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An Agda scope checker implemented in Agda

Francesco Gazzetta
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Agda [1] is a Haskell-style, purely functional, dependently typed programming lan-
guage and theorem prover. Scope checking is the process of analyzing the Abstract
Syntax Tree (AST) of a program and resolving all references to symbols by connect-
ing them to the corresponding declarations of said symbols. The Agda scope checker
– as well as the rest of the compiler – is written in Haskell, and does not include
any proof about the reachability of declarations. In this thesis, we present a scope
checker for the Agda language, written in Agda itself, and prove the correctness of
its name resolution algorithm with reference to the reachability properties of the
Agda language. The result of this scope checking pass is a correct by construction
AST that contains a proof that the syntax is well-scoped represented as paths from
references of names (eg. x) to declarations (eg. x = ...).

Keywords: Computer science, Agda, compilers, scoping, well-scoped syntax, depen-
dent types, name resolution, formal verification.
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1
Introduction

Agda [1] is a Haskell-style, purely functional, dependently typed programming lan-
guage and theorem prover. Its only compiler is currently written in unverified
Haskell [2]. One important milestone of any programming language is the imple-
mentation of a self-hosting compiler, that is a compiler for the language written
in the language itself. This demonstrates its maturity, eliminates dependencies on
other languages, and enables a cycle of positive feedback.

A compiler is usually composed of sequential phases that produce a series of in-
termediate languages, the last being machine code. For example, the phases could
be:

Parsing: a stream of characters is read and transformed into a hierarchy of syntac-
tical constructs, the Abstract Syntax Tree.

Scope checking: References to names, such as variable use, are checked to ensure
that the corresponding definition is in scope. This will be explained in more
detail in 1.3.2.

Type checking: types of expressions are checked for consistency, type annotations
are added to the syntax tree.

Optimization: the program is transformed into a semantically equivalent but more
efficient version of itself, often through multiple passes.

Code generation: code in the target language, usually machine code, is generated.

1



1. Introduction

Source

code
Parser

Abstract

Syntax Tree

Scope

checker

Well-scoped

syntax

Type

checker

Type-annotated

syntax

Optimizer
Optimized

code

Code

generator

Machine

code

Conventionally, checking phases in compiler pipelines do not retain evidence of the
successful check1. For instance, type checkers do not store typing derivations. Like-
wise, scope checkers, the programs that resolve symbol references, do not retain
evidence that every symbol could be resolved. Successive phases operate on abstract
syntax trees (AST) without those guarantees, and have to perform unsafe lookups
when operating on symbols. The guarantee that the lookup will succeed is thus only
informal, and could fail if the compiler is changed.

In a more type-safe compiler, the proof that a reference is satisfied would be stored
in the syntax tree. Lookups would then leverage the proof to find the referenced
symbol in a safe way.

In the case of Agda, a self-hosting compiler would exploit the program verification
facilities of the language to prove many useful properties about the various compiler
phases.

• The scope checking phase would ensure that symbols are in scope, as explained
above.

• The type checking phase would offer guarantees about the types of expressions.

• The optimization phase would have invariants over those types.

• The code generation phase would use those guarantees to avoid unsafe casts
with no possibility of error.

Such a compiler would possess a number of correctness and safety properties by
construction: the proofs generated in each phase would support the next phases,
avoiding many unsafe operations.

A verified compiler would also result in a better understanding of Agda semantics,
and could potentially uncover bugs or inconsistencies in the Haskell implementation
or in the specification.

1Notable exceptions are CompCert [3] and CakeML [4].
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1. Introduction

In this project, we implemented the scope checking phase, that is, the phase that
checks whether all referenced symbols are in scope, returning a well-scoped AST.

1.1 Contributions
The contributions we bring with this work are as follows:

• A well-scoped abstract syntax definition for the Agda programming language.

• A scope checker for Agda that produces the above syntax starting from the
concrete one, if the input program is correctly scoped.

• A series of proofs about said abstract syntax that ensure that the result of the
scope checker can only be correctly scoped.

• A more rigorous definition of some of Agda scoping rules.

1.2 Structure
In the rest of Chapter 1, we give an introduction to the features of the Agda language
that are of interest for this project, explain the concept of scope checking, and cover
some previous works on the matter. In Chapter 2, we analyze small subsets of the
Agda language and provide a well-scoped syntax for each one. Finally, in Chapter 3
we apply the techniques used in the previous chapter to build the actual well-scoped
syntax for Agda. We also explore its limitation and alternatives.

1.3 Background

1.3.1 Agda
Agda [1] is a Haskell-style, purely functional, dependently typed programming lan-
guage and theorem prover.

1.3.1.1 Agda programs

An Agda program can be composed of multiple files. Agda files begin by defining
the name of the module and its imports of other files through the import keyword,
and continue with a series of declarations.

module M where

open import Agda.Builtin.Nat

four : Nat
four = 2 + 2

3



1. Introduction

id : {a : Set} → a → a
id x = x

Note: in this thesis report, Agda syntax examples have a line to their left to
distinguish them from code implementing the scope checker and well-scoped syntax.

Declaring the name of the module is optional and we will mostly omit it in examples.
Scope checking multiple files rather than multiple modules in a single files is mostly
a matter of reading the files in the right order, which is not relevant to the project,
so we will focus on scope checking a single file and ignore import statements too.

Declarations have to be defined in order: a reference to a declaration cannot precede
the declaration itself.

There are many types of declarations. The most common are type signatures
(four : Nat and id : a → a in the example above) and function definitions that
bind expressions to names (four = 2 + 2 and id x = x). Usually type signatures
and function definitions are coupled together. Their syntax is similar to Haskell.
Other types of declarations are datatype definition, module definition and module
use, and other miscellaneous constructs. Modules especially are of particular inter-
est in this work, since they play a big part in name resolution: they are the main
way a user of the language can create named scopes and they provide a good number
of features. Comments start with --. Blocks of code are delimited by indentation.

1.3.1.2 Module system

The purpose of the module system is to structure the program in a hierarchical
manner; each module can contain a number of declarations, including other modules.
The contents of a module are determined by the indentation; at each nesting level,
the amount of indentation increases.

module M where
x : Nat
x = 4
module N where

y : Nat
y = 2

y' = N.y

In the above example, module M contains x, y', and module N, that in turn contains
y.

There are two ways to access a declaration from outside the module it is declared
in.

The first is to qualify its name by prepending the names of the modules containing
it. For example, the fully qualified name of y is M.N.y, and to refer to y from within
M, simply N.y can be used.

4
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The second is to open the module containing the definition we want to use. Opening
a module exposes all names defined in that module as if they were defined where
the open declaration is.

module M where
x = 1

open M
y = x + 1

In the above example, we can use x unqualified even if it is defined inside a module
because we opened the module first.

Unlike many programming languages where module definitions and imports have to
be declared in a predetermined section, usually at the top of the file before anything
else, Agda modules can be defined or opened at any point in the program where a
declaration can be. For example, this code is valid:

x : Nat
x = 0
module M where

y : Nat
y = 1

y : Nat
y = 2
-- here y is defined as 2
open M
-- here referring to y is ambiguous

Open declarations can also specify an import directive that can expose only a subset
of definitions from the opened module, or change their names.

• using (x; y; module M)

• hiding (x; y; module M)

• renaming (x to y; module M to N)

Choosing whether to expose a definition can also be done from inside the opened
module. All definitions inside a private block will not be reachable by qualified name
syntax nor will be exposed by open declarations from outside the module they are
defined in.

module M where
private

x = 0

-- Using M.x here is an error

5
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open M

-- Using x here is an error

Modules can also be arbitrarily parametrized, and definitions inside a parametrized
module will have access to the parameters. In the following example, n is a parameter
of type Nat of module M, and we can see it used in expressions inside the module.

module M (n : Nat) where
add : Nat → Nat
add x = x + n

mult : Nat → Nat
mult x = x * n

Such parametrized definitions can be used from outside their module by either by
providing the parameter directly, or by applying the entire module at once through
module application.

For example, we can pass two arguments to M.add, the first being the module
argument and the second being the regular argument.

four = M.add 2 2

On the other hand we can use module application to apply M to 3 and name the
applied module MThree.

module MThree = M 3

Functions from MThree are already applied to the module argument, so they can be
applied directly to their regular arguments.

five = MThree.add 2
six = MThree.mult 2

1.3.2 Scope checking

Scope checking is a compilation (or interpretation) step that happens after parsing
and that, acting on an abstract syntax tree, checks whether each of the name ref-
erences points to a name definition that is in scope, meaning it is usable in that
particular place by writing its name or a variation of it. Conditions for a name
to be in scope can vary wildly between languages. In statically scoped2 languages
like Agda, the definition of a name has to be reachable from its reference through
a path in the syntax tree following the scoping rules imposed by the language, such
as “previous declarations in the same module are in scope”.

2Also known as lexically scoped

6
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For example, in the program below, the declaration y = x + 1 references x, which
is found to be in scope because in Agda, referring to previous definitions in an upper
module is allowed. In the last line of the program, however, the reference to y is
invalid, because in Agda references to definitions within other modules have to be
qualified with the module name (N.y). In that line, y alone is not in scope.

module M where
x : Nat
x = 0

module N where
y : Nat
y = x + 1 -- x is in scope

z : Nat
z = y + 1 -- error: y is out of scope

If the definition is found to be in scope, the scope checker will then link it to the
reference, for example by means of inserting it in a lookup table. This way, this
information can easily be used by successive compilation phases, without having
to find the definition each time, and without having to worry about handling scope
errors. For example, when a type checker encounters a function call, it needs to check
that all of this arguments are of the type specified in the function signature. To do
that, it needs to retrieve the definition of the function, that includes its signature. If
information about definitions of names was stored in the scope-checked syntax tree,
it is enough to perform a lookup for the function name.

However, table lookup is an inherently unsafe operation, that can fail if the entry
happens to be missing.

1.3.3 Limitations of unverified scope checkers

If the scope checker is not formally verified there is a risk that, due to errors in the
implementation, references are not actually linked to a definition, or are linked to
the incorrect one. When changes to the scope checker are made, there is a risk of
introducing errors. Name lookups in successive phases would then fail.

Moreover, even assuming a perfect implementation, there is a loss of information.
In the scope-checking phase, information about the presence of in-scope variables
in the name lookup table exists and is usable. After this phase, without some
kind of formal verification there would be no way to restore this information, and
unsafe lookup operations would still be required. To act on the lookup result, the
implementer would have to manually assert the safety of the operation.

7
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1.3.4 Well-scoped by definition
By implementing a scope checker in Agda, it is possible to leverage dependent types
to build an abstract syntax tree that is well-scoped by construction. A well-scoped
abstract syntax tree is a type of syntax tree whose terms can only be constructed
if a proof3 of reachability of definitions from references is also provided. The proof
can also enforce other constraints, such as matching the kinds of references and
definitions. For example, a module import can only refer to a module definition, not
to a function definition.

The proofs are produced directly by the scope checker when name resolution is
performed, thus preserving the information gained during the operation.

Given a well-scoped syntax tree, it is possible to look up definitions from references
with absolute certainty of success, enforced by the types.

1.3.5 Previous works
1.3.5.1 Scopes as Types

In Scopes as Types [5], A. Rouvoet et al. introduce a language to model name
binding and resolution in a generic way, similar to how there exist parser generators
that produce parsing code starting from a grammar written in a language-agnostic
syntax. In the framework proposed by the authors, scope graphs are used to rep-
resent the binding structure of a program, where scopes are represented as vertices
and reachability relations are represented by edges. To define how name resolu-
tion should actually be performed, a resolution calculus is introduced, capable of
expressing reachability constraints and priority and uniqueness properties on bind-
ings. They go on demonstrating how they modeled some programming language
constructs in this language, and propose a limited version of a resolution algorithm.

The scope checker we developed is defined in a similar way. While in the paper
a generic graph structure is used, we took advantage of the knowledge of Agda
syntax and we used distinct datatype declarations to represent different parts of
the graph, with types being the vertices and constructors the edges. Constraints on
the constructors of the well-scoped tree serve the same function as the resolution
calculus. This will be seen in more detail in Section 2.3.

1.3.5.2 Knowing When to Ask

In Knowing When to Ask [6], the authors expand on the previous work by developing
an algorithm to perform the actual name lookup in a sound way. They especially
pay attention to the order of lookups, since looking up a name may depend on a
successful resolution of its dependencies. For example, resolving an imported name
first requires resolving the import.

3A proof in Agda is a term belonging to a type corresponding to the proposition that is being
proven. This is known as the Curry-Howard correspondence and will be shown in more detail in
Section 2.2.

8
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In this project, the difficulties to overcome were similar; in Agda there are many
different and often indirect ways to refer to a binding, and the module system is
especially complex. On the other hand, we had language-specific knowledge, so
we manually took all dependencies into account when developing the resolution
algorithm.

9
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2
Scope checking fragments of the

Agda language

Because the Agda language has a sizable and complex syntax, we will proceed by
introducing some of its features one at a time. In each section of this chapter, a
simple formal language that supports one of these features will be presented, together
with the syntax its scope checker would yield.

2.1 Names
The most fundamental piece of data every scope checker has to deal with, is the
unqualified name, that is a name without any contextual information attached. For
example, in the λ-calculus expression λx.y, variables x and y are both unqualified
names1. A name can be defined as a string, but should be thought of as an opaque2

type, supporting only equality checks. To ensure that we will not rely on implemen-
tation details, we declare it as a postulate of type Set, the type of types, omitting a
definition entirely. In the actual scope checker code, this can be replaced by what-
ever is returned by the parser. The Name we will define represents a name in the
source program, thus we declare it under module C, standing for concrete syntax.

module C where
-- An atomic name opaque to the scope checker
postulate Name : Set

We will often use names as arguments of other types. For example, this is a proof
that a name is present in a two-element list that contains that name in its head:

prop1 : (x : C.Name) → (y : C.Name) → x ∈ x :: [ y ]
prop1 x y = here refl

Note: In the Agda code we present, we use definitions from the Agda standard
library [7], such as ∈.

