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Abstract

This thesis presents an Agda-to-C compiler targeting the Raspberry
Pi Pico microcontroller. The compiler implementation includes an un-
usual choice of run-time algorithm, a Foreign Function Interface gen-
erator, and surprisingly little boilerplate code.
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1
Introduction

Writing correct and maintainable software is difficult and expensive.
Functional programming languages go a long way towards solving
these problems[1], and in particular the Agda programming language[2]

assists programmers with a wealth of advanced features including a
powerful module system, flexible syntax, interactive editing, and a
research-grade type system.

Figure 1: Interactive development with Agda

However, functional programming languages are rarely used in
practice1, perhaps due to myths such as “functional programs use
megabytes of memory” or “functional programs need complex compil-
ers” or “you can’t predict the performance of functional programs”.

1As of Oct 2022, none of the 20 most-searched-for programming languages[3] were
functional.

1

https://dl.acm.org/doi/10.1093/comjnl/32.2.98
https://dl.acm.org/doi/10.1093/comjnl/32.2.98
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https://www.tiobe.com/tiobe-index/


1. Introduction

This thesis debunks these myths, by presenting a small and simple
compiler for a modern functional programming language, targeting a
resource-constrained computer: the Raspberry Pi Pico, a low-cost mi-
crocontroller widely used in education and hobbyist electronics.

Figure 2: The Raspberry Pi Pico is not much bigger than a coin

It is equipped with 200 KiB of RAM, 2 MiB of Flash memory, two
ARM Cortex M0+ processor cores, and assorted IO-related hardware.
[4]

In other words, the Raspberry Pi Pico has about as much computing
power as computer workstations did 30 years ago2. However, the Pico
costs $5, fits in the palm of your hand, and has 30 digital IO pins that
plug directly into an electronics breadboard.

Before this project, The Raspberry Pi Pico was already a compila-
tion target for several high-level programming languages, including
C, Rust and MicroPython. However, none of the previously supported
languages3 were purely functional like Agda.

1.1 Contributions

This thesis presents an Agda-to-C compiler (agda2c) capable of pro-
ducing code for the Raspberry Pi Pico.

New & unusual parts of the implementation (§ 2) include:

2For example, the Raspberry Pi Pico’s on-chip clock runs at 133MHz, which is a
typical speed for processors released between 1992-1996[5].

3This blog post[6] summarizes the programming languages previously available on
the Raspberry Pi Pico.

2

http://cpudb.stanford.edu/visualize/clock_frequency
https://www.raspberrypi.com/news/multilingual-blink-for-raspberry-pi-pico/


1. Introduction

• A runtime library implementing (and extending) Shivers &Wand’s
Bottom-Up β-Reduction algorithm[7] for strong evaluation of the
untyped λ-calculus (§ 2.3).

• A user-friendly (but safe and easily implemented) Agda EDSL for
specifying a compiled Agda program’s C interface (§ 2.4).

• A substantial compiler pass implemented in Agda itself (§ 2.5).

I also discuss compiler components (both by me (§ 5.5), and by other
people (§ 4)) that didn’t make it into agda2c, and explain why.

The compiler’s source code is freely available online at https://
github.com/lawcho/agda2c[8].

3

https://dl.acm.org/doi/10.5555/1922521.1922535
https://dl.acm.org/doi/10.5555/1922521.1922535
https://github.com/lawcho/agda2c
https://github.com/lawcho/agda2c
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2
Compiler Design

The compiler is structured as a three-stage pipeline (fig. 3): the user’s
code is first passed to the Agda frontend (§ 2.1), which checks it and
performs some translation, then to the AST Compiler (§ 2.2), which
translates it again, then finally to GCC (§ 2.6), which translates it to
machine code ready to be run by the Raspberry Pi Pico.

The Agda source code also includes Foreign Function Interface
(FFI) Descriptions (§ 2.4), which are compiled separately (§ 2.5),
then combined with the rest of the code by GCC (§ 2.6), along with
a substantial runtime library (§ 2.3) which interprets the compiled
program.

Agda source
code Treeless

IR
C

functions
ARM

machine code

GCC
Agda

frontend
AST

compiler

FFI
compiler

BUBS
runtime
library

FFI
descr.s

Figure 3: Pipeline for compiling Agda to ARM machine code

Many of these components are existing open-source software, but
some are custom-built (thick outline). Let’s look at each of them in
more detail.

5



2. Compiler Design

2.1 Agda Frontend

Agda source code is fed in to the Agda frontend (an existing compo-
nent), which type-checks and simplifies programs (fig. 4).

Agda
frontend

[   ("List-Utils.revApp"

    , TLam (TLam (TLam (TCase 0 (CaseInfo {_}) (TError TUnreachable)

        [TACon

            {aCon = QName' "Agda.Builtin.List.List.[]"

            ,aArity = 0

            ,aBody = TVar 1

            }

        ,TACon

            {aCon = QName' "Agda.Builtin.List.List._∷_"

            ,aArity = 2

            ,aBody = TApp (TDef (QName' "List-Utils.revApp"))

                [TErased

                ,TApp (TCon (QName' "Agda.Builtin.List.List._∷_"))

                    [TVar 1,TVar 3]

                ,TVar 0

                ]

            }

        ]

    ))))

,   ("List-Utils.reverse"

    , TLam (TLam (TApp (TDef (QName' "List-Utils.revApp"))

        [TErased

        ,TCon (QName "Agda.Builtin.List.List.[]")

        ,TApp (TDef (QName' "List-Utils.revApp"))

            [TErased

            ,TVar 0

            ,TCon (QName' "Agda.Builtin.List.List.[]")

            ]

        ]

    )))

]

open import Agda.Builtin.List

module List-Utils (A : Set) where

revApp : List A → List A → List A

revApp acc [] = acc

revApp acc (x ∷ l) = revApp (x ∷ acc) l

reverse : List A → List A

reverse l = revApp [] (revApp l [])

Figure 4: The Agda frontend compiles Agda to Treeless IR

The simplified programs may contain (for example) λ- and case- ex-
pressions, but no module declarations or type signatures. These pro-
grams form a language called Treeless IR, and are stored as Haskell
data for easy further processing.

