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A common backend API for the BNF Converter
Implementing a new layer of abstraction to provide a common structure for the
backends of the BNF Converter tool
BEATRICE VERGANI
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The BNF Converter is a compiler construction tool that, starting from a labelled
BNF grammar, generates a compiler front-end, an abstract syntax and a pretty
printer in a chosen target language, together with a makefile, a TeX file and a
txt2tags file containing readable specifications of the language described by the
BNF grammar.
The original implementation of the tool presents a backend for each target language.
This thesis is part of a reimplementation of BNFC and provides a common API for
the backend part of the project, so that the tool can work with common struc-
tures and data types to express invariants, enhance type safety and ease backend
modifications and maintenance as they can be compiler-driven.

Keywords: Computer science, engineering, thesis, programming languages, pro-
gramming languages technology, compilers construction, front-end, API, haskell.
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1
Introduction

The BNF Converter (BNFC) [4] [29] is a compiler construction tool that, starting
from a labelled BNF grammar, generates a compiler front-end in a chosen target
language. The tool is currently able to generate Haskell, Agda, C, C++, Java,
and OCaml front-end code. For each supported programming language the BNF
Converter produces a lexer and a parser specification that will be processed by the
lexer and parser generator tools specific to the language. It also produces an abstract
syntax implementation, a pretty printer, a makefile, a TeX file and a txt2tags file
with readable specifications for the language. The fact that BNFC supports several
target languages makes it a versatile tool, broadening its potential users.

1.1 Uses of BNFC
BNFC can be used for educational purposes in the programming language technology
field. In this case its multilingual feature becomes particularly important as students
can develop their projects in some of the supported target languages, depending on
what languages they already know or they are more proficient with. Other than
for teaching, it can also be used for quick language prototyping as BNFC provides
the basic infrastructure of abstract syntax with parsing and printing. The frontend
provided by BNFC can be refined, for instance by writing better error messages or
modifying the pretty printer.

1.2 Problem description
In the current official version of BNFC (2.9) the only common part consists of the
code taking care of parsing the command line options specified by the user and
parsing the input grammar file. After this initial processing all the rest of the work
is delegated to the back-end part of the project, that generates the abstract syntax,
the pretty printer and the other components. For all the supported languages there
is a backend implementation written from scratch, where each backend has the same
structure, generating the same components, but there is no abstraction capturing
it. The lack of modularity of BNFC causes a significant amount of duplication that
complicates the maintenance of the project and limits its scalability as any general
change regarding the backend needs to be replicated in each one of them, making
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1. Introduction

the project also more error-prone.

1.3 Project description
The aim of this thesis is to implement a new layer of abstraction to provide a
common API for the backends of the BNF Converter so that they can work by
sharing a common structure to generate their components for all the supported
target languages. Having a shared abstraction over the backends allows to express
invariants about them using common types, enhancing type safety and ease backend
modifications as that they can be compiler-driven. Since the existing code base was
old, not always coherently structured and the fact that the use of the new API would
have meant some significant changes, my supervisor and I agreed to reimplement
the tool from scratch, so the new API is developed in version 3 of BNFC.

1.4 Goals
The main goal of this thesis consists of designing and implementing an API aimed
to enforce a common structure over the backends of BNFC that will each implement
an instance of it. In particular, the new API will be developed by introducing
new Haskell data types and functions abstracting the common functionalities of the
backends and defining new interfaces for the abstract syntax, pretty printer and
lexer and parser specifications.

Alongside with designing and implementing the new API the other goals consist
of reimplementing BNFC improving both its code and output quality. The effort
in writing the new source code is oriented towards avoiding duplication, increasing
modularity by handling information in more steps, representing it with intermediate
formats, and by providing the user with clearer and better structured error messages.
Both the project maintenance and extension, with new features or supported lan-
guages, will benefit from such modular structure as it will allow more separation
between concerns.

1.5 Contributions
This thesis contributions consists of designing an API capturing the backends com-
mon structure and reimplement some of the backends to follow that structure. The
implementation of the new API should bring about other changes and improvements
in the BNF Converter. The haskell pretty printer will use a pretty printing library,
and errors will be improved by associating them clearer error messages.

1.6 Structure of the thesis
The thesis will be structured to follow the contributions made to the reimplementa-
tion of BNFC and will be mainly focused around presenting the design of the new
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1. Introduction

API for the backends and the phases that lead to its development. A preliminary
background (chapter 2) will introduce the knowledge necessary to understand the
work described in the rest of the thesis by illustrating the concepts of the front-
end of a compiler, LR parsing and by giving an overview of the parser generators
used in the BNFC tool. The central chapters will be dedicated to the description
of the backend API (chapter 3) and the implementation of some of its instances
(chapter 4). After having presented the implementation details the discussion in
chapter 5 will be devoted to reflect on what has been achieved, the thesis will be
concluded making the final considerations.
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1. Introduction
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2
Background

The background chapter will use the simple labelled BNF grammar presented in
listing 1 to provide a reference for the BNFC grammar formalism [24], further in-
formation about the BNFC tool and its formalism can be found in [23] and [27].
After that will follow an overview of the lexer an parser generators (see table 2.1) in
which, starting always from the grammar example as input for BNFC, the respective
generated specifications will be presented to ultimately derive a common structure.
The notion of compiler frontend will also be simply explained, for more detailed
theory the reader is referred to Aho et al. [21].

2.1 A simple grammar example
The grammar below serves as a simple, easy to understand example for grammar
productions as well as commonly used macros such as coercions, separators and
terminators.

entrypoints [Stm];
terminator Stm "";

Input. Stm ::= "input" Ident;
Print. Stm ::= "print" Exp;

Sum. Exp ::= [Exp1];
Times. Exp1 ::= Exp1 "*" Exp2;
Num. Exp2 ::= Integer;
Var. Exp2 ::= Ident;

coercions Exp 2;
separator nonempty Exp1 "+";

comment "--";

Listing 1: A simple grammar example

The grammar has two categories: statements and expressions. The statements
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2. Background

category Stm has two rules, defined with labels Input and Print. The terminator
macro expresses that the entries of lists of statements terminate with the token "",
and is expanded by BNFC into the to list rules in listing 2.

[]. [Stm] ::= ;
(:). [Stm] ::= Stm "" [Stm] ;

Listing 2: List rules for terminator macro

The expressions category (Exp) has four rules, given by the labels Sum, Times, Num
and Var. There can be list of expressions that are separated by the + symbol. This
is expanded to the following list rules in listing 3 that, because of the nonempty
pragma, do not have a case for the empty list.