1Qualified names will be presented in Section 2.3.
2Opaque types cannot be inspected by external code. No assumption should be made about

their internal structure, and they should only be interacted with through the provided interface.
In this case, for example, we can’t assume that names are sequences of characters.

11



2. Scope checking fragments of the Agda language

We give the ∈ and :: type constructors names x and y as arguments. Calling this
function requires to explicitly supply x and y, but this kind of argument can almost
always be derived from the context.

In these cases, Agda allows to mark arguments as implicit3 by surrounding them
with braces. Implicit arguments can be omitted both from function definitions and
calls. We can change the previous definition to one that uses implicit arguments:

prop2 : {x : C.Name} → {y : C.Name} → x ∈ x :: [ y ]
prop2 = here refl

This modified prop2 can be called without passing x and y, which are inferred from
context.

Implicit arguments are often enough to remove clutter in an Agda program, but
are insufficient in our case. When a specific set of names is always used to refer
to implicit arguments of a specific type, it is desirable to omit their declaration
entirely. In Agda this can be done with generalized variables4, a way to declare
generalization of variables in types in a single place in the code. When a generalized
variable v : T is used in a type and v is not already bound, Agda will automatically
insert an implicit argument {v : T}. This avoids visual noise when the binding of
the variable is obvious from the context. For example, we can now rewrite our
property avoiding all the clutter from the previous examples.

prop3 : x ∈ x :: [ y ]
prop3 = here refl

To this end, we define two generalized variables named x and y of type C.Name. We
define them outside of the C module, so they will not need to be qualified on use.

variable x y : C.Name

2.2 λ-calculus
As a first fragment of the Agda language, let us consider the untyped λ-calculus.
λ-calculus expressions are composed by abstractions, applications, and variables
(Equation (2.1)).

e ::= λv.e | e1 e2 | v (2.1)

λ-calculus expressions can be represented in Agda with the following datatype:

3More information about implicit arguments is available in the Agda documentation [8] at
implicit-arguments.html

4More information about generalized variables is available in the Agda documentation [8] at
generalization-of-declared-variables.html

12
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2. Scope checking fragments of the Agda language

data Expr : Set where
-- λv.e
abs : C.Name → Expr → Expr
-- e1 e2
app : Expr → Expr → Expr
-- v
var : C.Name → Expr

The above code is an Agda type definition. It is composed of a signature for the
type constructor, in this case Expr, and arbitrarily many type signatures for the
data constructors, in this case abs, app, and var. In Agda, types form an infinite
hierarchy of universes5, and Set, also called Set0 for universe 0, is the lowest level,
containing only small types, such as the one we are defining, hence Expr being of
type Set.

Taking the above Expr definition, the untyped λ-expression λx.λy.x would translate
to abs x (abs y (var x)), where x y : C.Name.

As explained in Section 1.3.4, when such an expression is scope checked, a second
syntax tree is produced, where all names are either bindings such as definitions and
λ-abstractions, or valid references to existing bindings. Even when dealing with a
language as simple as λ-calculus, there are many ways to represent a well-scoped
syntax tree. One way is by expressing the well-scoped syntax as a relation between
a scope and a concrete syntax. In Agda, a relation is usually expressed as a type
constructor taking the relation sets members as parameters. For example, assuming
the existence of a Scope type representing the set of names in scope, a well-scoped
ExprRelation could be typed as (definition omitted):

data ExprRelation : Scope → Expr → Set

Since this type constructor takes two parameters, its type signature is a function
type taking those and returning, again, Set.

Since this relation is directly over the concrete syntax, it also encodes the correspon-
dence between unscoped and well-scoped syntaxes, but starts to become exceedingly
complex as the syntax grows. For more information about this approach, see Sec-
tion 3.5.

Another way to achieve this is by encoding references as De Brujin indices in an
entirely separate syntax tree. The idea is to eliminate names from abstractions
and replace names in references with an index representing the distance to the
abstraction where the variable was bound. For example, λx.λy.x would translate to
λ.λ.2, because x refers to the second abstraction going outwards6. If the well-scoped
syntax is written in a dependently typed language such as Agda, it can be made so

5More information about universes is available in the Agda documentation [8] at universe-
levels.html and sort-system.html

6We assume indices start at 1. Existing literature is split between 0 and 1.
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2. Scope checking fragments of the Agda language

that De Brujin indices never exceed the number of abstractions enclosing them, by
construction.

First, we re-define Scope to be isomorphic to N (in Peano representation), repre-
senting the number of abstractions in scope at any given point in the program, that
is also the maximum number indices can assume.

-- Isomorphic to N0

data Scope : Set where
-- Empty scope, isomorphic to 0
ϵ : Scope
-- Expansion of scope, isomorphic to succ
_▷ : Scope → Scope

variable sc : Scope

For example the scope within three bindings would be ϵ ▷ ▷ ▷. We chose ϵ and _▷
as constructor names to show how the scope is similar to a stack. This will become
more useful starting from later in this section as scopes increase in complexity.

Then, we define SName, a well-scoped name, also equivalent to a natural number but
with the added restriction of being less than or equal to its Scope type parameter.

-- Isomorphic to {n ∈ N+ . n ≤ sc}
data SName : Scope → Set where

here : SName (sc ▷)
there : SName sc → SName (sc ▷)

This restriction, as in all the types we will define, is enforced through the data con-
structors. The constructor here, meaning the name is defined in the immediately en-
closing abstraction, ensures at least one abstraction is actually present by matching
on _▷ in its Scope parameter. The constructor there, meaning the name is defined
in an outer abstraction, is the inductive step, taking another SName as parameter.
This is a recurring pattern, as well as the key of the Curry-Howard correspondence:
types define a well-scoped syntax (propositions), data constructors define the rules
of the syntax (introduction rules), and well-scoped structures are evidence of the
well-scoped syntax (proofs). The well-typed term there here : SName (sc ▷ ▷)
is evidence that a De Brujin index of 2 (there here) is well scoped when inside at
least two abstractions (sc ▷ ▷).

Finally, we define the actual syntax, Expr.

data Expr (sc : Scope) : Set where
abs : Expr (sc ▷) → Expr sc
app : Expr sc → Expr sc → Expr sc
var : SName sc → Expr sc

The new Expr is similar to the previous one, but it adds a new type parameter sc of
type Scope. The constructors were also adapted to make use of Scope and SName:
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abs is defined so that its argument is parametrized by a Scope extended by 1 with
respect to the scope of the abs expression. There is no C.Name argument.

app simply passes the Scope to its two arguments, unaffected.

var has a SName sc argument instead of C.Name. The SName is parametrized by
the scope of the var expression. This way, the De Brujin index can only point
to an existing binding.

In short, C.Names get transformed into SNames, and the well-scoped syntax elements
(just Expr for now) are indexed by the Scope.

With these changes, given an Expr ϵ, any var in it must by definition point to an
abs in its scope.

In this syntax, λx.λy.x would translate to this more complex expression:

abs (abs (var (there here)))

Notably, an expression such as

abs (var (there here))

which is equivalent to λ.2, would fail to typecheck as Expr ϵ:

(_sc_1 ▷) != ϵ of type Scope
when checking that the expression here has type SName ϵ

It would instead correctly typecheck as Expr (ϵ ▷), letting us explicitly acknowledge
free variables by giving the type of the expression an expanded scope.

The syntax we just defined fulfills well the purpose of permitting only well-scoped
programs to exist, but falls short in keeping track of names of abstractions and
references, which is a fundamental feature used by practical compilers to produce
user-readable messages, for example in case of a typechecking failure.

In the following iteration, we preserve names, both at definition and use site. More-
over, we introduce a proof that the name of a reference is always the same as the
one of the definition it points to. This proof allows successive compilation phases to
use these references without resorting to partial lookup functions, and can be the
basis for more complex proofs.

We are going to alter all three types from the previous listings.

data Scope : Set where
-- Empty scope
ϵ : Scope
-- "Snoc" (opposite of cons)
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_▷_ : Scope → C.Name → Scope
variable sc : Scope

The type Scope is no longer isomorphic to N. Instead, it is now a snoc-list (a linked
list where elements are added to the right end, opposite of a traditional cons-list)
of C.Names. We are using this type of list because it mirrors the natural direction
of extension of a scope in a program: new definitions are added at the end of the
program, and affect successive definitions. Its first constructor, ϵ, is the empty list,
or empty scope, and its second constructor, _▷_ is the snoc operation (opposite of
cons in cons-lists) that takes a new argument of type C.Name and appends it to the
scope. This is the name that was bound in that position of the scope.

data SName : Scope → C.Name → Set where
here : SName (sc ▷ x) x
there : SName sc x → SName (sc ▷ y) x

The type constructor of the new SName has a second type parameter of type C.Name
that is the same as the one of the scope it points to. This is ensured by the here
constructor, where the x : C.Name type parameter is constrained to be the same as
the top of the Scope. As before, the there constructor propagates the constraint
to the upper scope by taking a SName parametrized on it.

data Expr (sc : Scope) : Set where
abs : (x : C.Name) → Expr (sc ▷ x) → Expr sc
app : Expr sc → Expr sc → Expr sc
var : (x : C.Name) → SName sc x → Expr sc

Finally, constructors of Expr are also augmented with names. Constructor var takes
the name of the reference and ensures that it is the same as the one in the new SName
type parameter, and abs links the name on top of the new scope to the name of the
newly bound variable. Constructor app is unchanged.

2.2.1 Name shadowing
When a name is defined more than one time in a scope, name shadowing occurs. The
later (or inner) definition shadows the earlier (outer) one, rendering it unreachable.
Name shadowing is handled correctly only if references to names are always resolved
to the latest (innermost) definition.

In the following example, with proper name resolution, x should refer to the second
λx, ie. here.

λx.λx.x

The data structure we defined only ensures that variables refer to reachable ab-
stractions of the same name. It does not enforce proper handling of shadowed bind-
ings. For example, the following expression typechecks successfully, but is clearly
ill-formed: there here refers to the outermost abstraction, and while it does have
the same name, there is another binding for x that is closer to the reference.
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shadowing : C.Name → Expr ϵ
-- +----------------+
-- V |
shadowing x = abs x (abs x (var x (there here)))

The same will be true for other parts of the well-scoped syntax. We will check for
shadowing in the scope checking phase, but we will not attach that information to
the well-scoped syntax. In Section 3.4.2 we write more about this limitation.

2.2.2 Top-level declarations
Well-scoped top-level declarations can be implemented in a very similar way, since
their structure is so similar to the λ-calculus we introduced. Bindings act like λ-
abstractions, where a variable is bound for inner expressions. In a list of top-level
declarations, the “inner expression” where the new variable is bound would be the
tail of the list, or in more complex syntaxes, the branches of the syntax tree.

We briefly show a simple example of well-scoped syntax of a hypothetical language
with only two declarations: variable definition, written as define x where x is
the variable name, and variable reference, written as reference x, that can use
previously defined variables. For example:

define x
reference x
define y
reference x
reference y

A well-scoped syntax for this language is remarkably similar to the one for λ-calculus.
We omit Scope and SName definitions, as they are identical to the ones in the previous
section.

data Decls (sc : Scope) : Set where
ϵ : Decls sc
def : (x : C.Name) → Decls (sc ▷ x) → Decls sc
ref : (x : C.Name) → SName sc x → Decls sc → Decls sc

-- Syntax of this program:
-- define x
-- reference x
example : C.Name → Decls ϵ
example x = def x (ref x here ϵ)

While this principle will be applied to many syntactic elements the next sections,
in Section 2.3 we will instead implement declarations in a way that is more suited
to features that depend on lists of declarations, such as mutual recursion, and that
makes lists of declarations easier to extend.

17



2. Scope checking fragments of the Agda language

2.3 Module calculus
Almost all practical programming languages include among their features a module
system, a way to separate a program hierarchically into sections called modules, that
can reference each other by name. Definitions are scoped by module, and mecha-
nisms to manipulate modules and their interfaces are provided. A more detailed
description of the Agda module system can be found in Section 1.3.1.2. In this sec-
tion we will just use plain modules and the simplest of those manipulation features:
module assignment.

Syntactically, Agda modules are introduced by the module keyword and are based on
indentation. References to names defined inside a module from outside of that same
module have to be prefixed with the name of the module followed by a dot. This
happens recursively for nested modules. For example M.N.B refers to a B defined
inside a module N itself defined within a module M.

module Module where
module InsideModule where

-- References to InsideModule must be
-- qualified with Module
module OutsideModule = Module.InsideModule

We call these extended names prefixed by the names of their enclosing modules qual-
ified names. We define qualified names as non-empty cons-lists of regular unqualified
names, again inside the C module.

-- Continuing module C
data QName : Set where

-- Construction from unqualified name
qName : Name → QName
-- Name qualification
qual : Name → QName → QName

Variables for C.Name were defined as x and y, so we choose xs and ys as C.QName
variables to remind us that they are simply (non empty) lists of names.

variable xs ys : C.QName

The constructor qName builds a qualified name from a simple name, while qual
further qualifies a name with the name of the module it is in.

Modules can be given additional names with a statement such as module A = B.
This is a subset of the module application feature introduced in Section 1.3.1.2 that
we will call module assignment.

module M where
module A where
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-- Modules can nest arbitrarily
module N where

module B where

-- Example assignments of nested modules
module A' = M.A
module B' = M.N.B
module N' = M.N
module B'' = N'.B

A representation of the above syntax as an Agda datatype might look like this:

data Decl : Set where
modl

: C.Name -- Name of the module
→ List Decl -- Inner declarations
→ Decl

modlAssignment
: C.Name -- Left hand side
→ C.QName -- Right hand side
→ Decl

The constructor modl represents a module declaration, with its name and a list
of inner declarations, and modlAssignment represents a declaration of a module
assignment, with new and old name.

