1 t : A/T /A .

• If ε ` A then ε
1 A.

6We only consider closing substitutions, that is σ ∈ Substn
0 .

40

http://fhlkfy.github.io/modalities_and_erasure/Definition.LogicalRelation.Substitution.html#552
http://fhlkfy.github.io/modalities_and_erasure/Definition.LogicalRelation.Substitution.html#1141
http://fhlkfy.github.io/modalities_and_erasure/Definition.LogicalRelation.Substitution.html#690
http://fhlkfy.github.io/modalities_and_erasure/Definition.LogicalRelation.Substitution.html#2032
http://fhlkfy.github.io/modalities_and_erasure/Definition.LogicalRelation.Fundamental.html#1377

6.3. A Logical Relation for Erasure

• If ε ` t : A then ∃A . ε
1 t : A/A .

Proof. Validity is shown by induction on the typing derivation. Reducibility follows
from the validity case applied to the identity substitution.

The validity judgements also have similar irrelevance properties to the reducibility
judgements.

Theorem 6.4 (Irrelevance). If T :
v Γ and T ′ :
v Γ and A : Γ
v
` A/T and

A ′ : Γ
v
` A/T

′ the following statements hold:

• If Γ
v
` A/T then Γ
v

` A/T
′.

• If Γ
v
` t : A/T /A then Γ
v

` t : A/T ′/A ′.

Proof. By induction on the context validity judgements using irrelevance for the
reducibility relations.

Having proven the fundamental lemma, Abel et al. use the logical relation to show
various properties of the type system, concluding in showing that type and term
conversion are decidable. For our purposes, the main property of interest is syntactic
validity.

Theorem 6.5 (Syntactic validity).

• If Γ ` t : A then Γ ` A.

• If Γ ` A −→∗ B then Γ ` A and Γ ` B.

• If Γ ` t −→∗ u : A then Γ ` t : A and Γ ` u : A.

Proof. By the fundamental theorem and the escape lemma.

6.3 A Logical Relation for Erasure
Using the logical relations for reducibility and validity, we can now move on to
define our logical relation for erasure. Like the previous relations, we will require
a collection of relations which we will collectively refer to as the logical relation. If
distinctions between the other relations need to be made, we refer to this one as the
logical relation for erasure. The structure of the logical relation is similar to those
of the previous sections, being defined using the induction-recursion scheme and
being indexed by a type level `. There is, however, one major difference between the
relation for erasure and the relations for reducibility and validity. While the latter
two only cover single terms, the relation for erasure relates terms between λΣΠUN

0ω to

41

http://fhlkfy.github.io/modalities_and_erasure/Definition.LogicalRelation.Substitution.Irrelevance.html#2484
http://fhlkfy.github.io/modalities_and_erasure/Definition.Typed.Consequences.Syntactic.html#879

6. Soundness

terms of λN×>. The intent is for every term t to be related to its erasure t• (this is
the fundamental lemma of the logical relation).

The main part of the logical relation, tr` v : A/A relates a closed term t in λΣΠUN
0ω

of some reducible type A to a closed term v in λN×>. The definition is done by
recursion on the derivation that A is reducible:

• If A = 〈U〉 then tr` v : A/A holds iff ε ` t : U.

• If A = 〈N〉 then tr` v : A/A holds iff either

– ε ` t −→∗ zero : N and v −→∗ zero or

– ε ` t −→∗ suc t′ : N, v −→∗ suc v′ and t′ r` v
′ : A/A .

• If A = 〈>〉 then tr` v : A/A holds iff ε ` t : > and v −→∗ ?.

• If A = 〈⊥〉 then tr` v : A/A does not hold.

• If A = 〈Π〉, ε ` A −→∗ Πq
p F G holds and there are derivations F : ε
` F

and G : ∀a. ε
` a : F/F ⇒ ε
` G[a]. We then define t r` v : A/A to hold
iff either

– p = 0 and ∀a. ε
` a : F/F ⇒ t 0ar` v : G[a]/G (a) holds, or

– p = ω and ∀a, w. ε
` a : F/F ⇒ a r` w : F/F ⇒ t ωa r` v w :
G[a]/G (a) holds.