(:[]). [Exp] ::= Exp ;
(:). [Exp] ::= Exp "+" [Exp] ;

Listing 3: List rules for separator macro

The coercions macro generates embeddings between expressions at different prece-
dence levels, so that an expression at a higher precedence is accepted where an
expression of lower precedence is needed. See listing 4 for the rules generated in the
case of our example.

_. Exp ::= Exp1 ;
_. Exp1 ::= Exp2 ;
_. Exp2 ::= "(" Exp ")" ;

Listing 4: List rules for coercion macro

The entrypoints pragma allows to specify which of the categories parsers to export,
in this case the one for list of expressions.

From the grammar above are derived the token definitions in the below listed char-
acter classes (listing 5) and lexing rules (listing 6). Characters include whitespace,
letters, both lower or upper case, digits from 0 to 9 and identifiers, which range over
alphabet letters, again both lower or upper case, and the symbols _ and ’. Lexing
rules provide the lexer with patterns to recognize the tokens. The input, print,
times, plus, left and right parenthesis tokens are matched with the string containing
their corresponding symbol. Integer tokens are non-empty sequences of digits, ex-
pressed via the regex "+" operation for non-zero repetitions. Similarly, ident tokens
correspond to one letter followed by any number of identifiers. Whitespaces and
comments are ignored by the lexer.

6



2. Background

[:whitespace:] [ \n\r\f\t]
[:letter:] [a-zA-Z]
[:digit:] [0-9]
[:idchar:] [a-zA-Z0-9_']

Listing 5: Generated character classes for the example grammar

[:whitespace:]+ {}
"--".* {}
"input" { TokInput }
"print" { TokPrint }
"*" { TokTimes }
"+" { TokPlus }
"(" { TokLParen }
")" { TokRParen }
[:letter:][:idchar]* { TokIdent }
[:digit:]+ { TokInteger }

Listing 6: Generated lexing rules for the example grammar

2.2 The front end of a compiler
Among the files generated by the BNF Converter there are a lexer and a parser
specification for all the lexer and parser generators of the supported target lan-
guages, where lexer and parser are two components of the front end of a compiler.
A compiler is a software that reads a program written in a source language and
translates it in a semantically equivalent program written in a target language [21].
This translation process happens in two phases: analysis and synthesis. The analy-
sis phase, also referred to as front end, identifies the constituent components of the
source language and imposes a grammatical structure on them, yielding an interme-
diate representation of the source code to feed as input of the synthesis part. The
synthesis part, also called back end, uses the intermediate representation and the
symbol table to produce the program in the target language. The BNF Converter
targets two components of the front-end of a compiler: lexer and parser.

2.2.1 Lexer
The lexer [21] component operates the first compilation phase which is the lexical
analysis. The lexer reads a string of characters representing a source program and
divides it into meaningful sequences (lexemes) and for each of them produces a token
object.

The input string goes through a scanning or lexical analysis phase where the lexer
produces a token string from a character stream. The lexemes matching a token
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2. Background

are recognized according to patterns 1, regular expressions can be a way to specify
patterns for tokens. After the lexing, the sequence of tokens will be passed to the
next compilation phase: parsing.

"2 + 3 * x"

Listing 7: Input example, w.r.t. grammar in listing 1

TokInteger(2) TokPlus TokInteger(3) TokTimes TokIdent("x")

Listing 8: Result of the lexical analysis of the input example in listing 7.

2.2.2 Parser
The string of tokens produced by the lexer is passed to the parser which implements a
syntax analysis by creating a syntax tree representing how the tokens are structured
together according to the context-free grammar.

All context free languages can be parsed in O(n3) time [30], where n is the length
of the input string to parse. However, cubic complexity is too high to be used
in practice where one would want the time complexity to be somewhat close to
a linear. LR grammars can be parsed in quasi-linear time, work well in practice
and many are the parser built to handle such grammars. However, unlike context
free grammars (CFG), LR grammars are not compositional, so when engineering
an LR-grammar one often needs to examine the generated LR-automaton to find
problems. BNFC confines itself to pass a CFG specification to the parser generators,
it doesn’t guarantee that the parser generator will accept without generating errors.
The parser generators targeted by BNFC mostly produce LALR parsers, except
from ANTLR that generates recursive descendent parsers. LALR is a minor variant
of LR(1) [21].

Sum

(:)

Num

2

(:)

Times

Num

3

Var

x

[ ]

Figure 2.1: Abstract syntax tree for example input in listing 7

1description of the form that a token lexeme might have
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Exp

[Exp1]

Exp1 +

[Exp1]

Exp1

Exp1

Exp2

Num

3

* Exp2

Var

x

[Exp1]

Figure 2.2: Parse tree for example input in listing 7

2.3 Overview of lexer and parser generators

This section is dedicated to analyze and discuss the structure of the grammar spec-
ifications that the lexer and parser generators listed in table 2.1 take as input. The
specifications are generated by calling BNFC on the example grammar in listing 1,
specifying the option corresponding to the examined generator.

Language Option Lexer generator Parser generator

Haskell –haskell Alex Happy
–haskell-gadt Alex Happy

Ocaml –ocaml Ocamllex Ocamlyacc
–ocaml-menhir Ocamllex Menhir

Java –java JLex CUP
–java-antlr JLex ANTLR

C –c Flex BISON
C++ –cpp Flex BISON

Table 2.1: List of the used lexer and parser generators according to language

2.3.1 Lexer generators
A lexer generator is an application that produces a lexical analyzer (lexer) for a
specified lexer definition.

9



2. Background

2.3.1.1 Alex

Alex [1] produces a lexer as a Haskell module starting from a description of the
tokens to be recognized from given regular expressions. The Alex lexical specification
starts with a few lines of optional Haskell code enclosed between braces, that will be
copied verbatim into the generated lexer. This prelude section is followed by another
optional section called wrapper that provides functionalities to interact with the Alex
generated lexer.

After that there is a section containing macros definitions specifying tokens: macros
can either be character set macros (listing 9), which begin with a $ symbol, or regular
expression macros, which begin with a @ symbol. Macro definitions are followed by
lexing rules (listing 10). The eitherResIdent function yields a token given a string
that can be either an identifier or a reserved word.

In the final part of the specification can be found the Token data type (listing 11)
and wrapper utility functions. The layout of an Alex specification file is summarized
as alex := [ @ code ] [ wrapper ] macrodef @id ′ : −′ rule [ @code ] [1].