The well-scoped syntax follows the same pattern as the example in Section 2.2, but
this time it employs mutually recursive definitions. This means that we first have
to declare the types of our definitions, and only after that the definition bodies. We
start back from Scope.

data Scope : Set
variable sc : Scope

data Decl (sc : Scope) : Set
variable d : Decl sc
data Decls (sc : Scope) : Set
variable ds : Decls sc

data DName : (sc : Scope) → Decl sc → C.QName → Set
data DsName : (sc : Scope) → Decls sc → C.QName → Set
data SName : Scope → C.QName → Set

As seen in the above listing, we still have a Scope of type Set. Decl is a declaration,
and Decls is a list of declarations in a module, as we will show in the constructor
definitions. Like Expr in the previous section, syntactic elements such as Decl and
Decls are parametrized by their scope. This is a pattern that will repeat throughout.
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Finally, we now have three types of well-scoped names: two of them for referencing
a definition that is inside of the two syntactic elements (DName for Decl and DsName
for Decls), and one for the scope itself (SName).

We can now define the bodies of the data definitions. We start with Scope. While in
the λ-calculus example we only had to keep track of the list of names used in enclos-
ing abstractions, with a module system we also need to keep track of the previous
declarations in the same module and in all the enclosing modules. Moreover, we
have to point to those declarations instead of just keeping track of names, so that
they are easily accessible for further processing. Therefore, in this module calculus
Scope changes from a simple list to a tree that connects all the in-scope syntax.

The actual definition of Scope though is still quite simple: a snoc-list of Decls. This
is because the only connections that Scope adds to the syntax tree are up through
the module hierarchy, while all other in-scope locations in the syntax can be
reached by traversing the declarations referenced by Scope.

data Scope where
-- Empty scope
ϵ : Scope
-- Scope expansion
_▷_

: (sc : Scope) -- Upper scope
→ Decls sc
→ Scope

Implementing a well-scoped syntax for module assignments is not straightforward.
Instead of doing that directly, we first implement a further subset that we will call
module references. A module reference is a module assignment without a left-hand-
side. A module reference does not define any name. We write it as module _ = A,
using _ to signify the absence of a name. This is not actually valid Agda syntax, but
we use it nonetheless as an intermediate step to get to the full assignment syntax.

Accordingly, a declaration can be:

• A module, that has a name and contains more declarations inheriting the
parent scope.

• A module reference, that points to an existing module through a SName sc ys,
a well-scoped name ys over the scope sc of the module reference.

data Decl sc where
modl : C.Name → Decls sc → Decl sc
modlReference : SName sc ys → Decl sc

Decls is slightly more complex than a plain list of declarations. Declarations must be
able to refer to previous declarations in the same module, so when a new declaration
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is appended to the list, its scope is extended with the tail of declarations: sc ▷ ds.
Like Scope, Decls is also a snoc-list.

data Decls sc where
-- Empty list
ϵ : Decls sc
-- "Snoc"
_▷_

: (ds : Decls sc) -- Previous declarations
-- Last declaration. Previous declarations are in scope
→ Decl (sc ▷ ds)
→ Decls sc

Finally, we define well-scoped names. If a scope is the tree of reachable (in-scope)
syntax, a well-scoped name is a path through it, pointing to a specific declaration
in the tree and asserting that it defines a specific name. It is similar in meaning and
implementation to the ∈ proposition over lists, that asserts that a specific element
is present in a list and points to its location.

DName sc d xs asserts that a qualified name xs is defined in declaration d. A name
can be defined in a declaration in two ways.

• The qualified name is composed of one segment, qName x, and the declaration
is a module named x.

• The qualified name is composed of multiple segments, qual x xs. The first
segment, x, matches the name of the module, and the rest, xs, is defined
recursively in the contents of the module.

data DName where
-- It is this module
thisModule : {ds : Decls sc} → DName sc (modl x ds) (C.qName x)
-- It is inside this module
inside

: {ds : Decls sc} -- Declarations within the module
-- The name is defined in one of the declarations
→ DsName sc ds xs
→ DName sc (modl x ds) (C.qual x xs)

-- There is no constructor for modlReference
-- because it does not define names

Similarly, DsName sc ds xs asserts that xs is defined in one of the declarations in
ds. Due to the similarity with ∈, we use the same constructor names: here and
there. The constructor here takes a DName of the declaration at the head of the
list, while there takes another DsName of the declarations at the tail. Note that the
here constructor takes care of extending the scope of the last declaration with all
the declarations that came before it (sc ▷ ds).
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data DsName where
-- It is in this last declaration (d)
here : DName (sc ▷ ds) d xs → DsName sc (ds ▷ d) xs
-- It is in one of the previous declarations (ds)
there : DsName sc ds xs → DsName sc (ds ▷ d) xs

Finally, SName sc xs ties it all together by asserting that xs is defined in scope sc,
that is, either in the same module (here) or in one of the upper modules (there).

data SName where
-- It is in this module
here : DsName sc ds xs → SName (sc ▷ ds) xs
-- It is in one of the upper modules
there : SName sc xs → SName (sc ▷ ds) xs

The structure of the scope and of well-scoped names can be better explained with a
graphical representation of a program. In Figure 2.1 the structure of the following
program is represented as a graph.

module A where
module X where

module B where
module Y where
module _ = A.X

Nodes are constructors of the well-scoped syntax, and directed edges are pointers
between them, ie. the constructors arguments. The module reference is highlighted
in red, and the module it is referring to, A, is highlighted in blue. We can see that
there is no path from the reference to A through the directed graph even though
according to the semantics of the language it is accessible. The role of Scope is to
produce such a path.

In the bottom half of the figure, the Scope that parametrized the reference is dis-
played. We can see that it provides edges up through the syntax tree, producing a
second tree that covers all in-scope syntax. Module Y is covered, being in a previous
declaration inside the same module as the reference, and so is A, being defined in
the upper scope, and X, through A. B, instead, is not covered, as that would create
cyclic and forward references to modules defined after the reference. Other top-level
modules defined after A also are not covered by the tree.

The Scope connects all reachable syntax, but does not guarantee that the referenced
name is reached. That is the role of SName: a path through the Scope tree that
proves the reachability of a name. In Figure 2.2, the path encoded by a possible
SName from the scope of the reference to module X is highlighted, with the names of
the well-scoped name constructors written on the side.
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(a) Syntax of a module expression

(b) The same syntax, with the scope of the reference added (green dotted arrows)

Figure 2.1: Representation of a scope as a graph through the syntax
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Figure 2.2: The same syntax and scope as Figure 2.1, but part of the scope is
highlighted (thick blue arrows), representing the SName proof of reachability
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2.3.1 Module assignment

We now extend module references to module assignments. The main challenge is
being able to represent a well-scoped name that goes through a module assignment.
When a well-scoped name reaches a module assignment, not only does it have to
continue its path to the module referenced in the right-hand-side of the assignment
(for that it would be enough to reference the well-scoped name of the assignment),
it may also have to continue its path further inside the module pointed to by the
right-hand side of the assignment.

module A where
module B where

module A' = A
module B' = A'.B

For example, in the above program, to produce a well-scoped B' definition we must
go through a few steps. We have to first build a path to A', which is handled
without problems by the previously defined well-scoped names. Then, the path
must continue to A, which is also already possible through the well-scoped name
in the right hand side of module A' = A. Finally, we must provide a path from
A to B. This is problematic because the well-scoped name pointing to A does not
provide direct access to its contents (it only proves its existence and reachability),
so reusing that path is difficult. In other words, the portion of the path inside A will
be completely detached from the rest of the path, because it is based on a portion of
the syntax (the declarations inside A) that is not proven to be reached by the right
hand side of module A' = A.

The problem is solved by augmenting well-scoped names with the contents of the
pointed module. To do so, we first change the types of well-scoped names to include
a Decls parameter at the end. We also introduce more generalized variables of
type Decls called pointedDs and pointedDs' that will be used later to refer to the
definitions inside the module pointed by well-scoped names.

data Scope : Set
variable sc sc' sc'' : Scope

data Decl (sc : Scope) : Set
variable d : Decl sc
data Decls (sc : Scope) : Set
variable ds : Decls sc
variable pointedDs pointedDs' : Decls sc

data DName : (sc : Scope)
→ Decl sc
→ C.QName
→ Decls sc' -- Body of the the pointed module
→ Set
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data DsName : (sc : Scope)
→ Decls sc
→ C.QName
→ Decls sc'
→ Set

data SName : Scope
→ C.QName
→ Decls sc'
→ Set

variable sn : SName sc xs pointedDs

Then, we add the left-hand-side name x to the definition of the modlAssignment
constructor (former modlReference).

data Decl sc where
modl : (x : C.Name) (ds : Decls sc) → Decl sc
modlAssignment : (x : C.Name) (sn : SName sc ys pointedDs)

→ Decl sc

The most important change is in the DName definition (see below).

• In thisModule, the pointed declarations (pointedDs) are taken from the con-
tents of the module (modl x pointedDs).

• In inside, the pointed declarations (pointedDs) are simply propagated.

• In thisAssignment, which covers the case where the last segment of the qual-
ified name was reached, the pointed declarations (pointedDs) of the right-
hand-side well-scoped name (sn) are used as pointed declarations of the whole
DName.

• In insideAssignment, which covers the case where there are other name seg-
ments to follow, the pointed declarations (pointedDs) of the right-hand-side
well-scoped name (sn) are used as a basis for continuing the path through
a DsName parametrized on them. The declarations (pointedDs') pointed by
that DsName are used as pointed declarations of the whole constructor, as they
are what is actually pointed by the well-scoped name.

data DName where
-- The pointed decls are built
thisModule : {ds : Decls sc}

→ DName sc (modl x pointedDs) (C.qName x) pointedDs
-- The pointed decls are propagated
inside : {ds : Decls sc}

→ DsName sc ds xs pointedDs
→ DName sc (modl x ds) (C.qual x xs) pointedDs

-- The pointed decls are connected
thisAssignment : {sn : SName sc ys pointedDs}
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→ DName sc (modlAssignment x sn) (C.qName x) pointedDs
insideAssignment : {sn : SName sc ys pointedDs}

→ DsName sc' pointedDs xs pointedDs'
→ DName sc (modlAssignment x sn) (C.qual x xs) pointedDs'

Finally, we propagate pointedDs through DsName and SName.

data DsName where
here : DName (sc ▷ ds) d xs pointedDs

→ DsName sc (ds ▷ d) xs pointedDs
there : DsName sc ds xs pointedDs

→ DsName sc (ds ▷ d) xs pointedDs

data SName where
here : DsName sc ds xs pointedDs

→ SName (sc ▷ ds) xs pointedDs
there : SName sc xs pointedDs

→ SName (sc ▷ ds) xs pointedDs

These modifications combined make it possible to build a proof of indirect reacha-
bility of a definition without having to perform unnecessary work.

2.4 Module calculus, with open statements
Another similar construct present in the Agda language is the open statement. As
explained in Section 1.3.1.2, open M exposes the contents of module M as if they were
defined in the same scope as the open statement, and this can be further controlled
with using, hiding, and renaming directives.

The well-scoped syntax of open statements differs from the one of module assign-
ments in two major ways: first, when building a scoped name through an open
statement the first component of the qualified name is not consumed, since the
contents of the module are exposed directly; and second, all exported names are
collected in advance in what we will call an interface.

An interface is defined as a list of entries that map exported names to scoped names
internal to the opened module, on which the interface is parametrized. Though a
map would be more appropriate, a list was chosen for simplicity. It is built by the
scope checker by processing the contents of the opened module together with the
import directives. In a sense, it is comparable to defining an assignment for every
name exported by the opened module.

The reason why we chose to collect all exported names in advance in an interface
is that it makes building scoped names through it much simpler. Building scoped
names through a raw open statement would require considering the directives. The
proof of reachability would have to include a proof of membership in using, or a
negative proof of existence in hiding, or a change of name through renaming, or
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almost any combination of those. This way instead it is enough to prove membership
to the interface.

We implement an interface as follows.

-- An interface entry defines a mapping between the exported
-- name, and the Name of the internal name
record InterfaceEntry (ds : Decls sc) : Set where

inductive
constructor interfaceEntry
field

exportedName : C.QName
innerQName : C.QName
innerPointedSc : Scope
innerPointedDs : Decls innerPointedSc
innerDsName : DsName sc ds innerQName innerPointedDs

-- A module interface is a list of well-scoped exported names
-- (entries)
Interface : Decls sc → Set
Interface ds = List (InterfaceEntry ds)

For this definition we use the record syntax, which is a generalization of dependent
products that allows us to define a type with multiple interdependent parameters
in a clear manner over multiple lines. The keyword inductive defines this as an
recursive inductive record. Recursive records are required to specify inductive or
coinductive depending on the type of recursion (in short, finite or infinite). It is
recursive because it contains names and declaration that as we will show can in turn
contain interfaces. The constructor and field keywords define, respectively, the
name of the constructor of the record and the names and types of the constructor
parameters.

• exportedName is the name with which the definition attached to this entry is
accessible from the outside of a module, taking into account renaming.

• innerQName is the name of that definition as declared inside the module.

• innerPointedDs are the declarations inside that definition (see Section 2.3.1).

• innerDsName, finally, is the well-scoped name pointing to the inner definition.
That is, the portion of the path from reference to definition that goes through
the opened module.

The Decl type is augmented with a new opn constructor, taking a scoped name
pointing to the opened module and an interface parametrized over the declarations
pointed by the scoped name.
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data Decl (sc : Scope) : Set where
opn : (m : SName sc xs pointedDs)

→ (iface : Interface pointedDs)
→ Decl sc

Finally, an imp constructor is added to DName, taking a proof that the name is a
member of the interface.

data DName (sc : Scope) : Decl sc → C.QName → Decls sc' → Set
where
-- It is imported from another module
imp : ∀{mName} → {m : SName _ mName ds}

→ {iface : Interface ds}
→ {dsn : DsName sc' ds ys pointedDs}
→ interfaceEntry xs ys sc'' pointedDs dsn ∈ iface
→ DName sc (opn m iface) xs pointedDs

2.5 Module calculus, with private blocks

In Agda, private blocks can prevent definitions from getting referenced outside of
the module they are defined in. For example, in the following listing, module A can
be referenced by the module application inside M, but not by the one outside.

module M where
private

module A where
module A' = A

module A'' = M.A -- Error

We will add private blocks to the module references syntax used in Section 2.3.
Instead of having a separate syntax element for them, we propagate the information
about the kind of access we have over a declaration to the declarations themselves.
To do this, we first define an Access type with constructors publ and priv that
will be used to record whether a declaration was defined in a private block or not.