• If A = 〈Σ〉, there are derivations F : ε
` F and G : ∀a. ε
` a : F/F ⇒
ε
` G[a]. We then define t r` v : A/A to hold iff ∃t1, t2, v1, v2. ε ` t −→∗
(t1, t2) : Σq F G ∧ v −→∗ (v1, v2) ∧

(
ε
` t1 : F/F ⇒ t1 r` v1 : F/F ∧ t2 r`

v2 : G[t1]/G (t1)
)
holds.

• If A = 〈emb〉 then there is a derivation A ′ : ε
`′ A and t r` v : A/A is
defined to hold iff tr`′ v : A/A ′ holds.

For the base types, the main idea is that terms of both languages should reduce to
corresponding values of the right type. In the universe case, we require t to be of
type U which ensures that t is a (small) type. The natural number case is defined
inductively, similarly to the natural numbers themselves. In the base case, both t
and v reduce to zero while in the induction case they both reduce to the successor
of some related terms on which the induction can proceed. The consequence is that
t and v represent the same natural number. The unit case is similar to the universe
case in that we simply require v to reduce to ?, the canonical value of the unit type.
The last base type, the empty type, is treated as impossibility. The reason for this
is, as was the case for reducibility of terms, that there are no closed terms of the

42

http://fhlkfy.github.io/modalities_and_erasure/Erasure.LogicalRelation.html#1435

6.3. A Logical Relation for Erasure

empty type.

For computationally relevant Π-types, t and v represent functions and should be
related when applied to related (and in the case of t, reducible) arguments. For
irrelevant Π-types, the relatedness restriction is dropped and we instead apply un-
defined to v. In the case of Σ-types, t and v represent pairs whose both components
should be related. For embeddings, we simply induct and apply the definition to
the embedded reducibility derivation.

An important property of the logical relation is that relatedness is preserved by
reduction. This is true both for the λΣΠUN

0ω -terms and the λN×>-terms, regardless of
whether the reduction is followed backwards or forwards.

Theorem 6.6. If A : ε
` A and tr` v : A/A then

• If ε ` t −→ t′ : A then t′ r` v : A/A .

• If v −→ v′ then tr` v
′ : A/A .

• If ε ` t′ −→ t : A then t′ r` v : A/A .

• If v′ −→ v then tr` v
′ : A/A .

• If ε ` t −→∗ t′ : A and v −→∗ v′ then t′ r` v
′ : A/A .

• If ε ` t′ −→∗ t : A and v′ −→∗ v then t′ r` v
′ : A/A .

Proof. The first four cases are shown by induction on A using syntactic validity
and theorem 3.2. The remaining two by induction on the reflexive transitive closure
of the reduction relations, using the first four properties.

As for the relations for reducibility and validity, we also have an irrelevance property
for the derivation of the reducibility of A.

Theorem 6.7 (Irrelevance). If A : ε
` A and A ′ : ε
`′ A and t r` v : A/A
then tr`′ v : A/A ′.

Proof. By mutual induction on A and A ′.

At this point, we would like to show the fundamental lemma, tr1 t
• : A/A , for any

well-typed term t but attempting to do so quickly runs us into a problem. For the
lambda case (p = ω), we need to show t ωar1 t

•w : G[a]/G (a) given ε
1 a : F/F
and ar1 w : F/F . By theorem 6.6 it is sufficient to show t[a]r1 t

•[w] : G[a]/G (a)
but the induction hypothesis is too weak to show this. This is the same problem
that caused Abel et al. to introduce the validity relation, ensuring that the logical

43

http://fhlkfy.github.io/modalities_and_erasure/Erasure.LogicalRelation.Properties.html#3170
http://fhlkfy.github.io/modalities_and_erasure/Erasure.LogicalRelation.Irrelevance.html#3924

6. Soundness

relation holds under substitutions. We proceed in the same manner, starting with
σ r` σ

′ : Γ / γ/T /S relating valid (closing) substitutions of λΣΠUN
0ω with (closing)

substitutions of λN×>. The contexts Γ and γ keep track of the type and resource
usage for each term in σ. The relation is defined by recursion on the validity of Γ
as follows:

• If T = 〈ε〉 then σ r` σ
′ : ε / ε/T /S holds.