The Agda frontend is an existing open-source project[2] with exten-
sive documentation for both the user-facing language[9] and many of
the implementation’s algorithms [10] [11] [12] [13], so I will not dis-
cuss it further.

2.2 AST Compiler

Next, Treeless IR programs are compiled to C by the AST Compiler[14]

(fig. 5) (a custom-built component). In particular, the AST Compiler is
responsible for:

• Encoding Agda names in a C-compatible way
• Removing data constructors and case-expressions
• Printing out Treeless expressions in C syntax

6

https://github.com/agda/agda
https://agda.readthedocs.io/en/v2.6.3/
https://github.com/lawcho/agda2c/blob/master/agda2c.hs


2. Compiler Design

AST
compiler

[   ("List-Utils.revApp"

    , TLam (TLam (TLam (TCase 0 (CaseInfo {_}) (TError TUnreachable)

        [TACon

            {aCon = QName' "Agda.Builtin.List.List.[]"

            ,aArity = 0

            ,aBody = TVar 1

            }

        ,TACon

            {aCon = QName' "Agda.Builtin.List.List._∷_"

            ,aArity = 2

            ,aBody = TApp (TDef (QName' "List-Utils.revApp"))

                [TErased

                ,TApp (TCon (QName' "Agda.Builtin.List.List._∷_"))

                    [TVar 1,TVar 3]

                ,TVar 0

                ]

            }

        ]

    ))))

,   ("List-Utils.reverse"

    , TLam (TLam (TApp (TDef (QName' "List-Utils.revApp"))

        [TErased

        ,TCon (QName "Agda.Builtin.List.List.[]")

        ,TApp (TDef (QName' "List-Utils.revApp"))

            [TErased

            ,TVar 0

            ,TCon (QName' "Agda.Builtin.List.List.[]")

            ]

        ]

    )))

]

Term* build_ListzmUtilszirevApp(void){

return λ(v1, λ(v2, λ(v3, app(app(var(v3), var(v2)), λ(v4,

λ(v5, app(app(app(op0(build_ListzmUtilszirevApp),

op0(error_erased_evaluated)),

app(app(op0(build_AgdaziBuiltinziListziListzizuz2237Uzu),

var(v4)), var(v2))), var(v5))))))));

}

Term* build_ListzmUtilszireverse(void){

return λ(v1, λ(v2,

app(app(app(op0(build_ListzmUtilszirevApp),

op0(error_erased_evaluated)),

op0(build_AgdaziBuiltinziListziListziZMZN)),

app(app(app(op0(build_ListzmUtilszirevApp),

op0(error_erased_evaluated)), var(v2)),

op0(build_AgdaziBuiltinziListziListziZMZN)))));

}

Figure 5: The AST Compiler compiles Treeless IR to C

None of these transformations are particularly advanced: names
are made C-compatible by Z Encoding[15] (fig. 6), constructors and
case-expressions are removed by Scott Encoding[16] (fig. 7), and print-
ing is implemented by recursive descent.

"Agda.Builtin.Sigma.Σ.fst"

"AgdaziBuiltinziSigmaziz3a3Uzifst"

Figure 6: Z Encoding makes Agda names C-compatible

The AST Compiler gets away with doing only this small amount of
work by relying heavily on other parts of agda2c: most of Agda’s syntax
is either removed by the Agda frontend (e.g. modules, implicit argu-
ments, erased declarations) (§ 2.1), or passed on into the generated C
code (e.g. λ-expressions, function application expressions) where it is
evaluated at run-time by a library (§ 2.3), at which we shall look next.

7

https://hackage.haskell.org/package/zenc
https://dl.acm.org/doi/10.1145/2746325.2746330


2. Compiler Design

data List (A : Set) : Set where

  nil : List A

  cons : (x : A) (xs : List A) → List A

nil  =            λ knil. λ kcons. knil

cons = λ x. λ xs. λ knil. λ kcons. kcons x xs

case l of λ where

  nil         → 0

  (cons x xs) → 1 + length xs

l (             0            )

  (λ x. λ xs.   1 + length xs)

Figure 7: Scott Encoding removes constructors and case-expressions

2.3 BUBS Runtime Library

As we just saw, the generated C code contains calls to C functions like
λ(_,_) and app(_,_). These functions are provided by a custom-built
C library called the BUBS runtime, and are used to encode functional
programs as graphs in memory (fig. 8).