-- Whether a declaration is accessible from outside its scope
data Access : Set where

-- It was not defined in a private block,
-- and is publicly accessible
publ : Access
-- It was defined in a private block,
-- and is not publicly accessible
priv : Access

variable acc : Access
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We also define a related but distinct type, Clearance, that will be used to express
whether, at a certain point of the path defined by a scoped name, we are allowed to
reference private definitions.

The types Access and Clearance are isomorphic and even have the same construc-
tors, but are not to be confused.

-- The level of access to private declarations we have
-- at a certain point
data Clearance : Set where

-- We can access only public declarations
publ : Clearance
-- We can access public and private declarations
priv : Clearance

variable cl : Clearance

We define a relation named canSee between Clearance and Access. The relation
is inhabited when we are allowed to reference a declaration tagged with Access
when having Clearance. A Clearance of priv means we are allowed to reference
everything, while a clearance of publ means we are only able to access definitions
marked as publ.

-- Can we see a declaration marked with Access
-- when having a Clearance?
_canSee_ : Clearance → Access → Set
-- A priv Clearance can see everything
priv canSee _ = ⊤
-- A publ Clearance can only see publ Access
publ canSee publ = ⊤
publ canSee priv = ⊥

Specifically, we want to be able to access priv definitions only when referencing
them from inside the same module. Hence the definition of a module constitutes
a boundary in the syntax tree where well-scoped names drop their Clearance to
publ.

We proceed by modifying the types we defined for module references.

The types of Scope, Decl, and Decls do not change. A Clearance type parameter
is added to all the scoped names, meaning that at that point of the path through
the scope, there is a certain clearance level.

data Scope : Set
variable sc : Scope

data Decl (sc : Scope) : Set
variable d : Decl sc
data Decls (sc : Scope) : Set
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variable ds : Decls sc

-- All scoped names are parametrised by Clearance
data DName : (sc : Scope) → Clearance → Decl sc → C.QName

→ Set
data DsName : (sc : Scope) → Clearance → Decls sc → C.QName

→ Set
data SName : Scope → Clearance → C.QName → Set

The bodies of Scope and Decls do not change.

In the constructor modl of the type Decl, we add a parameter of type Access to
represent whether the module was defined in a private block or not. The constructor
modlReference has no Access parameter because it does not define any name.

In the constructor modlReference, in the scoped name defining the reference, we
use a priv clearance, since the scoped name represents a part of the reference path
that is in the same module as the reference itself. In other words, when we look
for the definition we first look inside the module we are in, where we are allowed to
access private definitions.

data Decl sc where
modl : Access → C.Name → Decls sc → Decl sc
-- We start with Clearance set to priv
modlReference : SName sc priv ys → Decl sc

In every constructor of DName we use canSee to ensure that the current Clearance
is sufficient to continue building the path. When descending inside a module with
the constructor inside, the Clearance parameter is switched to publ, since we are
no longer accessing declarations from the same module.

data DName where
thisModule

: {ds : Decls sc}
-- We ensure the declaration is accessible
→ cl canSee acc
→ DName sc cl (modl acc x ds) (C.qName x)

inside
: {ds : Decls sc}
-- We ensure the declaration is accessible
→ cl canSee acc
-- When descending inside a module, Clearance switches
-- to publ
→ DsName sc publ ds xs
→ DName sc cl (modl acc x ds) (C.qual x xs)

Finally, DsName and SName simply propagate the clearance without modifying it.
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data DsName where
here : DName (sc ▷ ds) cl d xs → DsName sc cl (ds ▷ d) xs
there : DsName sc cl ds xs → DsName sc cl (ds ▷ d) xs

data SName where
here : DsName sc cl ds xs → SName (sc ▷ ds) cl xs
there : SName sc cl xs → SName (sc ▷ ds) cl xs

2.6 Module calculus, with expressions

Next, we combine the simplest form of the module calculus (without references,
assignment, application, nor open statements) with expressions. We add a new type
of declaration that assigns an expression to a name. For example, the following
example is supported.

-- We define three identity functions, each based on the previous

f = λ x → x

module M where
g = λ x → f x

h = M.g

To express this syntax, we need to introduce two new concepts.

The first is what we will call the kind of names, not to be confused with the concept
of type as used in a type checker. A name kind defines the context in which a name
can be used. It will let us distinguish names used for entirely different purposes,
such as module names or names that can be used inside of expressions. In the full
well-scoped syntax, it will allow us to attach kind-specific information to names. It
is best understood with an example (bringing temporarily back open statements for
the sake of clarity).

module M
a = λ x → x

-- Correct usage of names
open M
f = λ x → a

-- Name kinds are mismatched
open a
f = λ x → M
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In the above code, we first show correct usage of names according to their kinds.
Name M is the name of a module, and it is used in an appropriate context, an open
statement. Name a is also used correctly as an expression in an abstraction. In the
last two lines instead, name kinds are mismatched: M is used as an expression and a
as a module. As such, they make the definition nonsensical, and highlight the need
to distinguish them.

We define NameKind as either the kind of names that can be used as modules, or
the kind of names that can be used in expressions.

-- The kind of definition a scoped name refers to
data NameKind : Set where

-- It must be a module
moduleName : NameKind
-- It must be a name that can be used in an expression
exprName : NameKind

variable nk : NameKind

The second concept is the block. Until now, the scope was always built from homo-
geneous layers: either λ-abstractions in the λ-calculus or lists of declarations in the
module calculus. When mixing modules and expressions, we can have both, so we
add a new Block type to capture this. A Block is a layer of a Scope that can either
be of λ-abstractions or declarations. In the full well-scoped syntax, blocks will be
extended to support all the other syntactic elements.

We modify the usual types to include both blocks and name kinds. In particular,
every scoped name is parametrized by a name kind.

data Scope : Set
variable sc : Scope

-- A block is a layer of a scope
data Block (sc : Scope) : Set
variable block : Block sc

data Expr (sc : Scope) : Set
data Decl (sc : Scope) : Set
variable d : Decl sc
data Decls (sc : Scope) : Set
variable ds : Decls sc

-- Every scoped name is parametrized by a specific name kind
data DName

: (sc : Scope) → Decl sc → C.QName → NameKind → Set
data DsName

: (sc : Scope) → Decls sc → C.QName → NameKind → Set
-- New
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data BName
: (sc : Scope) → Block sc → C.QName → NameKind → Set

data SName : Scope → C.QName → NameKind → Set

Now we can define the body of Block. It is either a list of declarations, or an
abstraction.

data Block sc where
-- It is a layer of declarations
bDecls : Decls sc → Block sc
-- It is a lambda abstraction
bLam : C.Name → Block sc

We also modify Scope to use Block instead of Decls.

data Scope where
ϵ : Scope
_▷_

: (sc : Scope)
-- A scope is now made of blocks
→ Block sc
→ Scope

Expressions are similar to how they were defined in Section 2.2. The difference is in
how the scope is extended and in the scoped name parametrized by kind.

data Expr sc where
-- On abstractions, a bLam block is added
abs : (x : C.Name) → Expr (sc ▷ bLam x) → Expr sc
app : Expr sc → Expr sc → Expr sc
-- We use exprName to avoid referring to a module
var : (xs : C.QName) → SName sc xs exprName → Expr sc

The Decl type has a new expr constructor, representing the assignment of an ex-
pression to a name.

data Decl sc where
modl : C.Name → Decls sc → Decl sc
modlReference : SName sc ys moduleName → Decl sc
expr : C.Name → Expr sc → Decl sc -- New

The Decls type is also adapted to use the new Block type. Since it extends it with
declarations, it uses a bDecls block.

data Decls sc where
ϵ : Decls sc
_▷_

: (ds : Decls sc)
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-- To add declarations to the scope, we use bDecls
→ Decl (sc ▷ bDecls ds)
→ Decls sc

In DName, we make sure to set the name kind to the appropriate value depending on
whether the name refers to a module or an expression.

data DName where
-- It is a module, so we set the name kind to moduleName
thisModule : {ds : Decls sc}

→ DName sc (modl x ds) (C.qName x) moduleName
-- The name kind is propagated
inside

: {ds : Decls sc}
→ DsName sc ds xs nk
→ DName sc (modl x ds) (C.qual x xs) nk

-- It is this expression, so we set the name kind to exprName
thisExpr : {e : Expr sc}

→ DName sc (expr x e) (C.qName x) exprName

Lastly, we propagate the name kind through DsName, BName, and SName, and we
terminate the path if a lambda abstraction with appropriate kind and name is
found.

-- The name kind is propagated
data DsName where

here : DName (sc ▷ bDecls ds) d xs nk
→ DsName sc (ds ▷ d) xs nk

there : DsName sc ds xs nk
→ DsName sc (ds ▷ d) xs nk

data BName where
inDecls : DsName sc ds xs nk

→ BName sc (bDecls ds) xs nk
-- The path terminates at the abstraction
inLam : BName sc (bLam x) (C.qName x) exprName

-- The name kind is propagated
data SName where

here : BName sc block xs nk
→ SName (sc ▷ block) xs nk

there : SName sc xs nk
→ SName (sc ▷ block) xs nk
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2.7 Mutual interleaved bindings

When designing a well-scoped syntax for mutual declarations, we face an interesting
challenge: declarations need to be able to refer to each other in arbitrary ways, and
we also need a way to reach all clauses of a function or data definition by starting
from its signature, so a compiler can process the function in its entirety.

The first issue is solved by forward declarations and interleaved declarations7. These
allow the user to freely interleave declarations and definitions of different functions,
so that all references happen after the corresponding declarations. These features
align with the Decls definition, where successive declarations are allowed to refer
to previous ones.

To solve the second problem, we have to collect all the clauses of a function under its
type signature. We will do this by means of a wrapper that decorates type signatures
with clauses.

We start by adding a block for function left-hand-sides, as described in Section 2.6.

data Block (sc : Scope) : Set where
bDecls : Decls sc → Block sc
bLhs : C.Name → Block sc

Then we forward-declare Mutual, a wrapper for the Decls type that will be used
when mutual declarations are needed.

Mutual : (sc : Scope) → Decls sc → Set

We add constructors for type signatures (typeSig) and function clauses (funClause)
to Decl. Type signatures are composed of the name of the binder and the expression
representing its type. Function clauses have a name, a left-hand-side, and a right-
hand-side expression. For simplicity, we define the left-hand-side as a single binding.
The mutual' constructor represents mutual blocks of declarations.

data Decl sc where
typeSig : (x : C.Name) → (ty : Expr sc) → Decl sc
funClause : (x : C.Name) → (lhs : C.Name)

→ Expr (sc ▷ bLhs lhs) → Decl sc
mutual' : Mutual sc ds → Decl sc

We add a way to attach a function clause to a matching8 type signature, and call it
Clause. We use SName to ensure the function clause is reachable, but we base it on
a top scope. The top scope is the scope containing the entirety of the mutual block.
Its origin will be shown later.

7More information about forward and interleaved declarations is available in the Agda docu-
mentation [8] at mutual-recursion.html

8Meaning they share the Name
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data Clause (topScope : Scope) : Decl sc → Set where
funClause : SName topScope (C.qName x)

→ Clause topScope (typeSig x ty)

By building a list of Clauses, we can attach all clauses to their matching type
signature, so that they are all reachable from it. Note that d, the type signature
declaration, is fixed.

Clauses : (topScope : Scope) → Decl sc → Set
Clauses topScope d = List (Clause topScope d)

Now we define Deco, a wrapper over declarations, specifically type signatures, that
decorates them with function clause information from the top scope topScope. This
decorator is defined such that its structure matches the one of Decls, with matching
empty and snoc constructors. The key component of the definition is the snoc con-
structor, ds ▷[ d , cs ]. It appends to previous decorated declarations (ds) a new
declaration (d) and its clauses (cs), matching the undecorated list of declarations
(ds ▷ d) in the second argument of Deco.

data Deco (topScope : Scope) : Decls sc → Set where
ϵ : Deco topScope {sc} ϵ
_▷[_,_] : Deco topScope {sc} ds

→ (d : Decl (sc ▷ bDecls ds)) → Clauses topScope d
→ Deco topScope (ds ▷ d)

variable deco : Deco sc ds

We complete the definition of the Mutual wrapper. It is a decorator where the
first argument (the top scope) is the parent scope augmented with all the mutual
declarations, and the second argument (the declarations) are the undecorated mutual
declarations.

Mutual sc ds = Deco (sc ▷ bDecls ds) ds

Afterwards we add a well-scoped name for definitions in mutual declarations. Its
structure is identical to the one of DsName in Section 2.3.

data MName (sc : Scope) : Deco (sc ▷ bDecls ds') ds → C.QName
→ Set where

here : ∀{clauses} → DName _ d xs
→ MName sc (deco ▷[ d , clauses ]) xs

there : ∀{clauses} → MName sc {ds = ds} deco xs
→ MName sc (deco ▷[ d , clauses ]) xs

Finally we can insert a new constructor in DName, where we propagate the decorator
from the MName to the mutual' declaration.
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data DName sc where
thisMutual : MName sc deco xs

→ DName sc (mutual' deco) xs
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The complete well-scoped syntax

and scope checker

Having explored how various fragments of Agda can be expressed in a well-scoped
manner in Chapter 2, we are now equipped to present the entirety of this project.

The implementation consists of two main parts: the well-scoped abstract syntax,
and the scope checker.

The well-scoped syntax captures, in addition to the program itself, the properties we
want to prove about it, making it impossible to construct an ill-scoped program due
to the use of well-scoped names in all references. This is the most important part,
as it allows us to formalize what it means for an Agda program to be well-scoped.

The scope checker starts from the concrete syntax of an Agda program and produces
a well-scoped AST.