• If T = 〈cons〉 then there derivations T ′ :
v Γ and A : Γ
v
`′ A/T ′ and

S ′ : ε
s tailσ : Γ/T ′ and S : ε
s σ : Γ, A/T (note that T :
v Γ, A in this
case). We then define σ r` σ

′ : Γ, A / γ, p/T /S to hold iff tailσ r` tailσ′ :
Γ / γ/T ′/S ′ and either

– p = 0 or

– p = ω and headσ r`′ headσ′ : A[tailσ]/A (tailσ) holds.

The idea is to treat substitutions as lists of terms and require the substitutions to
be pointwise related for all computationally relevant variables but require nothing
of erasable variables. The motivation for this is theorem 5.3. Since an erasable
variable cannot occur, it does not matter what terms are being substituted for such
variables.

Using this, we then define erasure validity, Γ . γ
` t : A/T /A , which is defined
to hold iff ∀σ, σ′. S : ε
s σ : Γ/T ⇒ σ r` σ

′ : Γ / γ/T /S ⇒ t[σ] r` t
•[σ′] :

A[σ]/A (σ). Similarly to the definitions of valid types and terms, an open term t
of a valid type A is valid under erasure if it is related to erasure under any related
substitutions σ and σ′.

With this, it is possible to show the fundamental lemma, but we delay the proof
a little bit longer and first show some other properties of our relations which will
simplify the proof. First, as usual, we have irrelevance.

Theorem 6.8 (Irrelevance). If T :
v Γ and T ′ :
v Γ then

• If S : ε
s σ : Γ/T and S ′ : ε
s σ : Γ/T ′ and σ r` σ
′ : Γ / γ/T /S then

σ r` σ
′ : Γ / γ/T ′/S ′.

• If A : Γ
v
` A/T and A ′ : Γ
v

`′ A/T ′ and γ . Γ
t ` : A/T /A then
γ . Γ
`′ t : A/T ′/A ′.

Proof. For substitutions, by mutual induction on T , T ′ using theorem 6.7. For
erasure validity, using irrelevance of substitutions and theorem 6.8.

Then, a property analogous to the subsumption rule in the usage relation that allows
erasable content to be treated as computationally relevant.

44

http://fhlkfy.github.io/modalities_and_erasure/Erasure.LogicalRelation.html#2896
http://fhlkfy.github.io/modalities_and_erasure/Erasure.LogicalRelation.html#3341
http://fhlkfy.github.io/modalities_and_erasure/Erasure.LogicalRelation.Irrelevance.html#4984

6.4. Soundness

Theorem 6.9 (Subsumption). If T : Γ and γ ≤ δ then

• If S : ε
s σ : Γ/T and σ r` σ
′ : Γ / γ/T /S then σ r` σ

′ : Γ / δ/T /S .

• If A : Γ
v
` A/T and δ . Γ
` t : A/T /A then γ . Γ
` t : A/T /A .

Proof. For subsumption of related substitutions, by induction on T and case dis-
tinction on the head of γ, δ. Subsumption of erasure validity follows directly from
subsumption of substitutions.

A subtle difference between the two subsumption properties is the flipped order
between γ and δ. For related substitutions, the theorem allows us to move to a
larger context whereas erasure validity allows us to move to smaller contexts. The
reason for this difference is the negative occurrence of σ r` σ

′ : Γ / γ/T /S in the
definition of erasure validity.

With these properties, we are ready to show the fundamental lemma, starting with
a lemma for the variable case.

Theorem 6.10 (Fundamental lemma for variables). If T :
v Γ and xi :
A ∈ Γ and γ(xi) = ω and S : ε
s σ : Γ/T and σ r` σ

′ : Γ / γ/T /S then
∃A . σxi r1 σ

′xi : A/A (σ).