$c = [A-Z\192-\221] # [\215] -- capital
$s = [a-z\222-\255] # [\247] -- small
$l = [$c $s] -- letter
$d = [0-9] -- digit
$i = [$l $d _ '] -- identifier character
$u = [. \n] -- universal: any character

Listing 9: Alex character classes

@rsyms = -- symbols and non-identifier-like reserved words
\* | \( | \) | \+

-- Line comments
"--" [.]* ;

$white+ ;
@rsyms

{ tok (\p s -> PT p (eitherResIdent TV s)) }

$l $i*
{ tok (\p s -> PT p (eitherResIdent TV s)) }

$d+
{ tok (\p s -> PT p (TI s)) }

Listing 10: Alex lexing rules

10



2. Background

data Tok =
TS !String !Int -- reserved words and symbols

| TL !String -- string literals
| TI !String -- integer literals
| TV !String -- identifiers
| TD !String -- double precision float literals
| TC !String -- character literals
deriving (Eq,Show,Ord)

data Token =
PT Posn Tok

| Err Posn
deriving (Eq,Show,Ord)

Listing 11: Token data type in Alex specification

2.3.1.2 Ocamllex

Ocamllex [11] produces a lexical analyzer for the OCaml language starting from
a set of regular expressions and semantic actions. An ocamllex file can start and
end with two sections, header and trailer, containing Ocaml code within braces,
both of which can be omitted. Between header and trailer the let construct is
used to name expressions such as character classes (listing 12) and lexing rules
(listing 13). Here Hashtbl.find symbol_table x has an analogue function to the
one of eitherResIdent function in the Alex specification file (section 2.3.1.1).

let _letter = ['a'-'z' 'A'-'Z' '\192' - '\255'] # ['\215' '\247']
let _upper = ['A'-'Z' '\192'-'\221'] # '\215'
let _lower = ['a'-'z' '\222'-'\255'] # '\247'
let _digit = ['0'-'9']
let _idchar = _letter | _digit | ['_' '\'']
let _universal = _

Listing 12: Ocamllex character classes

11



2. Background

let rsyms = "*" | "(" | ")" | "+"

(* lexing rules *)
rule token =

parse "--" (_ # '\n')*
{ token lexbuf }

| rsyms { let x = lexeme lexbuf in try Hashtbl.find
symbol_table x with Not_found -> failwith ("internal lexer
error: reserved symbol " ^ x ^ " not found in hashtable") }

↪→

↪→

| _letter _idchar*
{ let l = lexeme lexbuf in try Hashtbl.find

resword_table l with Not_found -> TOK_Ident l }↪→

| _digit+ { TOK_Integer (int_of_string (lexeme lexbuf)) }
| _digit+ '.' _digit+ ('e' ('-')? _digit+)?

{ TOK_Double (float_of_string (lexeme lexbuf)) }
| '\n' { incr_lineno lexbuf; token lexbuf }
| eof { TOK_EOF }

Listing 13: Ocamllex lexing rules

2.3.1.3 JLex

JLex [9] is a lexical analyzer generator for the Java language. A JLex input file is
structured in three sections: user code, JLex directives and regular expressions rules.
In the generated file for JLex the user code consists of the declaration of the package
and imports, JLex directives include the character classes definitions (listing 14) and
lexing rules (listing 15), the latter being expressed by regular expressions.

LETTER = ({CAPITAL}|{SMALL})
CAPITAL = [A-Z\xC0-\xD6\xD8-\xDE]
SMALL = [a-z\xDF-\xF6\xF8-\xFF]
DIGIT = [0-9]
IDENT = ({LETTER}|{DIGIT}|['_])

Listing 14: JLex character classes

12



2. Background

<YYINITIAL>\* { return cf.newSymbol("", sym._SYMB_0, left_loc(),
right_loc()); }↪→

<YYINITIAL>\( { return cf.newSymbol("", sym._SYMB_1, left_loc(),
right_loc()); }↪→

<YYINITIAL>\) { return cf.newSymbol("", sym._SYMB_2, left_loc(),
right_loc()); }↪→

<YYINITIAL>\+ { return cf.newSymbol("", sym._SYMB_3, left_loc(),
right_loc()); }↪→

<YYINITIAL>input { return cf.newSymbol("", sym._SYMB_4, left_loc(),
right_loc()); }↪→

<YYINITIAL>print { return cf.newSymbol("", sym._SYMB_5, left_loc(),
right_loc()); }↪→

<YYINITIAL>"--"[^\n]* { /* skip */ }

<YYINITIAL>{DIGIT}+ { return cf.newSymbol("", sym._INTEGER_,
left_loc(), right_loc(), new Integer(yytext())); }↪→

<YYINITIAL>{LETTER}{IDENT}* { return cf.newSymbol("", sym._IDENT_,
left_loc(), right_loc(), yytext().intern()); }↪→

<YYINITIAL>[ \t\r\n\f] { /* ignore white space. */ }

Listing 15: JLex lexing rules

2.3.1.4 FLex

FLex [6] is a lexer generator for the C/C++ languages. The input file for FLex
consists of three sections: definitions, rules, user code. In the definitions section
character classes can be found (listing 16). The rules section contains the lexing
rules (listing 17). The user code in the final part of the file will be copied verbatim
into the generated lexer.

LETTER [a-zA-Z]
CAPITAL [A-Z]
SMALL [a-z]
DIGIT [0-9]
IDENT [a-zA-Z0-9'_]

Listing 16: FLex character classes
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<YYINITIAL>"*" return _SYMB_0;
<YYINITIAL>"(" return _SYMB_1;
<YYINITIAL>")" return _SYMB_2;
<YYINITIAL>"+" return _SYMB_3;
<YYINITIAL>"input" return _SYMB_4;
<YYINITIAL>"print" return _SYMB_5;

<YYINITIAL>"--"[^\n]* /* skip */; /* BNFC: comment "--" */

<YYINITIAL>{DIGIT}+
yylval._int = atoi(yytext); return _INTEGER_;

<YYINITIAL>{LETTER}{IDENT}*
yylval._string = strdup(yytext); return _IDENT_;

<YYINITIAL>[ \t\r\n\f] /* ignore white space. */;
<YYINITIAL>. return _ERROR_;

Listing 17: Flex lexing rules

2.3.1.5 Common structure of lexer generators

From the previous overview of the lexer generators we can conclude that the con-
sidered tools enjoy a common structure regarding the format of the input files used
to build the lexical analyzer. We observe that the input files for the different lexer
generators contain similar sections: they can all start and/or end with a section
containing user code which, in either case, can be omitted, they have a sections ded-
icated to macros, such as character classes, and directives to lexer generator tool.
Finally, they all have a section displaying the lexing rules through which the tokens
will be recognized by the lexer.

2.3.2 Parser generators
A parser generator is a tool that given an input specifying a grammar defining
a language produces a parser for that language. BNFC uses an array of parser
generators specific to the supported programming languages. The following section
will give a general overview on the format of the inputs of the parser generators.