3.1 The concrete syntax

As explained in Chapter 1, the scope checker’s input is the language’s syntax tree
directly after parsing. The syntax tree’s representation is close to the actual syntax
of the Agda language as it is written. This is opposed to the abstract well-scoped
syntax the scope checker will output. For this reason, we will simply call the scope
checker’s input concrete syntax.

Since parsing is not the focus of this project, we obtain the concrete syntax by calling
the parser of the Agda compiler [2]. The Agda compiler is written in Haskell, and
Agda conveniently provides a Haskell foreign function interface, which is a way for
a programming language to interact with libraries written in another programming
language. Therefore, if appropriate types, signatures, and annotations are provided,
it is possible to call functions and get data from the Haskell implementation of Agda.
To use the existing Agda parser, we wrote Agda types corresponding to the Haskell
syntax types and Agda signatures corresponding to the Haskell parsing functions.
This was kept under a separate module from the rest of the scope checker. The rest
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of the project can simply call the main parser function as if everything was written
in Agda. Eventually, this could be replaced by a pure Agda implementation.

3.2 The well-scoped abstract syntax

In Chapter 2 we showed well-scoped syntax definitions for many fragments of the
Agda language. In this section, we will apply the techniques we described all at once
to form the complete well-scoped abstract syntax. We will go through the syntax
definitions and explain how this was done.

This abstract syntax does not cover every feature of Agda, but it does cover a wide
enough variety of them so that implementing the rest should be a matter of applying
the same methods to the remaining features. For example, pattern synonyms and
named where blocks are not covered, but the first are similar to function and data
declarations, while the second are similar to module declarations.

3.2.1 Basic names and types

First we define the part of the syntax that is common between concrete and well-
scoped syntaxes, that is, basic names and literals.

Basic names, without proofs attached, are identical to the ones defined in Section 2.1.
We add a new Literal type that defines various types of Agda literals such as
numbers and strings. These basic constructs are all also part of the concrete syntax
definition, so we define everything under module C.

module C where
Name : Set
Name = String

data QName : Set where
qual : Name → QName → QName
qName : Name → QName

data Literal : Set where
litNat : N → Literal
litWord64 : Word64 → Literal
litFloat : Float → Literal
litString : String → Literal
litChar : Char → Literal

variable x y : C.Name
variable xs ys xs' : C.QName
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Before anything else, since many definitions are going to depend on each other, we
also need to forward-declare some basic types: Scope, Decls, and Decl, as previously
seen in Section 2.3.

data Scope : Set
variable

sc sc' : Scope

-- Declarations in a scope.
data Decls (sc : Scope) : Set
variable

ds ds' : Decls sc

data Decl (sc : Scope) : Set

3.2.2 Private blocks
Types and relations used for private blocks are as seen in Section 2.5, with a few
more generalized variables for convenience.

-- Whether a declaration is accessible from outside its scope
data Access : Set where

publ : Access
priv : Access

variable acc : Access

-- The level of access to private declarations we have
-- at a certain point
data Clearance : Set where

publ : Clearance
priv : Clearance

variable cl cl' : Clearance

-- Can we see a declaration marked with Access
-- when having a Clearance?
_canSee_ : Clearance → Access → Set
priv canSee _ = ⊤
publ canSee publ = ⊤
publ canSee priv = ⊥

3.2.3 Name kinds
Until now, all definitions were identical to the ones in Chapter 2. With the NameKind
definition, we start to diverge. The full name kind is more complex than the one
seen in Section 2.6; there is a hierarchy of four different name kinds that we need to
distinguish:
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• Module names, carrying the contents of the module and replacing pointedDs
as used in Section 2.3.1.

• Constructor names, the only kind of name supporting overloading, as we will
explain in Section 3.2.4.

• Function clause names, used in mutual declarations to ensure that only func-
tion clauses are tied together, as we show in Section 3.2.6.2.

• Other names, that we do not need to treat specially.

Furthermore, a name kind can carry a kind-specific piece of information about the
symbol that is of interest to the scope checker. For a module, this is its contents,
since they are necessary for accessing other names within that module.

Since new declarations can only refer to previously declared names, we start with
the bottom of the hierarchy, that is, the more specific name kinds. These are
funClauseName for function clauses and otherName, a catch all for everything not
covered by other name kinds.

data NotConNameKind : Set where
funClauseName : NotConNameKind
otherName : NotConNameKind -- Everything else

variable ncnk : NotConNameKind

We proceed with another layer of the hierarchy, that includes conName for construc-
tors, and notConName that encompasses the previous definition (NotConName).

-- We need to distinguish the two because of overloading
data NotModuleNameKind : Set where

notConName : NotConNameKind → NotModuleNameKind
conName : NotModuleNameKind

variable nmnk : NotModuleNameKind

Finally we define the top level of the hierarchy, NameKind, that distinguishes between
modules and everything else. The constructor moduleName is the only one where
we attach a piece of data, namely the declarations inside the pointed module. We
do not attach any data to the other constructors, but we could for example attach
type information if it turned out to be useful in other compilation phases.

data NameKind : Set where
moduleName : Decls sc → NameKind
notModuleName : NotModuleNameKind → NameKind

variable nk : NameKind

We also add a few pattern synonyms to avoid repeating the entire hierarchy of
constructors when referring to a specific kind.
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-- We define shorthands for specific name kinds
pattern ..conName = notModuleName conName
pattern ..notConName n = notModuleName (notConName n)
pattern ..funClauseName = notModuleName (notConName funClauseName)
pattern ..otherName = notModuleName (notConName otherName)

Pattern synonyms1 are aliases that can be used as patterns and therefore can ap-
pear in parameters. For example, having defined the patterns above, the following
function left-hand-sides are equivalent:

f ..conName =
f (notModuleName conName) =

3.2.4 Overloading
Next, we declare the higher level scoped names. This includes the usual SName,
augmented with both Clearance and NameKind, and a new type of name that we
will call simply Name. It represents a possibly ambiguous name, and allows us to
express the constructor overloading feature of Agda. Agda allows ambiguous names
to pass the scope checking phase for further disambiguation by the type checker,
but only for constructor names. The constructors moduleName and notConName do
not point to constructors, so they only have one scoped name parameter, while
conNames points to constructors, so it takes a non-empty list of scoped names to
support overloading.

-- A well-scoped name in a scope.
-- The name exists in scope, is accessible by a Clearance,
-- and carries a NameKind.
data SName : Scope → Clearance → C.QName → NameKind → Set

data Name : Scope → Clearance → C.QName → NameKind → Set
where
moduleName : SName sc cl xs (moduleName ds)

→ Name sc cl xs (moduleName ds)
notConName : SName sc cl xs (..notConName ncnk)

→ Name sc cl xs (..notConName ncnk)
conNames : List+ (SName sc cl xs ..conName)

→ Name sc cl xs ..conName

Note: List+ is a non-empty list, as implemented in the Agda standard library [7].

3.2.5 Scopes
Now we define blocks, preceded by a few forward declarations of binders present in
the Agda language (we will complete their definition in Section 3.2.6.1).

1More information about pattern synonyms is available in the Agda documentation [8] at
language/pattern-synonyms.html

43

https://agda.readthedocs.io/en/v2.6.2.2/language/language/pattern-synonyms.html


3. The complete well-scoped syntax and scope checker

• TypedBinding is a binder of the form (a : A) or {a : A}, where a is the
bound variable and A is a type, as used for example in Π types.

• LamBinding is a superset of TypedBinding used in lambdas where the type
can be omitted.

• Telescope is a list of TypedBindings such as (a : A) (b : B), again as used
in Π types.

• LamBindings are the parameters of parametrized datatypes2.

data TypedBinding (sc : Scope) : Set
variable tb : TypedBinding sc
data LamBinding (sc : Scope) : Set
variable lb : LamBinding sc
data Telescope (sc : Scope) : Set
variable tel : Telescope sc
data LamBindings (sc : Scope) : Set
variable lbs : LamBindings sc

The first two constructors of Block can be recognized from Section 2.6, except for
the parameter of bLam that is now a LamBinding. Lambda expressions in Agda are
actually more complex than a simple binding, as we will show in Section 3.2.6.1.
The new constructors take just their corresponding binder, which can be as little as
a single Name representing a datatype being defined in the case of bThisData.

-- A block is a layer of a scope
data Block (sc : Scope) : Set where

bDecls : (ds : Decls sc) → Block sc
bLam : (arg : LamBinding sc) → Block sc
bLbs : (args : LamBindings sc) → Block sc
bTel : (tel : Telescope sc) → Block sc
bTb : (tb : TypedBinding sc) → Block sc
bThisData : C.Name → Block sc
bLhs : C.Name → Block sc

The body of Scope, though, remains a snoc-list of blocks.

-- A scope is a snoc list of blocks
data Scope where

ϵ : Scope
_▷_ : (sc : Scope) → Block sc → Scope

infixl 20 _▷_

2More information about parametrized datatypes is available in the Agda documentation [8] at
data-types.html#parametrized-datatypes
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3.2.6 Syntactic elements
In this section we define syntactic elements such as modules and functions. They
can roughly be divided into expressions and declarations.

3.2.6.1 Expressions

The expression definitions are highly recursive. For example, an expression can
contain a typed λ-abstraction, whose type is an expression itself. Consequently, we
need to forward-declare Expr.

data Expr (sc : Scope) : Set
variable ty : Expr sc

Then, we define the bodies of various bindings. It is noteworthy that in telescopes
and lambda bindings, which are both chains of multiple bindings, the scope is ex-
tended with every item, so that they can be referenced in successive items.

-- Typed bindings, for example (x y : T)
data TypedBinding sc where

tBind : List C.Name -- Bound names (x and y)
→ Expr sc -- Type (T)
→ TypedBinding sc

-- Lambda bindings
data LamBinding sc where

domainFree : C.Name -- Just a name
→ LamBinding sc

domainFull : TypedBinding sc -- Name(s) with type
→ LamBinding sc

-- In a telescope, each element binds a name
-- that can be used in the rest
data Telescope sc where

ϵ : Telescope sc
_▷_ : (tel : Telescope sc) -- Previous items

→ TypedBinding (sc ▷ bTel tel)
→ Telescope sc

-- The same applies for LamBindings
data LamBindings sc where

ϵ : LamBindings sc
_▷_ : (lbs : LamBindings sc) -- Previous items

→ LamBinding (sc ▷ bLbs lbs)
→ LamBindings sc

In Expr itself, we apply Section 2.2 and Section 2.6. Constructor var uses Name
to allow constructor overloading, it sets the clearance to priv and the name kind
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to notModule, meaning anything but a module. Constructors lam, pi, and let'
(respectively λ-abstractions, Π-types, and let clauses) extend the scope of their
inner expression with the respective block.

data Expr sc where
universe : N → Expr sc -- Universes (Set n)
var : (xs : C.QName)

→ Name sc priv xs (notModuleName nmnk)
→ Expr sc

app : (e1 : Expr sc)
→ (e2 : Expr sc)
→ Expr sc

lam : (arg : LamBinding sc)
→ (e : Expr (sc ▷ bLam arg))
→ Expr sc

lit : C.Literal
→ Expr sc

fun : (e1 : Expr sc)
→ (e2 : Expr sc)
→ Expr sc

underscore : Expr sc
pi : (arg : TypedBinding sc)

→ (ty : Expr (sc ▷ bTb arg))
→ Expr sc

let' : (ds : Decls sc)
→ Expr (sc ▷ bDecls ds)
→ Expr sc

variable expr : Expr sc

3.2.6.2 Declarations

We define Interface, as seen in Section 2.4. There are two changes in InterfaceEntry.
First, we substitute the pointed declarations with a name kind, that as we have
shown in Section 2.6 contains the pointed declarations in case the entry refers to a
module. Second, the inner name is now a fully-fledged Name.

-- An interface entry defines a mapping between
-- the exported name, and the Name of the internal name
record InterfaceEntry (ds : Decls sc) : Set where

inductive
constructor interfaceEntry
field

exportedName : C.QName
innerQName : C.QName
innerNameKind : NameKind
innerName : Name (sc ▷ bDecls ds) publ innerQName innerNameKind
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-- A module interface is a list of well-scoped exported names
-- (entries)
Interface : Decls sc → Set
Interface ds = List (InterfaceEntry ds)

Before defining declarations, we forward-declare Mutual and FunClause, used for
mutual declarations (Section 2.7). We also define data constructors, composed of a
name and a type.

-- Forward declarations for mutual
Mutual : (sc : Scope) → Decls sc → Set
data FunClause (sc : Scope) : Set

data Constructor (sc : Scope) : Set where
constructor' : (x : C.Name) → (ty : Expr sc) → Constructor sc

We proceed with the definition of Decl. Among its constructors, we can find familiar
ones such as modl and opn. They are all augmented with access and name kind
information.

Among the new constructors, data' is interesting: it is composed of two kinds of
bindings and a list of constructors, and each of those elements is parametrized by a
scope extended with all the preceding ones.