Proof. By mutual induction on T and xi : A ∈ Γ using theorems 5.3, 6.4 and 6.7.

Theorem 6.11 (Fundamental lemma for erasure). If Γ ` t : A and γ . t then
∃T ,A . γ . Γ
1 t : A/T /A .

Proof. By induction on the typing derivation using the inversion lemma for the usage
relation, fundamental lemma for variables and theorems 5.4 and 6.1 to 6.9. The
most interesting cases are binder terms for which the proof strategy is as explained
above.

6.4 Soundness
With no less than three sets of logical relations defined, we are finally ready to
show the main result of the erasure extension, namely that the extraction function
is sound. As have already been mentioned, we limit the soundness result to closed
programs since free variables prevent terms to be fully evaluated. We further limit
ourselves to programs that output natural numbers, that is terms t of type N.

The desired property is the following: If ε ` t −→∗ sucn zero : N and ε . t then
t• −→∗ sucn zero, where suc0 zero = zero and sucn+1 zero = suc (sucn zero). Un-

45

http://fhlkfy.github.io/modalities_and_erasure/Erasure.LogicalRelation.Properties.html#2293
http://fhlkfy.github.io/modalities_and_erasure/Erasure.LogicalRelation.Fundamental.html#2844
http://fhlkfy.github.io/modalities_and_erasure/Erasure.LogicalRelation.Fundamental.html#4776

6. Soundness

fortunately, this property does not appear to be provable in our system due to the
semantics only reducing terms to WHNF. Instead, we have to settle for the next best
thing, that t and t• both reduce to WHNF representing the same natural number.

To formulate this property properly, we define the concept of weak head represen-
tations of natural numbers as inductive predicates on terms of λΣΠUN

0ω and λN×> in
Figure 6.3. For both languages, the natural number 0 is represented by any term
which reduces to zero and n + 1 is represented by any term which reduces to the
successor of a term that represents the number n.

ε ` t −→∗ zero : N
WHN0 t

ε ` t −→∗ suc t′ : N WHNn t
′

WHNn+1 t

v −→∗ zero
WHN′0 v

v −→∗ suc v′ WHN′n v′

WHN′n+1 v

Figure 6.3: Weak head representations of natural numbers.

Under a stronger reduction relation, this corresponds to reduction to natural num-
bers in canonical form as shown by the following theorem.

Theorem 6.12. If ε ` t −→∗ t′ : N ⇒ ε ` suc t −→∗ suc t′ : N is added to the
reduction rules of Figure 3.10 and WHNn t then ε ` t −→∗ sucn zero : N. Likewise,
if v −→∗ v′ ⇒ suc v −→ suc v′ is added to the reduction rules of Figure 5.2 and
WHN′n v then v −→∗ sucn zero.

Proof. By induction on WHNn t and WHN′n v respectively using transitivity of the
reduction relation.

Convinced that WHNn t and WHN′n v are satisfying representations of natural num-
bers, we now show soundness of natural numbers with regards to this representation
via a quick lemma.

Theorem 6.13. If tr` v : N/〈N〉 and WHNn t then WHN′n t•.

Proof. By induction on WHNn t using theorem 3.2.

Theorem 6.14 (Soundness). If ε ` t : N and ε . t and WHNn t then WHN′n t•.

Proof. By theorem 6.13 using the fundamental lemma for erasures and theorem 6.7.

46

http://fhlkfy.github.io/modalities_and_erasure/Erasure.Soundness.html#1436
http://fhlkfy.github.io/modalities_and_erasure/Erasure.Soundness.html#1932
http://fhlkfy.github.io/modalities_and_erasure/Erasure.Soundness.html#4078
http://fhlkfy.github.io/modalities_and_erasure/Erasure.Soundness.html#4390

7. Discussion

In this chapter we return to the discussion we started in Section 4.2.7 about the
usage rules for the projections and natural recursor and provide some alternative
approaches. We then take a step back and look at some related work and possible
areas for future work in this area.