LamT
LamBody

LamT
LamBody

VarT

AppT
AppFun AppArg

VarT

AppT
AppFun AppArg

#include"bubs.h"

void main(void) {

  global_print_root =

     λ(f, λ(x, app(var(f),

     app(var(f), var(x)))));

  dump_dot("",0);

  return;

}

Figure 8: BUBS encodes the program (λf.λx.f(f x)) as a graph

As well as providing the λ(_,_), app(_,_), and var(_) functions
(which are enough to implement the entire pure un-typed λ-calculus
functional programming language), the BUBS library additionally pro-
vides the functions prim(_), op0(_), op1(_,_), and op2(_,_,_), al-
lowing for simple and efficient implementation of various language
features, e.g. integer arithmetic/comparison, debug logging and recur-
sion1.

1Stand-alone examples of how to implement all these are available online in the

8



2. Compiler Design

The BUBS library also provides a function whnf(_) which evalu-
ates a program, by traversing its graph (fig. 9) and re-writing parts
of it using simple reduction transformations. The algorithm exploited
by whnf(_) has many convenient properties, such as evaluating pro-
grams lazily, preserving sharing of sub-programs, efficiently collecting
garbage as it evaluates, and being remarkably simple. This algorithm
is presented in detail by Shivers & Wand[7], who also provide a proof of
correctness and a small (200 line) Standard ML implementation, which
my C library is based on.

(root)

AppT
AppFun AppArg

LamT
LamBody

PrimT 3

Op2T op_mul
Op2Arg1 Op2Arg2

VarT

(root)

AppT
AppFun AppArg

LamT
LamBody

PrimT 3

Op2T op_mul
Op2Arg1 Op2Arg2

VarT

(root)

AppT
AppFun AppArg

LamT
LamBody

PrimT 3

Op2T op_mul
Op2Arg1 Op2Arg2

VarT

(root)

AppT
AppFun AppArg

LamT
LamBody

PrimT 3

Op2T op_mul
Op2Arg1 Op2Arg2

VarT

(root)

AppT
AppFun AppArg

LamT
LamBody

Op2T op_mul
Op2Arg1 Op2Arg2

PrimT 3

VarT

(root)

AppT
AppFun AppArg

LamT
LamBody

Op2T op_mul
Op2Arg1 Op2Arg2

PrimT 3

VarT

(root)

Op2T op_mul
Op2Arg1 Op2Arg2

PrimT 3

(root)

Op2T op_mul
Op2Arg1 Op2Arg2

PrimT 3

(root)

Op2T op_mul
Op2Arg1 Op2Arg2

PrimT 3

(root)

Op2T op_mul
Op2Arg1 Op2Arg2

PrimT 3

(root)

PrimT 9

Figure 9: BUBS evaluates the program (λx.x*x)3

I have implemented the BUBS library as a stand-alone C library, and
freely distributed it online[17], so that it can be used by third-party C
programs to interface with the functions generated by the AST Com-
piler (§ 2.2).

However, in practice, this sort of Foreign Function Interface (FFI)
code is difficult to write and maintain: avoiding subtle bugs requires
detailed knowledge of agda2c’s implementation, e.g. which function

BUBS library’s GitHub repository[17].

9
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2. Compiler Design

parameters are erased by the Agda frontend, and how Scott-encoding
affects data types (fig. 7). To lighten the burden on users, agda2c au-
tomates the generation of this low-level FFI code from high-level FFI
descriptions (§ 2.4), which we shall look at next.

2.4 Foreign Function Interface (FFI)

Users can control the C interface of the compiled Agda code by
writing {-# COMPILE #-} pragmas in the source code. Two types of
pragma are supported: a {-# COMPILE RAW_C #-} pragma (fig. 10)
tells agda2c to include some text in the generated code, whilst a {-#
COMPILE C #-} pragma (fig. 11) tells agda2c to generate a C function
following a specification given in an Exposed definition. For example,
the Exposed definition hello (in fig. 11) compiles to a C function void
main (), with a body interpreting the stream of foreign function calls
after .function-body.

c-import = "

#include<stdio.h>

#include<inttypes.h>

void put_u16(uint16_t x){

    printf(\"%c\",(char)x);

    fflush(stdout);

}"

{-# COMPILE RAW_C c-import #-}

Figure 10: A {-# COMPILE RAW_C #-} pragma

put-u16 = sig void "put_u16" (uint16 ∷ [])

hello : Exposed

hello .own-signature = sig void "main" []

hello .imported-sigs = put-u16 ∷ []

hello .function-body = do

    ccall put-u16 72

    ccall put-u16 101

    ccall put-u16 106

    ccall put-u16 33

    ccall put-u16 10

    () ← exit tt

{-# COMPILE C hello #-}

Figure 11: Users embed Agda/C FFI descriptions in Agda source code

10



2. Compiler Design

The Exposed type is an ordinary Agda record type (fig. 12), so
users can exploit Agda’s features when developing/reading/debugging
Exposed declarations. In fact, the simple example we have just seen
(fig. 11) contains some of Agda’s advanced syntax, and calls some
library functions, which can be expanded to give the lower-level Agda
code in fig. 13.

-- Type of Agda→C function exports

record Exposed : Set where field

    own-signature : Sig               -- C function signature to export the function to

    imported-sigs : List Sig          -- function signatures of C dependencies

    function-body :

        -- The body is given instance-findable handles for...