-- A well-scoped declaration is one of
--
-- * A module definition.
-- * Importing the declarations of another module via `open`.
data Decl sc where

modl : (acc : Access) (x : C.Name) (modArgs : Telescope sc)
→ (ds : Decls (sc ▷ bTel modArgs)) → Decl sc

opn : ∀{mScope}
→ (mName : C.QName) → (mDecls : Decls mScope)
→ (m : SName sc priv mName (moduleName mDecls))
→ (acc : Access)
→ (iface : Interface mDecls)
→ Decl sc

axiom : (x : C.Name) → (ty : Expr sc) → Decl sc
data' : (x : C.Name)

→ (args : LamBindings sc)
→ (ty : Expr (sc ▷ bLbs args))
→ (constructors

: List (Constructor
(sc ▷ bLbs args ▷ bThisData x)))

→ Decl sc
typeSig : (x : C.Name) → (ty : Expr sc) → Decl sc
funClause : (x : C.Name) → FunClause sc → Decl sc
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mutual' : Mutual sc ds → Decl sc
variable

d d' : Decl sc

The Decls type is the same as defined in Section 2.6.

data Decls sc where
ϵ : Decls sc
_▷_ : (ds : Decls sc) → Decl (sc ▷ bDecls ds) → Decls sc

Mutual declarations are as defined in Section 2.7.

data RHS (sc : Scope) : Set where
absurdRhs : RHS sc
rHS : (e : Expr sc) → RHS sc

data FunClause sc where
funClause : (lhs : C.Name)

→ (whereClause : Decls (sc ▷ bLhs lhs))
→ RHS (sc ▷ bLhs lhs ▷ bDecls whereClause)
→ FunClause sc

data Clause (sc : Scope) : Decl sc' → Set where
funClause : SName sc priv (C.qName x) ..funClauseName

→ Clause sc (typeSig x ty)

Clauses : (sc : Scope) → Decl sc' → Set
Clauses sc d = List (Clause sc d)

data Deco (topScope : Scope) : Decls sc → Set where
ϵ : Deco topScope {sc} ϵ
_▷[_,_] : Deco topScope {sc} ds

→ (d : Decl (sc ▷ bDecls ds)) → Clauses topScope d
→ Deco topScope (ds ▷ d)

variable deco : Deco sc ds

Mutual sc ds = Deco (sc ▷ bDecls ds) ds

3.2.7 Well-scoped names

Finally we define well-scoped names. We begin with a forward declaration of DName.
We can see it has both a Clearance and a NameKind.

The DsName type is again very similar as its previous definitions: it propagates
everything and adds the declarations to the scope.
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-- Forward declaration for DName
-- A well-scoped name (of a module) in a declaration.
-- The same considerations as for SName apply.
data DName (sc : Scope)

: Clearance → Decl sc → C.QName → NameKind → Set

-- A well-scoped name (of a module) in a list of declarations.
-- The same considerations as for SName apply.
data DsName (sc : Scope)

: Clearance → Decls sc → C.QName → NameKind → Set where
here : DName (sc ▷ bDecls ds) cl d xs nk

→ DsName sc cl (ds ▷ d) xs nk
there : DsName sc cl ds xs nk

→ DsName sc cl (ds ▷ d) xs nk

The well-scoped name in mutual definitions traverses the decorator, again like in
Section 2.7.

-- A well-scoped name in a mutual block
data MName (sc : Scope)

: Deco (sc ▷ bDecls ds') ds → C.QName → NameKind → Set where
here : ∀{clauses} → DName _ publ d xs nk

→ MName sc (deco ▷[ d , clauses ]) xs nk
there : ∀{clauses} → MName sc {ds = ds} deco xs nk

→ MName sc (deco ▷[ d , clauses ]) xs nk

In DName we can note the use of scope blocks, canSee relation between clearance
and access, name kinds, interface entries.

data DName sc where
content : {ds : Decls (sc ▷ bTel tel)}

→ cl canSee acc
→ DName sc cl (modl acc x tel ds) (C.qName x) (moduleName ds)

inside : {ds : Decls (sc ▷ bTel tel)}
→ cl canSee acc
→ DsName (sc ▷ bTel tel) publ ds xs nk
→ DName sc cl (modl acc x tel ds) (C.qual x xs) nk

imp : ∀{iface m sn}
→ cl canSee acc
→ interfaceEntry xs ys nk sn ∈ iface
→ DName sc cl (opn xs' ds m acc iface) xs nk

thisAxiom : DName sc cl (axiom x ty) (C.qName x) ..otherName
thisTypeSig : DName sc cl (typeSig x ty) (C.qName x) ..otherName
thisFunClause : ∀{clause}

→ DName sc cl (funClause x clause) (C.qName x) ..funClauseName
thisData : ∀{constructors}

→ DName sc cl (data' x lbs ty constructors) (C.qName x)
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..otherName
thisDataCon : ∀{constructors dataTy}

→ constructor' x ty ∈ constructors
→ DName sc cl (data' y lbs dataTy constructors) (C.qName x)

..conName
thisMutual : MName sc deco xs nk

→ DName sc cl (mutual' deco) xs nk

We define other well-scoped names for various parts of the syntax. All of them
follow the same pattern: they are relations between a scope, a syntactic element,
and a name, asserting that the name is defined in the syntactic element parametrized
by the scope. For example, TelName sc tel x asserts that the name x is defined
somewhere in telescope tel.

-- Well-scoped name in a typed binding
data TBName (sc : Scope) : TypedBinding sc → C.Name → Set

where
tbName : ∀{x ns ty}

→ x ∈ ns -- The name is present in the list of bindings
→ TBName sc (tBind ns ty) x

-- Well-scoped name in a lambda binding
data LBName (sc : Scope) : LamBinding sc → C.Name → Set where

-- The name is defined directly
domainFree : ∀{x} → LBName sc (domainFree x) x
-- The name is defined in a typed binding
domainFull : TBName sc tb x → LBName sc (domainFull tb) x

-- Well-scoped name in a telescope
data TelName (sc : Scope) : Telescope sc → C.Name → Set where

-- The name is defined in the last element of the telescope
here : TBName (sc ▷ bTel tel) tb x → TelName sc (tel ▷ tb) x
-- The name is defined in the rest of the telescope
there : TelName sc tel x → TelName sc (tel ▷ tb) x

-- Well-scoped name in lambda bindings
data LBsName (sc : Scope) : LamBindings sc → C.Name → Set where

-- The name is defined in the last lambda binding
here : LBName (sc ▷ bLbs lbs) lb x → LBsName sc (lbs ▷ lb) x
-- The name is defined in the rest of the lambda bindings
there : LBsName sc lbs x → LBsName sc (lbs ▷ lb) x

In the end, we define the well-scoped name in a scope, including BName like in
Section 2.6.
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-- Well-scoped name in a scope block
data BName (sc : Scope) (cl : Clearance)

: (block : Block sc) (xs : C.QName) (nk : NameKind) → Set where
inDecls

: DsName sc cl ds xs nk
→ BName sc cl (bDecls ds) xs nk

inLam
: LBName sc lb x
→ BName sc cl (bLam lb) (C.qName x) ..otherName

inTb
: TBName sc tb x
→ BName sc cl (bTb tb) (C.qName x) ..otherName

inTel
: TelName sc tel x
→ BName sc cl (bTel tel) (C.qName x) ..otherName

inLBs
: LBsName sc lbs x
→ BName sc cl (bLbs lbs) (C.qName x) ..otherName

inThisData
: BName sc cl (bThisData x) (C.qName x) ..otherName

-- Well-scoped name in a scope
data SName where

site : ∀{block} → BName sc cl block xs nk
→ SName (sc ▷ block) cl xs nk

parent : ∀{block} → SName sc cl xs nk
→ SName (sc ▷ block) cl xs nk

3.3 The scope checker

We have developed a scope checker that takes the concrete syntax as input and
returns the well-scoped abstract syntax on success. This scope checker works much
like a regular scope checker would, except that when names are looked up we are
careful to preserve the evidence that names are in-scope under the form of the well-
scoped names shown in Chapter 2. We will not explain the scope checker further,
since we consider the description of its implementation to be out of the scope of this
thesis for a few reasons:

• The thesis focuses on the well-scoped syntax.

• A large part of the scope checker consists in dealing with the details of the
concrete syntax, which we did not show either.

• Apart from preserving evidence, no novel techniques are employed.

Nonetheless, the source code of the scope checker is available (Appendix B).
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3.3.1 Golden testing
We used golden testing to test the scope checker. Golden testing is a testing tech-
nique in which a program is run against a set of inputs and its output is recorded
in a series of files called golden files. The output is manually checked for correctness
once, then it is saved for comparison with future test runs. This kind of test is useful
during development as it catches any unwanted change in behavior. We used the
goldplate [9] golden testing tool to automate the tests, since it is well adapted to our
use case.

We wrote a number of test cases based on the subset of syntax we covered and
were able to check that, of those, the programs accepted by the scope checker and
transformed into well-scoped syntax are the same that are accepted by the Agda
compiler and vice versa.

We recorded the scope errors generated by the scope checker for ill-scoped inputs or
simply an “OK” string for well-scoped inputs in the golden files.

3.4 Limitations
Because the Agda syntax is so large, this project has a few limitations.

3.4.1 Partial coverage of the Agda syntax
As mentioned, we only covered a subset of Agda. It is large enough to cover all
unique classes of constructs, but it is nonetheless incomplete. Therefore, using this
scope checker on the wider corpus of Agda code is as of writing infeasible. We
believe, though, that we have laid the foundation to accomplish this goal.

3.4.2 No proof of uniqueness of resolved names
While the well-scoped syntax contains guarantees that all names correctly resolve
to a declaration, there is no guarantee that this resolution is unique. Absence of
shadowing can still be checked (and it is in our scope checker implementation), but
the proof of its completion is not retained since it would not be as useful as a proof
of reachability. For example, a double declaration of a module followed by an open
statement referring to either the first or the second declaration is ill-scoped Agda
code, since shadowing of modules is not allowed. While the scope checker itself would
reject it, the well-scoped syntax can still express that program. In Section 2.2.1 we
explained how this can happen. This is a minor problem; the main goal of the
well-scoped syntax is to provide a basis for further scope-safe compilation passes,
and that objective is attained.

3.5 Alternative approaches
The way this scope checker was built is not the only possibility.
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An alternative approach we tried before settling on the well-scoped abstract syntax
explained above, was to base the well-scoped syntax on the concrete one, only adding
proofs to the existing structure. We briefly mentioned this in Section 2.2.

While this technique would have come with its advantages, it clashes with the com-
plexity of the concrete syntax of Agda. Import lists are exemplary of that. In the
well-scoped syntax we chose to represent them as mappings between internal and
external names. In the concrete syntax they are represented as three lists: the using
list, the hiding list, and the renaming list. A predicate stating that a name is defined
in this last kind of syntax would have to state:

• That the name is not present in the hiding list.

• That the name is present in the using list and defined in the opened module,
or

• That the name is present in the renaming list, and the original name is defined
in the opened module.

Furthermore, some combinations of these lists are invalid. For example a name
cannot be both present in the using list and in the renaming list.

In conclusion, we consider our choice of separating the well-scoped syntax from the
concrete syntax to be more suited to our objective.
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4
Conclusion

With this project, we demonstrated it is possible to write a well-scoped by construc-
tion syntax for a practical and complex language such as Agda.

We briefly introduced Agda and the concept of scope checking. We built well-scoped
syntaxes for fragments of Agda, each demonstrating a different feature or technique.
We integrated the aforementioned syntax fragments in a single well-scoped syntax,
covering a sufficient portion of the Agda syntax. Finally, we built a scope checker
that transforms concrete syntax into well-scoped abstract syntax.

4.1 Future work

There are many ways in which this work could be expanded and built upon.

The Agda to Haskell bindings to the Agda parser can be extracted into a separate
library, which can be useful for working in Agda on other aspects of Agda.

As mentioned in Section 3.4.1, the well-scoped syntax can be expanded until the
entire Agda language is covered. At that point, complete comparisons with the Agda
scope checker can be performed, potentially uncovering bugs and inconsistencies.

The testsuite (Section 3.3.1) could be expanded, both by adding more test cases
and by improving the detail of existing test cases. Instead of simply checking that
the code is scope checked successfully, we can implement pretty-printing of the well-
scoped syntax, and include the pretty-printed syntax in the golden files. An open
question then is how to represent well-scoped names so that they can be accurately
captured in the golden files. Alternatively, the tests could be written directly in
Agda, where equality checks can be performed directly on the syntax trees instead
of their serialization.

More proofs can be built upon the well-scoped syntax. For example, it could be
proved that turning it back into concrete syntax causes no loss of information.
Proving the correct handling of shadowing and ambiguous names as explained in
Section 2.2.1 and Section 3.4.2 is another worthwhile goal.
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4. Conclusion

Finally, since this project is a first small step towards a fully verified Agda compiler,
the most ambitious and important effort would be to work on other compilation
steps – such as type checking and code generation – while using this scope checker
as basis, taking advantage of the proofs embedded in the well-scoped syntax.
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A
Appendix 1 – Full code listings

This appendix contains the full code listings from which snippets present thorough
this document are cut. The code is also available at https://git.sr.ht/~fgaz/
master-thesis, under the code directory.