7.1 Alternative Design Choices for the Usage
Relation

The usage relation, for the most part, is relatively straightforward. The two main
exceptions are the projections and the natural number recursor for which the subject
reduction theorem put strict requirements on the usage rules defined in Figure 4.5.
We discussed our design choices for these terms in Section 4.2.7, but the chosen
ruleset is not the only possible way to treat these terms. In this section, we will
discuss some alternative design choices that were considered to ensure that subject
reduction holds.

7.1.1 Projections
The restriction that no resources are allowed for the use of projections is quite strict
and severely decreases their usefulness. Recall from Section 4.2.7, if γ . t, δ . u, we
would need δ ≤ 0 for fst (t, u) to be well-resourced. As suggested in Section 4.2.7,
letting the usage rule enforce this is infeasible since it would need access to both
components of the pair, thus only allowing pairs to be in WHNF. Not only is this a
large limitation on the usefulness of pairs, but it also makes the use of projections
essentially redundant.

Another way to enforce this inequality is to change the definition of the modality
ringoid to ensure that 0 is the greatest element. While this would indeed make
the projections more useful, it is a large intrusion on the generality of the system.
For instance, although the constraint would hold for the erasure modality, it does
not hold for many typical use-cases such as that of linear types [1]. Yet another
possibility is to extend the system with further annotations, allowing a more fine-
grained resource treatment. Such an extension would most likely use annotations for
the products themselves, similar to the treatment of erasure for Σ-types by Atkey [10]
as well as annotations on the projections. We leave the details of formulating such
a system as future work.

47

7. Discussion

7.1.2 Natural Number Recursion
Without considering the details, the inclusion of the recurrence operator appears to
be a quite unnatural addition to the definition of the modality ringoid. Indeed, unlike
the other three operations, it is strictly speaking not needed to form the system and
its use in the rule for natrec could be replaced by a side condition ensuring that
the recurrence inequality holds. This solution has two main problems. Firstly, this
breaks the usage inference function, making it impossible to infer valid contexts in
general. Secondly, the definition of the recurrence operator explicitly ensures that
any possible recurrence inequality has a solution. Losing that property means that
it could be possible, in some modalities, for natrec-terms to be ill-resourced though
one would expect them not to. In our approach, these situations are avoided by
disallowing the modality to be used (since it does not satisfy our definition). There
is a tradeoff to be made with regards to either allowing more modalities to be used
on one hand and ensuring that the system behaves as expected on the other where
we decided to side with the latter alternative.

Another approach that avoids introducing the recurrence operator, is based on the
work of Brunel et al. [13]. Their quantitative calculus includes both a fixpoint
operation as well as case splitting on natural numbers which can be combined to
express the behaviour of our natrec. In that formulation, the resource contexts for
both case branches are required to be equal which in our case would mean γ = δ and
the conclusion of the usage rule becomes r∗(γ + pη) . natrecr

p Az s n. This replaces
the need for the ~r-operation with the unary star-operation1 satisfying r∗ = 1+rr∗.
While this formulation is thought to be sound it appears to be too restrictive on
which contexts are allowed, again making some terms which one would expect to be
well-resourced be ill-resourced.

In a similar vein to restricting 0 to be the greatest element of the modality ringoid,
another solution would be to require the existence of a least element. The least
context would then always be a solution to the recurrence inequality allowing it to
be used in the conclusion of the usage rule. Much like requiring that 0 is the greatest
element, this limits the generality of the system and additionally does not allow for
a particularly precise treatment of the usage resource of natrec.

7.2 Related Work
The main inspiration for the modality extension comes from the general view of
modalities in types introduced by Abel and Bernardy [1] on which most of our
definition of modalities rests. A similar use of a ring-like structure for quantitive
typing was proposed by Brunel et al. [13]. Their framework was similarly built on
a semiring structure equipped with a bounded partial order but unlike Abel and
Bernardy, considered recursion in the form of fixpoint iteration using the boundness
restriction. As discussed in the previous section, this approach was considered for

1This is the characteristic operation accossiated with a Star-semiring. In the context of regular
expressions and finite automata, it is also known as the Kleene star.

48

7.3. Future Work

the recursion present in this work but was ultimately considered to not be suitable.