        {{Ret-Handle (ret-ty own-signature)}} → -- returning a value

        map Call-Handle imported-sigs ⋯⦃⦄→     -- calling its (pre-declared) FFs

        map ⟦_⟧a (arg-tys own-signature) ⋯→  -- the body is passed its arguments (from C)

        CCS                                 -- the body then produces a stream

Figure 12: The Exposed type is defined in an Agda library

hello : Exposed

hello .own-signature = sig void "main" []

hello .imported-sigs = (sig void "put_u16" (uint16 ∷ [])) ∷ []

hello .function-body {{ret-handle}} {{put-u16-handle}} =

    cmd 0 (cmd-ccall _ {{put-u16-handle}} (72 , tt)) >>= λ _ →

    cmd 0 (cmd-ccall _ {{put-u16-handle}} (101 , tt)) >>= λ _ →

    cmd 0 (cmd-ccall _ {{put-u16-handle}} (106 , tt)) >>= λ _ →

    cmd 0 (cmd-ccall _ {{put-u16-handle}} (33 , tt)) >>= λ _ →

    cmd 0 (cmd-ccall _ {{put-u16-handle}} (10 , tt)) >>= λ _ →

    cmd 1 (cmd-return {void} {{ret-handle}} tt) >>= λ ()

Figure 13: Fully expanded code from fig. 11

The lower-level code in fig. 13 reveals several light-weight tricks
used to enforce FFI safety. Most strikingly, capability arguments such
as ret-handle and put-u16-handle exploit Agda’s type- and scope-
checker to statically enforce FFI safety properties like “all foreign func-
tions are known at compile-time” and “the values returned by Agda
functions have the correct C type”, but are kept out of users’ view by
marking them as instance arguments[13].

As well as enforcing FFI safety, the data structures visible in fig. 13
are carefully crafted to support a simple imperative implementation
of the side-effecting Input/Output (IO) code after .function-body.
Firstly, the use of Nat-tagged union types allows individual IO com-
mands to be easily decoded using a switch statement in C. Secondly,
the IO commands are structured into an interaction tree[18]: a (poten-
tially infinite) stream of commands and resumptions[19], which can be
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easily interpreted using a REPL-style while loop in C. Together, these
two design choices allow the generation of an IO interpreter that fits
in under 50 lines of C code (fig. 14), as we shall see now.

2.5 FFI Compiler

The user’s Exposed declarations (fig. 11) are passed to the FFI Com-
piler, which generates C code (fig. 14) implementing them.

void main (){

  Term* t = op0(build_ExamplesziFFIziHellozihello);

  t = app(op0(build_ForeignzmCziCoreziExposedzifunctionzmbody),t);

  t = app(t, op0(build_AgdaziBuiltinziUnitzitt));

  t = app(t, prim(0));

  Term* stream = t;

  while (true){

    Term* head = app(op0(build_ForeignzmCziCoreziCCSzihead),stream);

    Term* tail = app(op0(build_ForeignzmCziCoreziCCSzitail),stream);

    Term* head_op_code = app(op0(build_ForeignzmCziCoreziCmdziopzmcode),head);

    Term* head_cmd_arg = app(op0(build_ForeignzmCziCoreziCmdzicmdzmarg),head);

    unsigned int opcode = marshall_a2c_uint16_t(head_op_code);

    switch (opcode) {

      case 0: {

        Term* fun_handle = app(op0(

          build_ForeignzmCziCoreziCmdzmccallzifunzmhandle), head_cmd_arg);

        Term* args = app(op0(

          build_ForeignzmCziCoreziCmdzmccallzifunzmargs), head_cmd_arg);

        unsigned int fun_num = marshall_a2c_uint16_t(fun_handle);

        switch (fun_num) {

          case 0: {

            Term* args_head;

            Term* args_tail;

              args_head = app(op0(build_AgdaziBuiltinziSigmaziz3a3Uzifst),args);

              args_tail = app(op0(build_AgdaziBuiltinziSigmaziz3a3Uzisnd),args);

              uint16_t x0 = marshall_a2c_uint16_t(args_head);

              args = args_tail;

            Term* result = (put_u16(

                x0),

              marshall_c2a_void());

            stream = app(tail,result);

            break;}

          default: {assert(false);}

        }

        break;}

      default: {assert(false);}

    }

  }

}

// (comments removed for brevity)

put-u16 = sig void "put_u16" (uint16 ∷ [])

hello : Exposed

hello .own-signature = sig void "main" []

hello .imported-sigs = put-u16 ∷ []

hello .function-body = do

  ccall put-u16 72

  ccall put-u16 101

  ccall put-u16 106

  ccall put-u16 33

  ccall put-u16 10

  () ← exit tt

FFI
compiler

Figure 14: The FFI Compiler compiles an FFI description to C

In particular, the FFI Compiler generates an interpreter for the com-
mand stream in the .function-body field. This interpreter evaluates
and decodes each command in turn, and contains a case covering each
C function that may be called (here, just put_u16). The FFI Compiler
determines which C functions may be called by traversing the list in
the .imported-sigs field. The generated interpreter loop is wrapped
in a C function (here, void main()) that sets up the command stream
for the interpreter, including passing it any C arguments (here, none).
The FFI compiler determines the function name, type, and argument
information by traversing the .imported-sigs field.

These transformations are extensively documented by comments in
the source code of the FFI Compiler[20], which is also highly readable
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(and reliable) because it is implemented in the same language as the
Exposed data type, i.e. as an Agda function (fig. 15).

-- Generate an Agda/C FFI implementation from an Exposed value.

compile-fun : String → String → Exposed → String

compile-fun agda-ident compiled-agda-ident exposed = "

// This C function was generated for the Exposed Agda identifier "++ agda-ident ++"

// In particular, the FFI compiler inspected the .own-signature and .imported-sigs fields.