2.3.2.1 Happy

Happy [25] is a parser generator specific to the Haskell language which takes a happy
grammar file and produces a parser as a compilable Haskell module.

A happy grammar starts with a module header which is a Haskell module and, as
all Haskell code, is enclosed within braces. The header section may also contain
directive specifying lower or higher precedence of operation, depending on the order
they appear in the header, and their associativity. After the header come some
declarations stating the name of the parser, a monad declaration that can be used
for error handling, the Haskell type used for the tokens and the declarations of
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tokens (listing 18). The grammar rules (listing 19) are then listed, where each
case of the right hand side of the production is associated to some Haskell code
in braces specifying the abstract syntax constructor and the context precedence
of its arguments. Each rule is also associated to a type signature that will help
documenting the grammar, fix type errors and make the haskell compiler parse
faster. The specification ends with the definition of an error handling function.

%tokentype {Token}
%token

'(' { PT _ (TS _ 1) }
')' { PT _ (TS _ 2) }
'*' { PT _ (TS _ 3) }
'+' { PT _ (TS _ 4) }
'input' { PT _ (TS _ 5) }
'print' { PT _ (TS _ 6) }
L_Ident { PT _ (TV $$) }
L_integ { PT _ (TI $$) }

Listing 18: Happy specification tokens

ListStm :: { [AbsGrammar.Stm] }
ListStm : {- empty -} { [] } | Stm ListStm { (:) $1 $2 }

Stm :: { AbsGrammar.Stm }
Stm : 'input' Ident { AbsGrammar.Input $2 }

| 'print' Exp { AbsGrammar.Print $2 }

Listing 19: Happy statements rules

2.3.2.2 Ocamlyacc and Menhir

OCamlyacc [12] and Menhir [10] are parser generators specific to the OCaml lan-
guage which produces a parser from a context free grammar specification. The
produced parsers have one parsing function for each entry point of the grammar.

OCamlyacc and Menhir work on a grammar specification that can start with an op-
tional header section containing directive or auxiliary functions required by semantic
actions, after which comes a declarations section where the all the tokens (listing 20),
entrypoints and production rules (listing 21) are declared. The production rules also
carry information about context precedence and associativity expressed by the num-
bers associated to the production argument. The specification ends with an optional
trailer section. Errors are handled through a parse-error function which can be mod-
ified by the user. All sections can contain comments, that are enclose between /*
and */ when appearing in the declaration and rules section, and between (* and *)
when in the header or trailer section.
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%token KW_input KW_print

%token SYMB1 /* * */
%token SYMB2 /* ( */
%token SYMB3 /* ) */
%token SYMB4 /* + */

%token TOK_EOF
%token <string> TOK_Ident
%token <char> TOK_Char
%token <float> TOK_Double
%token <int> TOK_Integer
%token <string> TOK_String

Listing 20: Ocamlyacc/Menhir specification tokens

pStm_list : stm_list TOK_EOF { $1 }
| error { raise (BNFC_Util.Parse_error (Parsing.symbol_start_pos

(), Parsing.symbol_end_pos ())) };↪→

stm_list : /* empty */ { [] }
| stm stm_list { (fun (x,xs) -> x::xs) ($1, $2) }

;

stm : KW_input ident { Input $2 }
| KW_print exp { Print $2 }

;

Listing 21: Ocamlyacc/Menhir statement rules

2.3.2.3 ANTLR

ANTLR [26] generates parsers written in the java language. The structure of the
grammar it takes as input consists of declarations followed by a list of rules, contain-
ing tokens and productions. The generated ANTLR grammar file has an entrypoints
declaration, followed by the other grammar productions (listing 22).
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listStm returns [ grammar.Absyn.ListStm result ]
: /* empty */

{ $result = new grammar.Absyn.ListStm(); }
| p_2_1=listStm p_2_2=stm

{ $result = $p_2_1.result; $result.addLast($p_2_2.result); }
;

stm returns [ grammar.Absyn.Stm result ]
: Surrogate_id_SYMB_4 p_1_2=IDENT

{ $result = new grammar.Absyn.Input($p_1_2.getText()); }
| Surrogate_id_SYMB_5 p_2_2=exp

{ $result = new grammar.Absyn.Print($p_2_2.result); }
;

Listing 22: ANTLR statement rules

2.3.2.4 CUP

CUP [5] is a parser generator for the Java language. In the generated CUP grammar
file there is a user code component that contains actions defined by the user and
parser code which methods and variables will be placed within the generated parser
class, both user and parser code are optional. After the user code comes the symbols
list in which are declared the non terminals and the terminals of the grammar
(listing 23), followed by the entrypoint(s). The last section of the specification file
presents the grammar production rules (listing 24) where each element of the right
hand side can be uniquely labelled with a name written after a colon.

nonterminal grammar.Absyn.ListStm ListStm;
nonterminal grammar.Absyn.Stm Stm;
nonterminal grammar.Absyn.Exp Exp;
nonterminal grammar.Absyn.Exp Exp1;
nonterminal grammar.Absyn.Exp Exp2;
nonterminal grammar.Absyn.ListExp ListExp1;

terminal _SYMB_0; // *
terminal _SYMB_1; // (
terminal _SYMB_2; // )
terminal _SYMB_3; // +
terminal _SYMB_4; // input
terminal _SYMB_5; // print

terminal Integer _INTEGER_;

terminal String _IDENT_;

Listing 23: Terminals and non terminals of cup specification
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ListStm ::= /* empty */ {: RESULT = new grammar.Absyn.ListStm(); :}
| ListStm:p_1 Stm:p_2 {: RESULT = p_1; p_1.addLast(p_2); :}

;
Stm ::= _SYMB_4:p_1 _IDENT_:p_2 {: RESULT = new

grammar.Absyn.Input(p_2); :}↪→

| _SYMB_5:p_1 Exp:p_2 {: RESULT = new grammar.Absyn.Print(p_2); :}
;

Listing 24: Cup statement rules

2.3.2.5 Bison

Bison [3] is a parser generator specific to the C and C++ languages that converts a
context free grammar in a LR parser.

The Bison grammar starts with a prologue, enclosed between "%" and "%", contain-
ing imports and macros, together with variables and functions used for the actions
in the grammar rules. The next section contains declarations of non terminal and
terminal symbols (listing 25), then there is the rules section (listing 26). The spec-
ification ends with an epilogue, containing functions that didn’t need to be used
before to generate the parser.