Several other uses of ring-like structures to achieve quantitive types also exist but
are typically restricted to specific use cases. Wood and Atkey use a three-element
semiring, equipped with a partial order to account for linearity and erasure [12].
Although their setting is restricted to linear types, and the studied language differs
from ours, most usage rules coincide with ours. In the same work, Wood and
Atkey also introduce the use of matrices to keep track of modality contexts after
substitutions which we too have adopted. A similar approach was used by McBride
to simultaneously keep track of both linearity and erasability [2]. This work was later
extended by Atkey to include, among other things, Σ-types [10], the formulation of
which much of our treatment of Σ-types is inspired.

Examples of erasure systems in a dependently typed setting include the already
mentioned work by McBride where programs are extracted to the untyped lambda
calculus [2]. For erasure, his three-element semiring behaves essentially identically
to our erasure modality but unlike our work, extraction is not performed using
a function, but rather through a relation between terms of the source and target
languages. The works of Mishra-Linger and Sheard [5] and Barras and Bernardo [14]
skip the semiring and simply annotate content as either runtime or compile-time,
corresponding to computationally relevant and erasable content respectively. The
extraction function approach used in these works is largely similar to ours, but
erasable lambda abstractions are extracted to just the body. This approach allows
for more erasable content to be removed at the cost of value preservation. Tejiščák
uses a similar annotation scheme but additionally allows missing annotations to be
inferred [6]. Using this approach, a programmer only needs to annotate parts of a
program to gain the advantage of erasure.

7.3 Future Work
One advantage of using tools like Agda for formalisation is that it makes it easy to
build on and extend previous work. In this regard, there are several areas suitable
for future work.

Although the language has grown considerably since the Agda formalisation was
originally published by Abel et al. [8], the language still lacks some of the common
types found in MLTT. Extending the formalisation with these missing types, most
notably identity and W-types, is thus a clear candidate for extending this work. Of
course, at this point, extending the language includes more than just updating the
language definition since both the formulation of decidability of conversion and the
formulation of erasures need to be updated to account for the larger language.

A more direct extension of this work involves the modality extension. We have al-
ready suggested that a more satisfying treatment of Σ-types could be achieved but
that more work is needed to figure out the details. Likewise, alternate approaches to
recursion could be a possible area of study. This appears to be particularly relevant

49

7. Discussion

if W-types are introduced as this likely involves essentially arbitrary primitive re-
cursion schemes which would require a more general treatment of the resource usage
for recursive terms.

Another option is to instantiate λΣΠUN
M to some specific modality and study its

properties in a way similar to our exploration of erasures. Possibilities include
well-studied principles such as linear types to more exotic choices from the endless
possibilities of modality structures.

Finally, our use of the logical relation for erasures was limited to showing a basic
soundness property. In a similar vein to how the logical relation for reducibility
was used, not only to show decidability of conversion but also a number of other
properties, the logical relation can likely be used to discover further properties of
the erasure system. The most immediate direction would be to device soundness
properties that are not limited to natural numbers but the logical relation can likely
be used in other ways as well.

50

References

[1] A. Abel and J. Bernardy, “A unified view of modalities in type systems,”
Proc. ACM Program. Lang., vol. 4, no. ICFP, 90:1–90:28, 2020. doi: 10 .
1145/3408972.

[2] C. McBride, “I got plenty o’nuttin’,” in A List of Successes That Can Change
the World, Springer, 2016, pp. 207–233. doi: 10.1007/978-3-319-30936-
1_12.

[3] P. Martin-Löf, Intuitionistic type theory: Notes by Giovanni Sambin, ser. Stud-
ies in Proof Theory. Bibliopolis, 1984, vol. 1, pp. iv+91, isbn: 88-7088-105-9.

[4] E. Brady, C. McBride, and J. McKinna, “Inductive families need not store
their indices,” in Types for Proofs and Programs, S. Berardi, M. Coppo, and F.
Damiani, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 115–
129, isbn: 978-3-540-24849-1. doi: 10.1007/978-3-540-24849-1_8.