// For reference, the values of these fields are:

//  "++ agda-ident ++" .own-signature = "++ show-sig own-signature ++"

//  "++ agda-ident ++" .imported-sigs = "++ show-list show-sig imported-sigs ++"

" ++ print-sig own-signature ++ "{

  Term* t = op0("++ compiled-agda-ident ++");

// extract the .function-body field

  t = app(op0("++ Phony-Zenc.Foreign-C.Core.function-body ++"),t);

// apply to {{tt : Ret-Handle ( "++ show-Ret-Ty (own-signature .ret-ty) ++" )}}

  t = app(t, op0("++ Phony-Zenc.Agda.Builtin.Unit.tt ++"));

" ++ unlines (for' imported-sigs λ n s →

"// apply to {{ "++ primShowNat n ++" : Call-Handle ( "++ show-sig s ++" ) }}

    t = app(t, prim("++ primShowNat n ++"));"

  )++

  unlines (for' (own-signature .arg-tys) λ an ty →

    "  t = app(t, " ++ (case ty of λ where

        uint16 → "marshall_c2a_uint16_t(arg"++ primShowNat an ++")"

        bool   → "marshall_c2a_bool(arg"++ primShowNat an ++")"

    ) ++");  // apply to C argument "++ primShowNat (suc an) ++" of "

++ primShowNat (№-args own-signature) ++ ", with type ⟦ "++ show-Arg-Ty ty ++" ⟧"

  )++ "

  // t now encodes ("++ agda-ident ++" .function-body), fully aplied to all its args

// much code omitted here

}

"   where

  open Exposed exposed

  open Sig

  №-args = λ s → length (s .arg-tys)

Figure 15: The FFI Compiler is implemented in Agda

2.6 GCC

Finally, the generated C code is compiled to ARM machine code by the
GNU Compiler Collection (GCC) (fig. 16).

The compiler also relies on GCC to optimize the C code (e.g. by re-
moving unused function definitions), and to link the generated C code
with the BUBS runtime library and any other C libraries required by the
application (e.g. the Raspberry Pi Pico Software Development Kit[21]).
The ARM machine code emitted by GCC is then ready to upload to the
Raspberry Pi Pico.

GCC is an existing and ubiquitous open-source project[22], so I will
not discuss it further.
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Term* build_ListzmUtilszirevApp(void){

return λ(v1, λ(v2, λ(v3, app(app(var(v3), var(v2)), λ(v4,

λ(v5, app(app(app(op0(build_ListzmUtilszirevApp),

op0(error_erased_evaluated)),

app(app(op0(build_AgdaziBuiltinziListziListzizuz2237Uzu),

var(v4)), var(v2))), var(v5))))))));

}

Term* build_ListzmUtilszireverse(void){

return λ(v1, λ(v2,

app(app(app(op0(build_ListzmUtilszirevApp),

op0(error_erased_evaluated)),

op0(build_AgdaziBuiltinziListziListziZMZN)),

app(app(app(op0(build_ListzmUtilszirevApp),

op0(error_erased_evaluated)), var(v2)),

op0(build_AgdaziBuiltinziListziListziZMZN)))));

}

Other C Libraries

BUBS
runtime
library

GCC

Figure 16: GCC compiles all the C to ARM Machine Code
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The compiler works, but not very well.

For example, the Agda program in fig. 17 is successfully compiled,
and the generated code runs as intended on the Raspberry Pi Pico –
for 3 minutes, after which it crashes.

open import Foreign-C.Sugared

imp = "#include<pico/stdlib.h>"

{-# COMPILE RAW_C imp #-}

init = sig void "gpio_init" (uint16 ∷ [])

dir = sig void "gpio_set_dir" (uint16 ∷ bool ∷ [])

put = sig void "gpio_put" (uint16 ∷ bool ∷ [])

sleep = sig void "sleep_ms" (uint16 ∷ [])

main : Exposed

main .own-signature = sig void "main" []

main .imported-sigs = put ∷ init ∷ sleep ∷ dir ∷ []

main .function-body = do

    ccall init 25

    ccall dir 25 true

    loop

  where

    loop : CCS

    loop .head = ccall put 25 true

    loop .tail _ = do

        ccall sleep 300

        ccall put 25 false

        ccall sleep 500

        loop

{-# COMPILE C main #-}

Figure 17: Agda code to blink the Raspberry Pi Pico’s LED

More precisely, the Raspberry Pi’s LED blinks on and off (as in-
tended) for 200 blinks, but then stops blinking (an error). I suspect
that this error is caused by a slow memory leak, since about 200 blinks
are always completed (regardless of what delay I set), and since the
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program does not crash when running on my more memory-rich lap-
top.

As well as the (suspected) memory leak, agda2c has several known
bugs:

• The FFI Compiler does not generate code implementing function
return (so programs like hello from fig. 11 crash instead of exiting
cleanly)

• The AST Compiler does not support several of Agda’s primitive
functions and literals. For example, String, Float, and Word64
literals and operations currently compile to C code which crashes
when evaluated (which is why fig. 11 uses character codes instead
of Agda’s built-in Strings)

• The AST Compiler compiles Natural numbers to fixed-width inte-
gers, which can silently overflow at run-time.

• Incremental (re-)compilation of multi-file Agda programs is not
enabled, greatly slowing down compilation times.

• Certain larger programs, e.g. a port of Claessen’s PMC monad[23],
crash when run, due to run-time assertion failures.