%token _ERROR_
%token _SYMB_1 /* ( */
%token _SYMB_2 /* ) */
%token _SYMB_0 /* * */
%token _SYMB_3 /* + */
%token _SYMB_4 /* input */
%token _SYMB_5 /* print */

%type <liststm_> ListStm
%type <stm_> Stm
%type <exp_> Exp
%type <exp_> Exp1
%type <exp_> Exp2
%type <listexp_> ListExp1

Listing 25: Bison specification symbols
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ListStm : /* empty */ { $$ = 0; YY_RESULT_ListStm_= $$; }
| ListStm Stm { $$ = make_ListStm($2, $1); YY_RESULT_ListStm_= $$;

}↪→

;
Stm : _SYMB_4 _IDENT_ { $$ = make_Input($2); }

| _SYMB_5 Exp { $$ = make_Print($2); }
;

Listing 26: Bison statement rules

2.3.2.6 Common structure of parser generators

All the previously discussed parser generators descend from the Yacc tool, which is
another parser generator for the C language, this fact, as expected, contributes to
input files sharing a common structure. There can be optional sections opening and
closing the file between which are enclosed declarations regarding tokens, priority,
symbols, and parsing rules.
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3.1 Backend

The backends of the BNF Converter share the common goal of producing the same
components: a LaTeX description, a txt2tags description, an abstract syntax, a
pretty printer, a lexer and parser specification, a test for the generated parser and a
makefile. The before mentioned components, except from the TeX and the txt2tags
files, are specific to the target language and have been gathered in the common
Backend type class (see listing 27).

The Backend type class has two associated type synonyms: BackendOptions and
BackendState. Both of them are indexed on the target language as the options and
state of each backend will be defined depending on the target language the backend
instance is for. The backend options consist of those command line options that
are specific to the target language, while there will still be a data type dedicated to
the global options that are shared between all the backends. The backend state is
a State monad that will be used to propagate a state during the backend run. It
will contain common information needed in the different phases, allowing to avoid
computing the same information more than once.

The backend type class is organised to have one method for each of its function-
alities. The parseOpts method consists of a parser for the backend command line
options. The purpose of initState is to initialise the state that is threaded through
the backend components. Further checks specific to the target language may be
performed on the input grammar. If a check fails an error message is returned,
otherwise the computation can go on initialising the backend state and running the
backend phases. Doing these checks before generating the components and sharing
common results by using a state allows less repetition and increases the project
modularity. The remaining methods take care of generating the components pro-
duce by the BNF Converter: the abstractSyntax, printer, lexer, parser, parserTest
and makefile are functions that starting from the representation of the labelled BNF
grammar (LBNF) generate respectively the abstract syntax, the pretty printer, the
lexer specification, the parser specification, the test for the generated parser and
the makefile. Their returned type is a state monad where the state is the backend
state (BackendState) and the value is a list of tuples (Result type). The first tuple
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item is the file path were the result will be stored and the second is the file content,
represented as a string.

The backend components are obtained by calling the runBackend function (list-
ing 28) which, unless the checks in the state initialization fail, returns the backend
Result. This way, the result is stored in an intermediate format, does not have to
be written on the disk straight away and can eventually be used for testing. Note
that the use of the State monad is inherently sequential as the current state value
depends on the value that the state had in previous computation. Hence, the order
in which the backend methods are called in the runBackend function is relevant.
The abstract syntax is computed first as it could alter the state with information
that the printer, lexer and parser may depend on. For the same reason, other than
to follow their natural order in a compiler, the lexer method is run before the parser
method.

type Result = [(FilePath, String)]

class Backend (target :: TargetLanguage) where
type BackendOptions target
type BackendState target
parseOpts :: Parser (BackendOptions target)
initState :: LBNF -> SharedOptions -> BackendOptions target

-> Except String (BackendState target)
abstractSyntax :: LBNF -> State (BackendState target) Result
printer :: LBNF -> State (BackendState target) Result
lexer :: LBNF -> State (BackendState target) Result
parser :: LBNF -> State (BackendState target) Result
parserTest :: LBNF -> State (BackendState target) Result
makefile :: LBNF -> State (BackendState target) Result

Listing 27: Backend type class
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runBackend ::
forall target. Backend target =>
GlobalOptions -> BackendOptions target -> LBNF ->
Except String Result

runBackend globalOpts backendOpts cf = do
st <- initState @target cf globalOpts backendOpts
return $ flip evalState st $ do

absSpec <- abstractSyntax @target cf
printSpec <- printer @target cf
lexSpec <- lexer @target cf
parSpec <- parser @target cf
parTest <- parserTest @target cf
mkfile <-

if optMakeFile globalOpts
then makefile @target cf
else return []

return $ concat
[absSpec, printSpec, lexSpec, parSpec, parTest, mkfile]

Listing 28: Run backend function

Since the LaTeX and txt2tags descriptions do not depend on the target language,
they do not have a dedicated method in the Backend typeclass. A Backend instance
will be instead instantiated for both of them. Unlike the rest of the targets that
are programming languages, TeX and txt2tags are markup languages. Nevertheless,
they also implement Backend instances so that its possible to separate the generation
of the language description from the one of the compiler frontend.

Another possible interface for the backend components could have been a record
data type. However, that would have required to define the type families for the
backend options and state outside of the record data type. Type classes, instead,
can also include type families as associated types, making their use in the type
class more explicit and allowing better error messages. Type classes also guarantee
coherence as there can be at most one backend instance in scope for each supported
language. A type class was therefore preferred, even though in this case there are
no rules a backend instance needs to obey.

3.2 Abstract syntax
The following section describes the interface for the the abstract syntax of functional
languages.

3.2.1 Functional languages
Abstract syntax for functional languages can be modeled by a series of algebraic data
types. Grammar categories are represented as data types where the grammar labels
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appear as constructors. Data types are also generated for token categories, while
user defined functions are mapped to functions. The abstract syntax is generated
starting from the LBNF fields holding information regarding the AST rules and the
user defined tokens and functions.

AST rules can be simply represented as a map from Types to a map from their
corresponding Labels to the list of Types in the rule rhs (listing 29), where Types are
grammar categories without precedence.

Map Type (Map Label [Type])

Listing 29: Simple representation of AST rules

Exp →

Num → [Integer]
Sum → [ [Exp] ]
Times → [Exp, Exp]
V ar → [Ident]

Figure 3.1: AST rules for Exp in listing 1 according to representation in listing 29

The representation in listing 29 can be extended with further helpful information for
the abstract syntax generation. The chosen representation for the AST rules field
(listing 30) in the LBNF data type is again a map from Types to another map. The
inner map is different from the one in listing 29. It consists of a map from Labels
to a tuple. The first tuple item is again the list of non terminals of the rule right
hand side. The second tuple item is a Map from the category precedence, encoded
as an Integer, to the right hand side of the rule ARHS, containing both terminals
and non terminals, and its position (WithPosition).