[5] N. Mishra-Linger and T. Sheard, “Erasure and polymorphism in pure type
systems,” in International Conference on Foundations of Software Science and
Computational Structures, Springer, 2008, pp. 350–364. doi: 10.1007/978-
3-540-78499-9_25.

[6] M. Tejiščák, “A dependently typed calculus with pattern matching and erasure
inference,” Proc. ACM Program. Lang., vol. 4, no. ICFP, 2020-08. doi: 10.
1145/3408973.

[7] AgdaTeam, The Agda Wiki, https://wiki.portal.chalmers.se/agda/
pmwiki.php, 2021.

[8] A. Abel, J. Öhman, and A. Vezzosi, “Decidability of conversion for type theory
in type theory,” Proc. ACM Program. Lang., vol. 2, no. POPL, 2017-12. doi:
10.1145/3158111.

[9] N. G. De Bruijn, “Lambda calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser the-
orem,” in Indagationes Mathematicae (Proceedings), North-Holland, vol. 75,
1972, pp. 381–392.

[10] R. Atkey, “Syntax and semantics of quantitative type theory,” in Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2018, Oxford, UK, July 09-12, 2018, A. Dawar and E. Grädel, Eds.,
ACM, 2018, pp. 56–65. doi: 10.1145/3209108.3209189.

[11] A. Abel, “Resourceful dependent types,” in Presentation at 24th International
Conference on Types for Proofs and Programs (TYPES 2018), Braga, Por-
tugal, abstract, 2018. [Online]. Available: http://www.cse.chalmers.se/
~abela/types18.pdf.

51

https://doi.org/10.1145/3408972
https://doi.org/10.1145/3408972
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1007/978-3-540-24849-1_8
https://doi.org/10.1007/978-3-540-78499-9_25
https://doi.org/10.1007/978-3-540-78499-9_25
https://doi.org/10.1145/3408973
https://doi.org/10.1145/3408973
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://doi.org/10.1145/3158111
https://doi.org/10.1145/3209108.3209189
http://www.cse.chalmers.se/~abela/types18.pdf
http://www.cse.chalmers.se/~abela/types18.pdf

References

[12] J. Wood and R. Atkey, “A linear algebra approach to linear metatheory,”
CoRR, vol. abs/2005.02247, 2020. arXiv: 2005.02247.

[13] A. Brunel, M. Gaboardi, D. Mazza, and S. Zdancewic, “A core quantitative
coeffect calculus,” in Programming Languages and Systems. ESOP 2014, Z.
Shao, Ed., ser. Lecture Notes in Computer Science, vol. 8410, Springer, 2014,
pp. 351–370. doi: 10.1007/978-3-642-54833-8_19.

[14] B. Barras and B. Bernardo, “The implicit calculus of constructions as a pro-
gramming language with dependent types,” in Foundations of Software Science
and Computational Structures, R. Amadio, Ed., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 365–379, isbn: 978-3-540-78499-9. doi: 10.1007/
978-3-540-78499-9_26.

52

https://arxiv.org/abs/2005.02247
https://doi.org/10.1007/978-3-642-54833-8_19
https://doi.org/10.1007/978-3-540-78499-9_26
https://doi.org/10.1007/978-3-540-78499-9_26

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden

	Introduction
	Thesis Outline

	Background
	Martin-Löf Type Theory
	Dependent Types
	Universes

	Modal Type Theory
	Erasure
	Agda

	The Language lambda-SPUN
	Syntax
	Weakening
	Substitution

	Typing
	Typing Context
	Typing Judgements

	Reduction

	Modalities
	Modalities
	Modality Contexts

	The Language lambda-SPUNM
	Syntax
	Typing
	Modality Usage
	Usage Inference
	Substitution
	Substitution Inference
	Reduction

	Erasure
	A Modality for Erasure
	Target Language
	Program Extraction

	Soundness
	A Logical Relation for Reducibility
	A Logical Relation for Validity
	A Logical Relation for Erasure
	Soundness

	Discussion
	Alternative Design Choices for the Usage Relation
	Projections
	Natural Number Recursion

	Related Work
	Future Work

	References