More speculative improvements are discussed in § 5.
Despite these bugs, agda2c is still capable of running simple Agda

programs on the Raspberry Pi Pico, including programs with higher-
order functions like mapM' in fig. 18. Full source code for these exam-
ples is available in agda2c’s GitHub repository[8].
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-- Count in binary on LEDs attached to the RPP's pins

-- Simulator at https://wokwi.com/projects/343960210261410387

module Examples.FFI.Binary-Counter where

open import Examples.Lib.FIO

imp = "#include<pico/stdlib.h>"

{-# COMPILE RAW_C imp #-}

put = sig void "gpio_put_all" (uint16 ∷ [])

init = sig void "gpio_init" (uint16 ∷ [])

dir = sig void "gpio_set_dir" (uint16 ∷ bool ∷ [])

sleep = sig void "sleep_ms" (uint16 ∷ [])

main : Exposed

main .own-signature = sig void "main" []

main .imported-sigs = put ∷ init ∷ dir ∷ sleep ∷ []

main .function-body = run do

    mapM' setup-pin (0 ∷ 1 ∷ 2 ∷ 3 ∷ 4 ∷ 5 ∷ [])

    loop 0

  where

    setup-pin : Nat → FIO ⊤

    setup-pin n = do

        ccall init n

        ccall dir n true

    loop : Nat → FIO ⊥

    loop n _ .head = ccall' put n

    loop n k .tail c =

        ccall' sleep 200 >>=' λ _ →

        loop (n + 1) k

{-# COMPILE C main #-}

Figure 18: Agda code to drive a binary counter
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4
Related Work

In this section, I discuss alternatives to the compiler components pre-
sented in § 2. In particular, I compare agda2c’s custom-built compo-
nents to existing alternatives, and explain their weaknesses which mo-
tivated a new implementation.

4.1 Alternative Runtimes

Finding a runtime library for agda2c was difficult, due to an unusual
mix of requirements: the runtime had to support lazy evaluation, pro-
vide predictable performance, and compile to ARM machine code ca-
pable of running in limited memory (200 KiB RAM, 2 MiB Flash).

In this section I describe the main contenders to BUBS (§ 2.3), and
where they fell short.

4.1.1 Graph Reducers

The current implementation of the runtime library (§ 2.3) is based on
Shivers & Wand’s Bottom-Up β-Reduction algorithm[7] (BUBS), with
several extensions. BUBS evaluates programs using graph reduction:
programs are encoded as pointer graphs in memory, then repeatedly
re-written using simple reduction transformations. By choosing dif-
ferent graph encodings (and reductions), different algorithms with
different performance characteristics can be obtained. For example,
BUBS, HVM[24], and Turner Combinators[25] all encode the program
(λf.λx.f(f x)) as a slightly different graph, as shown in fig. 19.

These algorithms share some common features: all three support
lazy evaluation, all three can be implemented in a small and self-
contained C file, and all three are compatible with precise garbage
collection based on reference counting[26].

However, the algorithms have very different performance and trans-
parency properties.

Programs compiled to use Turner Combinators can be very space ef-
ficient: the graphs can be laid out using only 2 pointers per node, and
the code to evaluate them can also be made compact1. However, the

1Lennart Augustsson described an implementation that ran on a machine with
under 100 KiB of memory, but I could not find it online.
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Figure 19: Different graph encodings of (λf.λx.f(f x))

Turner Combinator graphs can also be very space in-efficient: some-
times a program of length n is encoded as a graph with O(n²) nodes2.
Turner Combinators also suffer from poor transparency: it is difficult
to “read back” a λ-calculus program from a Turner Combinator graph,
making it difficult to debug programs or to reason about their perfor-
mance.

HVM graphs are more transparent than Turner Combinator graphs,
but are disqualified for another reason: certain λ-calculus programs,
such as (λx.x x)(λf.λx.f(f x)), are incorrectly evaluated by HVM.
I do not know whether the ‘HVM-safe’ subset of λ-calculus programs
covers all (compiled) well-typed Agda programs, so agda2c uses BUBS
instead. In addition to HVM’s unsafe evaluation, its reliance on fan
nodes to track sharing of sub-terms makes HVM’s performance hard
to predict, both in theory[27] and in practice[28].

4.1.2 Other Interpreters

Not all runtime libraries are presented by giving a graph-encoding and
a set of reductions. For example, the Three-InstructionMachine[29] and

2The O(n²) space is occupied by director strings of B and C combinators which
guide top-down substitution during β-reduction. The BUBS paper[7] discusses direc-
tor strings in more detail.
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Sestoft’s Lazy Virtual Machines[30], instead are described by a transla-
tion of to low-level byte code, and reductions formachine states includ-
ing bytecode and one or more data structures, as in fig. 20.

Figure 20: Three-Instruction Machine reductions, from [29]

Unfortunately, the intermediate states of these virtual machines do
not obviously correspond to λ-calculus programs, making it difficult to
debug programs or to reason about their performance. Additionally,
the reductions in fig. 20 leave many implementation details implicit:
for example which data is stored behind a pointer (as opposed to con-
tiguously), and when garbage collection occurs. For these reasons,
agda2c uses a graph-reduction-based runtime instead.