The ARHS type is useful to print the grammar rule from which a data type construc-
tor came from in the form of documentation. The category precedence information
is not used for the abstract syntax, but will be needed for the pretty printer. Being
able to use the same representation both for the AST and the printer was also a
reason why this representation was chosen. The abstract syntax rules also include
rules associated to the internal pragma. Not being part of the concrete syntax, these
rules can not be parsed with, but it is possible to print with them.

ASTRules =
Map Type (Map Label ([Type], Map Integer (WithPosition ARHS)))

Listing 30: AST rules
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Exp →

Num → ( [Integer], 2 → 9:1 [Integer] )
Sum → ( [ [Exp] ], 0 → 7:1 [ [Exp] ] )
Times → ( [Exp, Exp], 1 → 8:1 [Exp1, ” ∗ ”, Exp2] )
V ar → ( [Ident], 2 → 10:1 [Ident] )

Figure 3.2: AST rules for Exp in listing 1 according to representation in listing 30

The user defined tokens come from the use of the token pragma. Their LBNF field
(listing 31) consists of a map from the token name (CatName) to the token definition
equipped with its position in the grammar file (WithPosition TokenDef). The token
definition consists of regular expression defining the token and the fact if the token
carries or not its position information, that is, if its declaration contains the position
keyword.

TokenDefs = Map CatName (WithPosition TokenDef)

data TokenDef = TokenDef
{ positionToken :: PositionToken

-- ^ Is it a @position token@?
, regexToken :: Regex

-- ^ The defining regular expression.
, isIdent :: Bool

-- ^ Is it the @Ident@ token?
} deriving Show

Listing 31: Tokens

Functions come from the use of the define pragma and their field is also a Map, it
associates the label of function rules to the function definition and position.

Functions :: Map LabelName (WithPosition Function)

Listing 32: Functions

The generated code for each rule and pragma should follow the same order as in the
input grammar. The original order is remembered through the Position informa-
tion, which is exploited to sort the maps entries in the state initialisation.

3.3 Pretty printer
The pretty printer consists of implementing a printing function for each grammar
category and token. For each grammar category a printing function is defined by
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cases, where in each case the rule label is a constructor, taking arguments corre-
sponding to the terminals and non terminals in the rule right hand side. The printing
functions for tokens take as argument the token definition. The printing functions
produce an annotated document that will be passed to a rendering function. The
pretty printer is coded using the fields containing the AST rules (listing 30) and
tokens definitions (listing 31) that are also used to produce the abstract syntax.

3.4 Lexer and parser specifications
For the lexer and parser specifications a Token data type, showed in listing 11,
is used. This data type holds information about the tokens corresponding to the
builtin categories, i.e., Char, Double, Integer or String, the identifier category (Ident)
and to user defined token categories. Despite Ident being considered a builtin, it
has a dedicated case in the token data type. This is because in the BNFC 3 code
base it is treated as a user defined token type. The list of Token categories used in
the grammar will be stored in the backend state and used to generate the lexer and
parser specification.

data Token = Builtin BuiltinCat | Identifier | UserDefined CatName

Listing 33: Token data type

The lexer and parser specifications also require information about the symbols and
keywords of the input grammar. Symbols and keywords are the terminals of the
grammar, where symbols consist of non alphabetic characters and keywords consist
of alphabetic and numeric characters and are in this more similar to identifiers.

The LBNF data type has one field dedicated to symbols (listing 34), one to keywords
(listing 35) and one for both symbols and keywords associated to a unique identifier
(listing 36). Both the symbols and keywords fields are encoded as maps from the
symbol or keyword, which are both synonyms of non empty strings, to list of posi-
tions where they occur in the grammar. The symbols and keywords field consists of
a Map from names, encoded as non empty strings, to increasing identifiers.

Symbols :: Map Symbol (List1 Position)

Listing 34: Symbols

Keywords :: Map Keyword (List1 Position)

Listing 35: Keywords

SymbolsKeywords :: Map String1 Int

Listing 36: Symbols and keywords
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3.4.1 Lexer specification
The lexer specification also makes use of the LBNF fields for single line and block
comments, which consist of maps from the comment declaration position to, respec-
tively, line comments or block comments. Line comments are represented with the
non empty string starting the line comment, block comments are represented with
two non empty strings enclosing the block comment.

type LineComments = Map Position LineComment
newtype LineComment = LineComment String1

Listing 37: Line comments

type BlockComments = Map Position BlockComment
data BlockComment = BlockComment String1 String1

Listing 38: Block comments

3.4.2 Parser specification
The parser specification uses the parser rules field (listing 39) in the internal repre-
sentation of the grammar. Parser rules are encoded as a map from categories to a
map from right hand sides to labels. Parser rules present a similar, but more simple,
structure to the abstract syntax rules (listing 30). Unlike the AST rules, parser rules
only contain the parseable rules of the grammar. That is, only the grammar rules
that are not matched with the internal pragma.

Map Cat (Map RHS (WithPosition RuleLabel))

Listing 39: Parser rules

The parser specification also employs the entrypoints field (listing 40) of the internal
representation of the grammar. It contains the categories specified with the entry-
points pragma, and maps those categories to the position(s) where the entrypoint
was declared. If no entrypoint is declared the field is instantiated with the first
category declared in the grammar file.

Entrypoints :: Map Cat (List1 Position)

Listing 40: Entrypoints

3.5 Parser Test
The parser test goal is to test the parser produced with the parser specification gen-
erated by the BNF Converter. The BNF Converter generates a parsing function for
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each category specified in the entrypoints pragma. The parser for the first declared
entrypoint (listing 40) will be used to parse example files written in the language of
the input grammar. If the files are parsed successfully the resulting abstract syntax
is finally printed.

3.6 Makefile
The makefile is produced by exploiting information regarding the options, which are
stored in the backend state, and information regarding the input grammar.
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This section describes the implemented backend instances: Haskell, LaTeX and
Txt2Tags. The backends work on the LBNF data type which comes from by the
frontend of BNFC.