Concrete.agda
module Concrete where

open import Data.List using (_::_; [_])
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Relation.Unary.Any using (here)
open import Relation.Binary.PropositionalEquality using (refl)

module C where
-- An atomic name opaque to the scope checker
postulate Name : Set

-- Continuing module C
data QName : Set where

-- Construction from unqualified name
qName : Name → QName
-- Name qualification
qual : Name → QName → QName

variable x y : C.Name
variable xs ys : C.QName

prop1 : (x : C.Name) → (y : C.Name) → x ∈ x :: [ y ]
prop1 x y = here refl

prop2 : {x : C.Name} → {y : C.Name} → x ∈ x :: [ y ]
prop2 = here refl

prop3 : x ∈ x :: [ y ]
prop3 = here refl

I
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LambdaCalculusBase.agda
module LambdaCalculusBase where

open import Concrete

data Expr : Set where
-- λv.e
abs : C.Name → Expr → Expr
-- e1 e2
app : Expr → Expr → Expr
-- v
var : C.Name → Expr

II
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LambdaCalculusWellScoped.agda
module LambdaCalculusWellScoped where

-- Isomorphic to N0

data Scope : Set where
-- Empty scope, isomorphic to 0
ϵ : Scope
-- Expansion of scope, isomorphic to succ
_▷ : Scope → Scope

variable sc : Scope

-- Isomorphic to {n ∈ N+ . n ≤ sc}
data SName : Scope → Set where

here : SName (sc ▷)
there : SName sc → SName (sc ▷)

data Expr (sc : Scope) : Set where
abs : Expr (sc ▷) → Expr sc
app : Expr sc → Expr sc → Expr sc
var : SName sc → Expr sc

III
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LambdaCalculusWithNames.agda
module LambdaCalculusWithNames where

open import Concrete

data Scope : Set where
-- Empty scope
ϵ : Scope
-- "Snoc" (opposite of cons)
_▷_ : Scope → C.Name → Scope

variable sc : Scope

data SName : Scope → C.Name → Set where
here : SName (sc ▷ x) x
there : SName sc x → SName (sc ▷ y) x

data Expr (sc : Scope) : Set where
abs : (x : C.Name) → Expr (sc ▷ x) → Expr sc
app : Expr sc → Expr sc → Expr sc
var : (x : C.Name) → SName sc x → Expr sc

shadowing : C.Name → Expr ϵ
-- +----------------+
-- V |
shadowing x = abs x (abs x (var x (there here)))

IV
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DefRefCalculus.agda
module DefRefCalculus where

open import Concrete

data Scope : Set where
ϵ : Scope
_▷_ : Scope → C.Name → Scope

variable sc : Scope

data SName : Scope → C.Name → Set where
here : SName (sc ▷ x) x
there : SName sc x → SName (sc ▷ y) x

data Decls (sc : Scope) : Set where
ϵ : Decls sc
def : (x : C.Name) → Decls (sc ▷ x) → Decls sc
ref : (x : C.Name) → SName sc x → Decls sc → Decls sc

-- Syntax of this program:
-- define x
-- reference x
example : C.Name → Decls ϵ
example x = def x (ref x here ϵ)

V
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ModulesExample.agda
module ModulesExample where

module Module where
module InsideModule where

-- References to InsideModule must be
-- qualified with Module
module OutsideModule = Module.InsideModule

module M where
module A where
-- Modules can nest arbitrarily
module N where

module B where

-- Example assignments of nested modules
module A' = M.A
module B' = M.N.B
module N' = M.N
module B'' = N'.B

VI
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ModulesConcrete.agda
module ModulesConcrete where

open import Concrete

open import Data.List using (List)

data Decl : Set where
modl

: C.Name -- Name of the module
→ List Decl -- Inner declarations
→ Decl

modlAssignment
: C.Name -- Left hand side
→ C.QName -- Right hand side
→ Decl

VII
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ModulesWellScoped.agda
module ModulesWellScoped where

open import Concrete

data Scope : Set
variable sc : Scope

data Decl (sc : Scope) : Set
variable d : Decl sc
data Decls (sc : Scope) : Set
variable ds : Decls sc

data DName : (sc : Scope) → Decl sc → C.QName → Set
data DsName : (sc : Scope) → Decls sc → C.QName → Set
data SName : Scope → C.QName → Set

data Scope where
-- Empty scope
ϵ : Scope
-- Scope expansion
_▷_

: (sc : Scope) -- Upper scope
→ Decls sc
→ Scope

data Decl sc where
modl : C.Name → Decls sc → Decl sc
modlReference : SName sc ys → Decl sc

data Decls sc where
-- Empty list
ϵ : Decls sc
-- "Snoc"
_▷_

: (ds : Decls sc) -- Previous declarations
-- Last declaration. Previous declarations are in scope
→ Decl (sc ▷ ds)
→ Decls sc

data DName where
-- It is this module
thisModule : {ds : Decls sc} → DName sc (modl x ds) (C.qName x)
-- It is inside this module
inside

: {ds : Decls sc} -- Declarations within the module

VIII
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-- The name is defined in one of the declarations
→ DsName sc ds xs
→ DName sc (modl x ds) (C.qual x xs)

-- There is no constructor for modlReference
-- because it does not define names

data DsName where
-- It is in this last declaration (d)
here : DName (sc ▷ ds) d xs → DsName sc (ds ▷ d) xs
-- It is in one of the previous declarations (ds)
there : DsName sc ds xs → DsName sc (ds ▷ d) xs

data SName where
-- It is in this module
here : DsName sc ds xs → SName (sc ▷ ds) xs
-- It is in one of the upper modules
there : SName sc xs → SName (sc ▷ ds) xs

IX
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ModuleAssignment.agda
module ModuleAssignment where

open import Concrete

data Scope : Set
variable sc sc' sc'' : Scope

data Decl (sc : Scope) : Set
variable d : Decl sc
data Decls (sc : Scope) : Set
variable ds : Decls sc
variable pointedDs pointedDs' : Decls sc

data DName : (sc : Scope)
→ Decl sc
→ C.QName
→ Decls sc' -- Body of the the pointed module
→ Set

data DsName : (sc : Scope)
→ Decls sc
→ C.QName
→ Decls sc'
→ Set

data SName : Scope
→ C.QName
→ Decls sc'
→ Set

variable sn : SName sc xs pointedDs

data Scope where
ϵ : Scope
_▷_ : (sc : Scope) → Decls sc → Scope

data Decl sc where
modl : (x : C.Name) (ds : Decls sc) → Decl sc
modlAssignment : (x : C.Name) (sn : SName sc ys pointedDs)

→ Decl sc

data Decls sc where
ϵ : Decls sc
_▷_ : (ds : Decls sc) → Decl (sc ▷ ds) → Decls sc

data DName where
-- The pointed decls are built
thisModule : {ds : Decls sc}
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→ DName sc (modl x pointedDs) (C.qName x) pointedDs
-- The pointed decls are propagated
inside : {ds : Decls sc}

→ DsName sc ds xs pointedDs
→ DName sc (modl x ds) (C.qual x xs) pointedDs

-- The pointed decls are connected
thisAssignment : {sn : SName sc ys pointedDs}

→ DName sc (modlAssignment x sn) (C.qName x) pointedDs
insideAssignment : {sn : SName sc ys pointedDs}

→ DsName sc' pointedDs xs pointedDs'
→ DName sc (modlAssignment x sn) (C.qual x xs) pointedDs'

data DsName where
here : DName (sc ▷ ds) d xs pointedDs

→ DsName sc (ds ▷ d) xs pointedDs
there : DsName sc ds xs pointedDs

→ DsName sc (ds ▷ d) xs pointedDs

data SName where
here : DsName sc ds xs pointedDs

→ SName (sc ▷ ds) xs pointedDs
there : SName sc xs pointedDs

→ SName (sc ▷ ds) xs pointedDs

XI
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Open.agda
module Open where

open import Concrete
open import ModuleAssignment hiding (Decl; DName)
open import Data.List using (List)
open import Data.List.Membership.Propositional using (_∈_)

-- An interface entry defines a mapping between the exported
-- name, and the Name of the internal name
record InterfaceEntry (ds : Decls sc) : Set where

inductive
constructor interfaceEntry
field

exportedName : C.QName
innerQName : C.QName
innerPointedSc : Scope
innerPointedDs : Decls innerPointedSc
innerDsName : DsName sc ds innerQName innerPointedDs

-- A module interface is a list of well-scoped exported names
-- (entries)
Interface : Decls sc → Set
Interface ds = List (InterfaceEntry ds)

data Decl (sc : Scope) : Set where
opn : (m : SName sc xs pointedDs)

→ (iface : Interface pointedDs)
→ Decl sc

data DName (sc : Scope) : Decl sc → C.QName → Decls sc' → Set
where
-- It is imported from another module
imp : ∀{mName} → {m : SName _ mName ds}

→ {iface : Interface ds}
→ {dsn : DsName sc' ds ys pointedDs}
→ interfaceEntry xs ys sc'' pointedDs dsn ∈ iface
→ DName sc (opn m iface) xs pointedDs

XII
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Access.agda
module Access where
open import Data.Unit using (⊤)
open import Data.Empty using (⊥)

open import Concrete

-- Whether a declaration is accessible from outside its scope
data Access : Set where

-- It was not defined in a private block,
-- and is publicly accessible
publ : Access
-- It was defined in a private block,
-- and is not publicly accessible
priv : Access

variable acc : Access

-- The level of access to private declarations we have
-- at a certain point
data Clearance : Set where

-- We can access only public declarations
publ : Clearance
-- We can access public and private declarations
priv : Clearance

variable cl : Clearance

-- Can we see a declaration marked with Access
-- when having a Clearance?
_canSee_ : Clearance → Access → Set
-- A priv Clearance can see everything
priv canSee _ = ⊤
-- A publ Clearance can only see publ Access
publ canSee publ = ⊤
publ canSee priv = ⊥

data Scope : Set
variable sc : Scope

data Decl (sc : Scope) : Set
variable d : Decl sc
data Decls (sc : Scope) : Set
variable ds : Decls sc

-- All scoped names are parametrised by Clearance
data DName : (sc : Scope) → Clearance → Decl sc → C.QName
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→ Set
data DsName : (sc : Scope) → Clearance → Decls sc → C.QName

→ Set
data SName : Scope → Clearance → C.QName → Set

data Scope where
ϵ : Scope
_▷_

: (sc : Scope)
→ Decls sc
→ Scope

data Decl sc where
modl : Access → C.Name → Decls sc → Decl sc
-- We start with Clearance set to priv
modlReference : SName sc priv ys → Decl sc

data Decls sc where
ϵ : Decls sc
_▷_

: (ds : Decls sc)
→ Decl (sc ▷ ds)
→ Decls sc

data DName where
thisModule

: {ds : Decls sc}
-- We ensure the declaration is accessible
→ cl canSee acc
→ DName sc cl (modl acc x ds) (C.qName x)

inside
: {ds : Decls sc}
-- We ensure the declaration is accessible
→ cl canSee acc
-- When descending inside a module, Clearance switches
-- to publ
→ DsName sc publ ds xs
→ DName sc cl (modl acc x ds) (C.qual x xs)

data DsName where
here : DName (sc ▷ ds) cl d xs → DsName sc cl (ds ▷ d) xs
there : DsName sc cl ds xs → DsName sc cl (ds ▷ d) xs

data SName where
here : DsName sc cl ds xs → SName (sc ▷ ds) cl xs
there : SName sc cl xs → SName (sc ▷ ds) cl xs
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ModulesAndExpressions.agda
module ModulesAndExpressions where

open import Concrete

-- The kind of definition a scoped name refers to
data NameKind : Set where

-- It must be a module
moduleName : NameKind
-- It must be a name that can be used in an expression
exprName : NameKind

variable nk : NameKind

data Scope : Set
variable sc : Scope

-- A block is a layer of a scope
data Block (sc : Scope) : Set
variable block : Block sc

data Expr (sc : Scope) : Set
data Decl (sc : Scope) : Set
variable d : Decl sc
data Decls (sc : Scope) : Set
variable ds : Decls sc

-- Every scoped name is parametrized by a specific name kind
data DName

: (sc : Scope) → Decl sc → C.QName → NameKind → Set
data DsName

: (sc : Scope) → Decls sc → C.QName → NameKind → Set
-- New
data BName

: (sc : Scope) → Block sc → C.QName → NameKind → Set
data SName : Scope → C.QName → NameKind → Set

data Block sc where
-- It is a layer of declarations
bDecls : Decls sc → Block sc
-- It is a lambda abstraction
bLam : C.Name → Block sc

data Scope where
ϵ : Scope
_▷_

: (sc : Scope)
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-- A scope is now made of blocks
→ Block sc
→ Scope

data Expr sc where
-- On abstractions, a bLam block is added
abs : (x : C.Name) → Expr (sc ▷ bLam x) → Expr sc
app : Expr sc → Expr sc → Expr sc
-- We use exprName to avoid referring to a module
var : (xs : C.QName) → SName sc xs exprName → Expr sc

data Decl sc where
modl : C.Name → Decls sc → Decl sc
modlReference : SName sc ys moduleName → Decl sc
expr : C.Name → Expr sc → Decl sc -- New

data Decls sc where
ϵ : Decls sc
_▷_

: (ds : Decls sc)
-- To add declarations to the scope, we use bDecls
→ Decl (sc ▷ bDecls ds)
→ Decls sc

data DName where
-- It is a module, so we set the name kind to moduleName
thisModule : {ds : Decls sc}

→ DName sc (modl x ds) (C.qName x) moduleName
-- The name kind is propagated
inside

: {ds : Decls sc}
→ DsName sc ds xs nk
→ DName sc (modl x ds) (C.qual x xs) nk

-- It is this expression, so we set the name kind to exprName
thisExpr : {e : Expr sc}

→ DName sc (expr x e) (C.qName x) exprName

-- The name kind is propagated
data DsName where

here : DName (sc ▷ bDecls ds) d xs nk
→ DsName sc (ds ▷ d) xs nk

there : DsName sc ds xs nk
→ DsName sc (ds ▷ d) xs nk

data BName where
inDecls : DsName sc ds xs nk
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→ BName sc (bDecls ds) xs nk
-- The path terminates at the abstraction
inLam : BName sc (bLam x) (C.qName x) exprName

-- The name kind is propagated
data SName where

here : BName sc block xs nk
→ SName (sc ▷ block) xs nk

there : SName sc xs nk
→ SName (sc ▷ block) xs nk
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InterleavedMutual.agda
module InterleavedMutual where

open import Data.List using (List)
open import Concrete

data Scope : Set
variable sc sc' : Scope
data Decls (sc : Scope) : Set
variable

ds ds' : Decls sc
data Decl (sc : Scope) : Set
variable d : Decl sc
postulate Expr : Scope → Set
variable ty : Expr sc
postulate SName : Scope → C.QName → Set
data DName (sc : Scope) : Decl sc → C.QName → Set

data Block (sc : Scope) : Set where
bDecls : Decls sc → Block sc
bLhs : C.Name → Block sc

data Scope where
ϵ : Scope
_▷_ : (sc : Scope) → Block sc → Scope

data Decls sc where
ϵ : Decls sc
_▷_ : (ds : Decls sc) (d : Decl (sc ▷ bDecls ds)) → Decls sc

Mutual : (sc : Scope) → Decls sc → Set

data Decl sc where
typeSig : (x : C.Name) → (ty : Expr sc) → Decl sc
funClause : (x : C.Name) → (lhs : C.Name)

→ Expr (sc ▷ bLhs lhs) → Decl sc
mutual' : Mutual sc ds → Decl sc

data Clause (topScope : Scope) : Decl sc → Set where
funClause : SName topScope (C.qName x)

→ Clause topScope (typeSig x ty)