4.1.3 User-Facing Languages

A short-cut to finding a suitable runtime library is to take one from
an existing implementation of another functional programming lan-
guage. Promising candidates included implementations of other lazy
languages (e.g. Haskell’s GHC compiler[31], or its Hugs interpreter[32])
or of languages known to run on the Raspberry Pi Pico (e.g. JavaScript’s
Kaluma interpreter[33], or the µLisp interpreter[34]) or similar microcon-
trollers (e.g. Erlang’s GRiSP microcontroller[35]).

Unfortunately, adapting these language implementations proved
difficult: GHC requires an advanced build to emit ARM machine code
(which the Raspberry Pi Pico executes), Hugs has a large implemen-
tation which has been unmaintained for 6 years, µLisp implements
strict evaluation (and naive attempts at adding laziness via delay
arguments led to an exponential slowdown), whilst Kaluma requires
heavy modification to extend its C FFI, and the GRiSP microcontroller
has substantially more memory than the Raspberry Pi Pico.

Additionally, the many of these implementations provide unwanted
features such as interactive Read-Eval-Print Loops, concurrency, or in-
vasive optimizations; which complicate their runtime libraries.
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4.2 Alternative FFIs

I do not know of any other Agda-to-C compilers, so agda2c’s C FFI was
designed from scratch. In this section I compare it to the C FFIs of
several other programming languages.

4.2.1 Annotation-Based FFIs

Other compilers targeting C often include passes to compile FFI an-
notations to C glue code. For example, the Haskell[36], Zig[37], Rust[38],
and Idris2[39] programming languages all use annotations to guide gen-
eration of C glue code.

Implementing these annotations can require a lot of effort: compil-
ers must parse FFI annotations, check them, and compile them to glue
code. Additionally, for the annotations to be easy to learn, they must
produce informative error messages, and be thoroughly documented.

Some or all of these tasks can be automated by re-using existing
language features. For example, Zig[37] presents its @cImport and
@cInclude FFI annotations as built-in functions (providing cheap
parsing).

agda2c goes further and specifies the syntax of FFI annotations as
a type definition in an Agda library (§ 2.4; providing cheap documenta-
tion, parsing, type-checking and error messages), which are translated
to glue code by an Agda function (§ 2.5; providing cheap compilation).
Both Zig and agda2c also exploit compile-time evaluation (providing
cheap flexibility).

4.2.2 Dynamic FFIs

Some scripting languages, for example mJS[40] and bash[41], allow C
functions to be called given strings known only at run-time. However,
the interpreters for these languages are made complex by code for re-
solving these strings at run-time: mJS uses an operating system’s dy-
namic linker, and bash uses an operating system’s file system. Neither
of these operating system services are available on microcontrollers
like the Raspberry Pi Pico.

4.2.3 Other Type-based FFIs

agda2c is not the first compiler to exploit its source language’s user-
defined data types to enforce a safe C FFI. For example, Blume de-
scribes a similar technique[42]3, implemented in the SML/NJ compiler
for Standard ML. However, Blume’s NLFFI models C’s type system
far more precisely than agda2c’s FFI. The NLFFI supports basic C

3A short presentation introducing Blume’s NLFFI can be found at https://www.
jeffvaughan.net/docs/nlffi.pdf.
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types like bool, int, and float, but also more advanced C types like
structs, data pointers, function pointers, and arrays, including arrays
with known length information. In contrast, agda2c’s FFI only sup-
port integers, booleans, and the void type. Nonetheless, these three
C types are sufficient to interface with many C functions used to pro-
gram the Raspberry Pi Pico 4, and agda2c’s FFI is simple enough to fit
in a single Agda library file.

More recently, Idris1’s C FFI[44] is partially documented using an
Idris1 data type in a library, although instances of this data type are
not constructed by users: instead, users write annotations to guide the
Idris1 FFI Compiler. Another recent development is Hausmann’s Con-
tracts library[45], which (like agda2c) uses Agda data types to enforce
a safe FFI, but targets Haskell rather than C.

I do not know of any other compilers whose FFI Compiler (§ 2.5) is
implemented in a source-language library.

4The Raspberry Pi Pico Software Development Kit provides over 300 library func-
tions. Out of all of their (over 600) arguments, there are: ~10 function pointers, ~20
enums, ~200 struct pointers, and all rest are basic types (e.g. bool,uint32_t,void).
I got this data by grepping for function signatures in https://github.com/
raspberrypi/pico-sdk/tree/1.4.0/src/rp2_common[43].
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5
Future Work

In this section, I describe future work motivated by the development
of agda2c.

5.1 Benchmarking

When searching for a runtime library, I was surprised to find very little
empirical research comparing the performance of different λ-calculus
evaluators. Individual papers presenting a single evaluator (for exam-
ple the BUBS paper[7]) often compare their evaluator to one or two
other (usually simpler) evaluators, but I could not find a single survey
paper. The most comprehensive dataset I found was the Benchmarks
Game Website[46], however this compares entire language implemen-
tations, so the performance of the runtime libraries is obscured by lan-
guage differences and compiler optimization passes. The Benchmarks
Game also does not include many lazy languages.

Such a survey paper would provide valuable information for com-
piler developers, so I would like to see one written. I propose the Agda
compiler as a test harness for comparing the evaluators: sometimes
when type-checking a program, the Agda compiler must evaluate sub-
programs. Swapping out the current Agda compile-time evaluator for
different evaluator algorithms would provide a labor-efficient way to
benchmark (and test) these algorithms on a large, common, and al-
ready existing data set: the evaluation problems encountered when
type-checking existing Agda programs.