4.1 Haskell

4.1.1 Options
Haskell options are showed in listing 41. They include, in this order, an optional
namespace to be prepended in front of module names, a flag to put the generated
components in a directory named like the grammar, an option specifying whether
to represent tokens as strings or text in the Haskell backend and four more flags
that can respectively make the AST a functor, make the AST data type derive
Data, Generic and Typeable, output haskell code using GADTs and generate Agda
bindings for the AST.

data HaskellBackendOptions = HaskellOpts
{ nameSpace :: Maybe String
, inDir :: Bool
, tokenText :: TokenText
, functor :: Bool
, generic :: Bool
, gadt :: Bool
, agda :: Bool
}

data TokenText = StringToken | TextToken

Listing 41: Haskell backend options

4.1.2 State
The Haskell state, illustrated in listing 42, contains the options, both global and
specific to the language. A field is dedicated to the list of tokens that will be used
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to generate the lexer and parser specifications. The other fields hold the abstract
syntax rules, the parser rules, user defined functions and tokens.

data HaskellBackendState = HaskellSt
{ globalOpt :: GlobalOptions
, haskellOpts :: HaskellBackendOptions
, lexerParserTokens :: [Token]
, astRules :: [(Type, [(Label, ([Type], Map Integer ARHS))])]
, parserRules :: [(Cat, Map RHS RuleLabel)]
, functions :: [(LabelName, Function)]
, tokens :: [(CatName, TokenDef)]
}

Listing 42: State for the Haskell backend

Before the actual state initialisation, Haskell-specific checks are performed. Should
the checks be successful then the state fields can be initialised, otherwise an exception
will be thrown. The Haskell checks currently assess that if a grammar uses the layout
pragmas, then it needs to contain the semicolon symbol and eventually also the curly
braces. It is also ensured that no layout stop is declared without having also declared
a layout start.

During the state initialisation command line options are retrieved. The list of lexer
and parser tokens is computed. The abstract syntax rules, tokens definitions, parser
rules and user-defined functions are sorted according to their declaration order in
the input grammar, so that they can appear in the same order as in the generated
files. User-defined functions and parameters are renamed if their names clash with
Haskell reserved words.

4.1.3 Abstract syntax
The Haskell abstract syntax consists of a Haskell module in which the grammar rules
are mapped to data types. It is produced starting from the internal representation
of the input grammar. In particular, the abstract syntax has a data type for each
grammar category where the constructors are the labels associated with that cat-
egory and the constructor arguments correspond to the non terminals of the right
hand side (rhs) of the label rule. User-defined tokens are also mapped to data types
with one constructor, named the same as the token, and a string as an argument
and a tuple of integers representing its position if the token is declared as a position
token. Functions coming from the define pragma can be found as functions in the
abstract syntax. Furthermore, haddock documentation is printed for each data type
constructor, expressing from which rule rhs the constructor originated.

Considering the example in listing 43 and its relative abstract syntax in listing 44 we
can see that in the abstract syntax there is a data type for the Exp category, having
one constructor for each of its labels (Ehalf, Edouble, Epower, EId), with arguments
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corresponding to the non terminals in the rhs of the labels rules. The function eSqrt
is generated from the homonym function introduced by the define pragma. Lastly,
the newtype Id represents the user defined token Id.

EHalf. Exp2 ::= "1/2" ;
EDouble. Exp2 ::= Double ;
eSqrt. Exp1 ::= "sqrt" Exp1 ;
EPower. Exp ::= Exp1 "**" Exp ;
EId. Exp ::= Id ;

coercions Exp 2 ;

define eSqrt e = EPower e EHalf ;

token Id ( letter (letter | digit | '_')* ) ;

Listing 43: Grammar example

import qualified Prelude as T (Double, String)
import qualified Prelude as C (Eq, Ord, Show, Read, Int, Maybe(..))

import Data.String

data Exp
= EDouble T.Double
-- ^ Exp ::= Double
| EHalf
-- ^ Exp ::= "1/2"
| EId Id
-- ^ Exp ::= Id
| EPower Exp Exp
-- ^ Exp ::= Exp "**" Exp

deriving (C.Eq, C.Ord, C.Show, C.Read)

-- | define eSqrt e = EPower e EHalf
eSqrt :: Exp -> Exp
eSqrt e = EPower e EHalf

newtype Id
= Id T.String

deriving (C.Eq, C.Ord, C.Show, C.Read, Data.String.IsString)

Listing 44: Grammar example’s abstract syntax
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4.1.4 Pretty printer
The code generating the Haskell pretty printer is written using the pretty printing
library prettyprinter [16]. The generated pretty printer is a Haskell module defining
a Print class with a printing method prt (listing 45). It presents an instance of that
class for each token and category of the grammar.

class Print a where
prt :: Int -> a -> Doc Ann

Listing 45: Print class

The printing method prt produces an annotated document (see listing 46) in which
the elements of the grammar are annotated with their syntactic function, that is
whether if they are a category, a literal, a keyword, a token or a list category.

data Ann
= Keyword
| Literal Literal
| Token Token
| Category Category
| ListCat ListCat

Listing 46: Annotation data type

The obtained annotated document is then converted into a stream and passed to
the render function. The render function (listing 48) consists of composing of a
function (render), that will insert indentation and new lines in the stream, with
another function (renderLazy) that will highlight syntactical elements with their
corresponding colours. Ultimately, the top level printing function (listing 47) is
given by calling the renderer on the stream resulting from the streaming function.
The printing (listing 47), rendering (listing 49) and streaming (listing 48) functions,
together with the render and annToAnsiStyle functions, are all exported by the
module. This aims to make the printer more configurable by the user, as the user
is able to replace them with functions that best fit their needs, should they desire
to do so.

printTree :: a -> String
printTree = renderTree . streamTree

Listing 47: Print tree function

renderTree :: SimpleDocStream AnsiStyle -> String
renderTree = unpack . renderLazy . render 0 False

Listing 48: Render tree function
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streamTree :: a -> SimpleDocStream AnsiStyle
streamTree a = layoutSmart defaultLayoutOptions

$ annToAnsiStyle (docTree 0 a)

Listing 49: Stream tree function

Let us consider the Print instance produced for Exp category from the example in
listing 43. The instance for the Exp category (listing 50) has a definition of the prt
method for each rule related to the Exp category, where the rule label is a constructor
with arguments corresponding to the items in the rule rhs. The prt method takes
as input the precedence level given by the context and the expression to print, it
is then recursively called on the rules rhs items. The prPrec function compares the
context precedence level with the one of the expression, and puts parenthesis around
the printed document when the expression has a lower precedence. We can observe
that documents generated from categories and keywords are respectively annotated
as CatExp, which is a case of the Category data type, and with Keyword (see the
Ann data type in listing 46). Literals, tokens and list categories are also annotated
in the same way in their instances of the Print type class.

instance Print Abs.Exp where
prt i (Abs.EDouble d) = prPrec i 2 $ prt 0 d
prt i Abs.EHalf = prPrec i 2 $ annotate Keyword "1/2"
prt i (Abs.EId id) = prPrec i 0 $ prt 0 id
prt i (Abs.EPower exp1 exp2) = prPrec i 0 $ hsep

[ annotate CatExp (prt 1 exp1)
, annotate Keyword "**"
, annotate CatExp (prt 0 exp2)
]

Listing 50: Print instance for the Exp category for grammar in listing 43

4.1.5 Lexer specification
The Alex lexer specification starts with a prelude sections containing language and
options pragmas, module name and imports.