Clauses : (topScope : Scope) → Decl sc → Set
Clauses topScope d = List (Clause topScope d)

data Deco (topScope : Scope) : Decls sc → Set where
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ϵ : Deco topScope {sc} ϵ
_▷[_,_] : Deco topScope {sc} ds

→ (d : Decl (sc ▷ bDecls ds)) → Clauses topScope d
→ Deco topScope (ds ▷ d)

variable deco : Deco sc ds

Mutual sc ds = Deco (sc ▷ bDecls ds) ds

data MName (sc : Scope) : Deco (sc ▷ bDecls ds') ds → C.QName
→ Set where

here : ∀{clauses} → DName _ d xs
→ MName sc (deco ▷[ d , clauses ]) xs

there : ∀{clauses} → MName sc {ds = ds} deco xs
→ MName sc (deco ▷[ d , clauses ]) xs

data DName sc where
thisMutual : MName sc deco xs

→ DName sc (mutual' deco) xs
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Complete.agda
module Complete where

open import Data.Unit using (⊤)
open import Data.Empty using (⊥)
open import Data.List using (List)
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.NonEmpty using (List+)
open import Data.Nat using (N)
open import Data.String using (String)
open import Data.Char using (Char)
open import Data.Word using (Word64)
open import Data.Float using (Float)

module C where
Name : Set
Name = String

data QName : Set where
qual : Name → QName → QName
qName : Name → QName

data Literal : Set where
litNat : N → Literal
litWord64 : Word64 → Literal
litFloat : Float → Literal
litString : String → Literal
litChar : Char → Literal

variable x y : C.Name
variable xs ys xs' : C.QName

data Scope : Set
variable

sc sc' : Scope

-- Declarations in a scope.
data Decls (sc : Scope) : Set
variable

ds ds' : Decls sc

data Decl (sc : Scope) : Set

-- Whether a declaration is accessible from outside its scope
data Access : Set where
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publ : Access
priv : Access

variable acc : Access

-- The level of access to private declarations we have
-- at a certain point
data Clearance : Set where

publ : Clearance
priv : Clearance

variable cl cl' : Clearance

-- Can we see a declaration marked with Access
-- when having a Clearance?
_canSee_ : Clearance → Access → Set
priv canSee _ = ⊤
publ canSee publ = ⊤
publ canSee priv = ⊥

data NotConNameKind : Set where
funClauseName : NotConNameKind
otherName : NotConNameKind -- Everything else

variable ncnk : NotConNameKind

-- We need to distinguish the two because of overloading
data NotModuleNameKind : Set where

notConName : NotConNameKind → NotModuleNameKind
conName : NotModuleNameKind

variable nmnk : NotModuleNameKind

data NameKind : Set where
moduleName : Decls sc → NameKind
notModuleName : NotModuleNameKind → NameKind

variable nk : NameKind

-- We define shorthands for specific name kinds
pattern ..conName = notModuleName conName
pattern ..notConName n = notModuleName (notConName n)
pattern ..funClauseName = notModuleName (notConName funClauseName)
pattern ..otherName = notModuleName (notConName otherName)

-- A well-scoped name in a scope.
-- The name exists in scope, is accessible by a Clearance,
-- and carries a NameKind.
data SName : Scope → Clearance → C.QName → NameKind → Set

data Name : Scope → Clearance → C.QName → NameKind → Set
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where
moduleName : SName sc cl xs (moduleName ds)

→ Name sc cl xs (moduleName ds)
notConName : SName sc cl xs (..notConName ncnk)

→ Name sc cl xs (..notConName ncnk)
conNames : List+ (SName sc cl xs ..conName)

→ Name sc cl xs ..conName

data TypedBinding (sc : Scope) : Set
variable tb : TypedBinding sc
data LamBinding (sc : Scope) : Set
variable lb : LamBinding sc
data Telescope (sc : Scope) : Set
variable tel : Telescope sc
data LamBindings (sc : Scope) : Set
variable lbs : LamBindings sc

-- A block is a layer of a scope
data Block (sc : Scope) : Set where

bDecls : (ds : Decls sc) → Block sc
bLam : (arg : LamBinding sc) → Block sc
bLbs : (args : LamBindings sc) → Block sc
bTel : (tel : Telescope sc) → Block sc
bTb : (tb : TypedBinding sc) → Block sc
bThisData : C.Name → Block sc
bLhs : C.Name → Block sc

-- A scope is a snoc list of blocks
data Scope where

ϵ : Scope
_▷_ : (sc : Scope) → Block sc → Scope

infixl 20 _▷_

data Expr (sc : Scope) : Set
variable ty : Expr sc

-- Typed bindings, for example (x y : T)
data TypedBinding sc where

tBind : List C.Name -- Bound names (x and y)
→ Expr sc -- Type (T)
→ TypedBinding sc

-- Lambda bindings
data LamBinding sc where

domainFree : C.Name -- Just a name
→ LamBinding sc
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domainFull : TypedBinding sc -- Name(s) with type
→ LamBinding sc

-- In a telescope, each element binds a name
-- that can be used in the rest
data Telescope sc where

ϵ : Telescope sc
_▷_ : (tel : Telescope sc) -- Previous items

→ TypedBinding (sc ▷ bTel tel)
→ Telescope sc

-- The same applies for LamBindings
data LamBindings sc where

ϵ : LamBindings sc
_▷_ : (lbs : LamBindings sc) -- Previous items

→ LamBinding (sc ▷ bLbs lbs)
→ LamBindings sc

data Expr sc where
universe : N → Expr sc -- Universes (Set n)
var : (xs : C.QName)

→ Name sc priv xs (notModuleName nmnk)
→ Expr sc

app : (e1 : Expr sc)
→ (e2 : Expr sc)
→ Expr sc

lam : (arg : LamBinding sc)
→ (e : Expr (sc ▷ bLam arg))
→ Expr sc

lit : C.Literal
→ Expr sc

fun : (e1 : Expr sc)
→ (e2 : Expr sc)
→ Expr sc

underscore : Expr sc
pi : (arg : TypedBinding sc)

→ (ty : Expr (sc ▷ bTb arg))
→ Expr sc

let' : (ds : Decls sc)
→ Expr (sc ▷ bDecls ds)
→ Expr sc

variable expr : Expr sc

-- An interface entry defines a mapping between
-- the exported name, and the Name of the internal name
record InterfaceEntry (ds : Decls sc) : Set where
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inductive
constructor interfaceEntry
field

exportedName : C.QName
innerQName : C.QName
innerNameKind : NameKind
innerName : Name (sc ▷ bDecls ds) publ innerQName innerNameKind

-- A module interface is a list of well-scoped exported names
-- (entries)
Interface : Decls sc → Set
Interface ds = List (InterfaceEntry ds)

-- Forward declarations for mutual
Mutual : (sc : Scope) → Decls sc → Set
data FunClause (sc : Scope) : Set

data Constructor (sc : Scope) : Set where
constructor' : (x : C.Name) → (ty : Expr sc) → Constructor sc

-- A well-scoped declaration is one of
--
-- * A module definition.
-- * Importing the declarations of another module via `open`.
data Decl sc where

modl : (acc : Access) (x : C.Name) (modArgs : Telescope sc)
→ (ds : Decls (sc ▷ bTel modArgs)) → Decl sc

opn : ∀{mScope}
→ (mName : C.QName) → (mDecls : Decls mScope)
→ (m : SName sc priv mName (moduleName mDecls))
→ (acc : Access)
→ (iface : Interface mDecls)
→ Decl sc

axiom : (x : C.Name) → (ty : Expr sc) → Decl sc
data' : (x : C.Name)

→ (args : LamBindings sc)
→ (ty : Expr (sc ▷ bLbs args))
→ (constructors

: List (Constructor
(sc ▷ bLbs args ▷ bThisData x)))

→ Decl sc
typeSig : (x : C.Name) → (ty : Expr sc) → Decl sc
funClause : (x : C.Name) → FunClause sc → Decl sc
mutual' : Mutual sc ds → Decl sc

variable
d d' : Decl sc
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data Decls sc where
ϵ : Decls sc
_▷_ : (ds : Decls sc) → Decl (sc ▷ bDecls ds) → Decls sc

data RHS (sc : Scope) : Set where
absurdRhs : RHS sc
rHS : (e : Expr sc) → RHS sc

data FunClause sc where
funClause : (lhs : C.Name)

→ (whereClause : Decls (sc ▷ bLhs lhs))
→ RHS (sc ▷ bLhs lhs ▷ bDecls whereClause)
→ FunClause sc

data Clause (sc : Scope) : Decl sc' → Set where
funClause : SName sc priv (C.qName x) ..funClauseName

→ Clause sc (typeSig x ty)

Clauses : (sc : Scope) → Decl sc' → Set
Clauses sc d = List (Clause sc d)

data Deco (topScope : Scope) : Decls sc → Set where
ϵ : Deco topScope {sc} ϵ
_▷[_,_] : Deco topScope {sc} ds

→ (d : Decl (sc ▷ bDecls ds)) → Clauses topScope d
→ Deco topScope (ds ▷ d)

variable deco : Deco sc ds

Mutual sc ds = Deco (sc ▷ bDecls ds) ds

-- Forward declaration for DName
-- A well-scoped name (of a module) in a declaration.
-- The same considerations as for SName apply.
data DName (sc : Scope)

: Clearance → Decl sc → C.QName → NameKind → Set

-- A well-scoped name (of a module) in a list of declarations.
-- The same considerations as for SName apply.
data DsName (sc : Scope)

: Clearance → Decls sc → C.QName → NameKind → Set where
here : DName (sc ▷ bDecls ds) cl d xs nk

→ DsName sc cl (ds ▷ d) xs nk
there : DsName sc cl ds xs nk

→ DsName sc cl (ds ▷ d) xs nk
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-- A well-scoped name in a mutual block
data MName (sc : Scope)

: Deco (sc ▷ bDecls ds') ds → C.QName → NameKind → Set where
here : ∀{clauses} → DName _ publ d xs nk

→ MName sc (deco ▷[ d , clauses ]) xs nk
there : ∀{clauses} → MName sc {ds = ds} deco xs nk

→ MName sc (deco ▷[ d , clauses ]) xs nk

data DName sc where
content : {ds : Decls (sc ▷ bTel tel)}

→ cl canSee acc
→ DName sc cl (modl acc x tel ds) (C.qName x) (moduleName ds)

inside : {ds : Decls (sc ▷ bTel tel)}
→ cl canSee acc
→ DsName (sc ▷ bTel tel) publ ds xs nk
→ DName sc cl (modl acc x tel ds) (C.qual x xs) nk

imp : ∀{iface m sn}
→ cl canSee acc
→ interfaceEntry xs ys nk sn ∈ iface
→ DName sc cl (opn xs' ds m acc iface) xs nk

thisAxiom : DName sc cl (axiom x ty) (C.qName x) ..otherName
thisTypeSig : DName sc cl (typeSig x ty) (C.qName x) ..otherName
thisFunClause : ∀{clause}

→ DName sc cl (funClause x clause) (C.qName x) ..funClauseName
thisData : ∀{constructors}

→ DName sc cl (data' x lbs ty constructors) (C.qName x)
..otherName

thisDataCon : ∀{constructors dataTy}
→ constructor' x ty ∈ constructors
→ DName sc cl (data' y lbs dataTy constructors) (C.qName x)

..conName
thisMutual : MName sc deco xs nk

→ DName sc cl (mutual' deco) xs nk

-- Well-scoped name in a typed binding
data TBName (sc : Scope) : TypedBinding sc → C.Name → Set

where
tbName : ∀{x ns ty}

→ x ∈ ns -- The name is present in the list of bindings
→ TBName sc (tBind ns ty) x

-- Well-scoped name in a lambda binding
data LBName (sc : Scope) : LamBinding sc → C.Name → Set where

-- The name is defined directly
domainFree : ∀{x} → LBName sc (domainFree x) x
-- The name is defined in a typed binding
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domainFull : TBName sc tb x → LBName sc (domainFull tb) x

-- Well-scoped name in a telescope
data TelName (sc : Scope) : Telescope sc → C.Name → Set where

-- The name is defined in the last element of the telescope
here : TBName (sc ▷ bTel tel) tb x → TelName sc (tel ▷ tb) x
-- The name is defined in the rest of the telescope
there : TelName sc tel x → TelName sc (tel ▷ tb) x

-- Well-scoped name in lambda bindings
data LBsName (sc : Scope) : LamBindings sc → C.Name → Set where

-- The name is defined in the last lambda binding
here : LBName (sc ▷ bLbs lbs) lb x → LBsName sc (lbs ▷ lb) x
-- The name is defined in the rest of the lambda bindings
there : LBsName sc lbs x → LBsName sc (lbs ▷ lb) x

-- Well-scoped name in a scope block
data BName (sc : Scope) (cl : Clearance)

: (block : Block sc) (xs : C.QName) (nk : NameKind) → Set where
inDecls

: DsName sc cl ds xs nk
→ BName sc cl (bDecls ds) xs nk

inLam
: LBName sc lb x
→ BName sc cl (bLam lb) (C.qName x) ..otherName

inTb
: TBName sc tb x
→ BName sc cl (bTb tb) (C.qName x) ..otherName

inTel
: TelName sc tel x
→ BName sc cl (bTel tel) (C.qName x) ..otherName

inLBs
: LBsName sc lbs x
→ BName sc cl (bLbs lbs) (C.qName x) ..otherName

inThisData
: BName sc cl (bThisData x) (C.qName x) ..otherName

-- Well-scoped name in a scope
data SName where

site : ∀{block} → BName sc cl block xs nk
→ SName (sc ▷ block) cl xs nk

parent : ∀{block} → SName sc cl xs nk
→ SName (sc ▷ block) cl xs nk
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B
Appendix 2 – Source code of the

well-scoped syntax and scope
checker

The complete Agda source code of the well-scoped syntax and scope checker is
available at https://git.sr.ht/~fgaz/agda-scope and it is released under the
EUPL license [10].

Additionally, the LATEX source code of this thesis is available at https://git.sr.
ht/~fgaz/master-thesis.
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