5.2 BUBS Development

To my knowledge, agda2c is the first compiler to use a runtime library
based on the BUBS algorithm, and has exposed several opportunities
for improvement.

Firstly, the BUBS algorithm is easy to mis-implement: I spent many
hours debugging memory safety failures, and my implementation
likely has several remaining faults. These faults could be discovered
by attempting to formally verify the implementation. Such a verifica-
tion project is within reach: the BUBS paper[7] contains an (informal)
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proof of correctness, which could guide a formal verification, and the
amount of proof code could be kept manageable by rewriting BUBS in
a carefully-designed embedded imperative language (§ 5.5).

Secondly, agda2c’s coverage of the Agda language and the flexibil-
ity of agda2c’s FFI are both constrained by the BUBS runtime’s lack
of support for binary large objects (BLOB) nodes to carry opaque data
that may take an arbitrary amount of space (e.g. a C struct or char[]),
or require advanced de-allocation procedures (e.g. operating system
file handles, variable-precision integers[47], or Haskell-style Text val-
ues[48]).

Thirdly, the BUBS runtime’s data structures could be tuned for
(constant-factor) performance gains. Low-hanging fruit includes the
memory wasted by storing co-parent pointers (light gray in fig. 9)
even for non-shared nodes, and reliance on the C stack (rather than
extra ‘navigation bits’ in graph nodes) to control traversal of the graph
during evaluation.

Finally, specializing the BUBS runtime library towards Agda’s syn-
tax (e.g. by supporting constructors, case expressions, and let bind-
ings) would increase agda2c’s transparency and simplify compiler de-
velopment, for example by making Scott-encoding redundant.

5.3 FFI Improvements

agda2c’s FFI currently only supports the void, uint16_t and bool C
types. Adding support for other C types like float, char, pointers, and
struct types is also easy, if the expressions of these types are made
opaque to Agda programs. A more advanced design, allowing data-
level interoperability could be based on Blume’s “No Longer Foreign”
SML/C interface[42]

5.4 First-Class Optimization

We saw in § 2.4 how an Agda EDSL configures agda2c’s FFI generator,
and that this brings usability and compiler-development advantages.
Perhaps similar benefits could be reaped for other compiler compo-
nents (e.g. the Agda frontend’s optimizer) if they were also configured
by an Agda EDSL. Previous work by Hagedorn et al.[49] shows how to
configure an optimizer for a (domain-specific) functional-programming
language with another stand-alone domain-specific language. Perhaps
their design can be extended to Agda (a general-purpose language),
and made easier to learn by embedding the configuration language in
Agda.
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5.5 C-in-Agda

One way of finding bugs in the BUBS runtime library (§ 2.3) would be
to re-write it in a C-like Agda EDSL that compiles trivially to C, but
has a stronger type checker. I have written a prototype[50] of such an
Agda EDSL, which allows imperative programs to be written in Agda
(fig. 21), with C-like syntax and type-checking.

-- Selection sort

sel-sort : Exp' kt1 nat → Exp' kt2 nat → Stmt

sel-sort base n = do

    i ← mkvar base

    n ← mkvar n

    while (i < n) do

        j ← mkvar i + 1

        while (j < n) do

            if heap[ j ] < heap[ i ]

                then swap i j

                else skip

            j ++

        i ++

Figure 21: Selection sort, in C, in Agda

Although this EDSL provides very C-like syntax, it would be difficult
to implement and verify BUBS in this EDSL since it is missing:

• Compound C data types (e.g. structs and pointer types)
• C function declarations and calls (e.g. for functions like swap,
which are currently implemented as Agda functions, so are
inlined during compilation to C)

• Correctness-oriented features (e.g. statically checked assertions)
that would allow for more static verification than writing pro-
grams directly in C

Extending the current implementation to support these features
would require solving several problems:

• How to provide C-like syntax, without cluttering up the types of
expressions (e.g. the type of n in fig. 21, which is currently Exp'
kt2 nat but would be more readable as Exp nat)

• How to extend the reference interpreter to support these fea-
tures, without destroying its type-safety or conciseness. In par-
ticular, I am not sure how to extend the support for name-binding
syntax, which is currently based on András Kovács’s pure runST
function[51] and only supports local variables (e.g. j in fig. 21), to
support new forms of name-binding syntax such as user-declared
struct types, of user-declared functions.
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6
Conclusion

This thesis has presented the design of the agda2c compiler (§ 2), in-
cluding its heavy reliance on the Agda Frontend (§ 2.1), a surprisingly
small post-processing stage (§ 2.2), and an unusual choice of runtime
library (§ 2.3). We also saw how agda2c hides the complexity of writing
a C FFI behind a high-level language of FFI descriptions (§ 2.4), and
how agda2c compiles these FFI descriptions (§ 2.5) to executable code.

Throughout the development of agda2c, several development tech-
niques and decisions stood out:

• Storing partially-compiled programs in typed EDSLs helped keep
the compiler small (due to lack of parser) and robust (due to
type checking of code that traverses or constructs EDSL values).
agda2c compiles programs through (at least) three typed EDSLs:

– The Treeless IR language of simplified Agda programs, em-
bedded in Haskell.

– The Exposed data type of FFI descriptions, embedded in
Agda.

– The bubs.h interface to the BUBS runtime library, embedded
in C.

• Choosing a transparent runtime algorithm (BUBS) made agda2c
easier to debug.

• Re-using and combining existing tools (e.g. PolyML, valgrind,
gdb, graphviz) also aided debugging.
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