After that, character macros and regular expression macros are declared. In the
regular expression macro for reserved words and symbols are listed the grammar
symbols, and the grammar keywords that contain Unicode characters, as Alex will
only recognize keywords of ASCII characters. Symbols and keywords are retrieved
from the corresponding fields of the LBNF (see listing 34 and listing 35).

The lexing rules for comments are produced by printing the string and strings of
single line (listing 37) and block comments (listing 38) respectively. In case of
block comments a multi-line regular expression that starts and finished with the
block comment delimiters strings is generated. The LBNF field for token definitions
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(listing 31) is used to obtain the lexing rules for the user defined tokens. This is
done by printing the token name and the token regular expression. Lexing rules
corresponding to the builtin categories used in the grammar are then printed. The
LBNF field keeping track of which builtin categories are used is exploited to know
which builtin rules to print.

After the lexing rules a data type for tokens is declared. The list of Tokens (listing 11)
in the state is used to define the cases of that data type as it will have one constructor
for every builtin, one for the identifier and one for every user defined tokens. Builtins
and the identifier cases have a specific constructor name, while the constructor
name for user defined tokens is given by the name of the token (CatName). The
constructors all take a string as an argument.

Similarly, the list of Tokens in the state is also used to define by cases functions
taking the token data type as input. The lexer specification also contains functions
that do not require any specific data type or structure. In these cases the strings
corresponding the functions will be directly printed.

Finally, the LBNF field containing symbols and keywords with their identifier (list-
ing 36) is used to produce a binary search tree ordered by the identifiers of the
symbols and keywords.

"**" (3)

")" (2)

"(" (1)

"sqrt" (5)

"1/2" (4)

Figure 4.1: Symbols and keywords binary tree for grammar in listing 43

4.1.6 Layout

The Haskell language uses layouts, i.e., program elements can be grouped by inden-
tation. The BNF Converter currently supports layout syntax as an experimental
feature for the Haskell backend. When the layout pragma is used a Haskell module
called Layout is generated. It provides functions to modify the stream of tokens com-
ing from the lexer by inserting further tokens to recognize a layout block. Layout
blocks are enclosed within braces, with its elements separated by semicolons.

The Haskell Layout module contains a list of the layout start and stop symbol names
together with their identifiers. The layout start and stop symbols are retrieved by
their corresponding fields in the LBNF data type, while their identifiers are looked
up in the symbols and keywords map (listing 36).
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4.1.7 Parser specification

The Happy parser specification starts with a Haskell module header containing lan-
guage and options pragmas, module name and imports. This section holds instruc-
tions to export a parsing function for each entrypoint of the grammar, together with
a parse error type and lexing functions.

The parser specification continues with the declaration of the parsing functions that
Happy will generate, the type of the tokens that the parser will accept, the function
to call in case of a parse error and the list of grammar tokens. The names of the
parsing functions correspond to the names of the categories in the entrypoints field
(listing 40) of the grammar.

The declared tokens are given by the union of the grammar’s symbols and keywords
and their priorities (listing 36) and by the tokens list in the state (listing 11).

The declaration section is followed by a section of rules. First come rules regarding
Tokens: builtins, identifier and user defined tokens. These rules are produced by a
function that is defined by cases given by the list of tokens in the state. Then a
production rule is defined for each parser rule (listing 39). As can been observed in
listing 51, the rule name is given by the category name and the rule cases constructors
correspond to the labels name. The constructors arguments are values consisting of
a $ symbols followed by the corresponding indexes of the rhs non-terminals. The
specification ends with a footer where the parse error and lexing function are defined.

Exp2 :: { Abs.Exp }
Exp2

: '(' Exp ')' { $2 }
| '1/2' { Abs.EHalf }
| Double { Abs.EDouble $1 }

Exp1 :: { Abs.Exp }
Exp1

: 'sqrt' Exp1 { Abs.eSqrt $2 }
| Exp2 { $1 }

Exp :: { Abs.Exp }
Exp

: Id { Abs.EId $1 }
| Exp1 { $1 }
| Exp1 '**' Exp { Abs.EPower $1 $3 }

Listing 51: Happy rules for the Exp category for grammar in listing 43
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4.1.8 Parser Test
The parser test consists of a Haskell module calling the generated parser on a number
of example files. The parser function used to test the parser is the one for the first
declared entrypoint. It is obtained by converting the entrypoints map to a list,
sorting the entrypoints by their declaration order in the grammar, and taking the
head of the list. The layout fields of the internal representation of the grammar are
checked to see if the grammar uses layouts. If so, the layout resolver will be called
before calling the generated parser.

4.1.9 Makefile
The Haskell makefile consists of a series of rules. It contains rules to build the
lexer and parser, that will call Alex and Happy on the lexer and parser specification
respectively. The make all rule will compile the components produced by the BNF
Converter. The clean and distclean will remove the generated files.

The paths to files to be compiled and removed are based on the Haskell options in
the Haskell backend state, which can specify to gather the components in a directory
or to prepend a namespace to the modules names. The layout fields of the internal
representation of the grammar are checked to see if layouts are used and, in case,
the Layout module will be included in the list of files to be removed.

4.2 LaTeX
The LaTeX description generator of the language is also an instance of the Backend
type class. Nevertheless, it does not have an implementation for all of the class
methods. It will implement the state initialisation, the abstract syntax and the
makefile methods.

Since the LaTeX backend has no specific options, its state will only be initialised to
contain the global options.

The abstract syntax generator will produce the tex file describing the language.
The tex file begins with commands and macros regarding the document. It then
contains two sections, illustrating the grammar terminals and rules respectively. The
terminals section documents which builtins, user defined tokens, keywords, symbols
and comments appear in the grammar. The used builtins are retrieved from the
corresponding LBNF field, for each of them will be printed the corresponding TeX
description. The names and regular expressions of user defined tokens (listing 31)
will be printed. Keywords (listing 35) and symbols (listing 34) are documented
by listing their corresponding strings. Similarly, single line (listing 37) and block
comments (listing 38) are listed together with their start and finish symbols. To
write the rules sections it is necessary to process the abstract syntax rules to become
a list of categories tupled with their list of right hand sides. The rules are displayed
by associating the categories to their lists of right hand sides items, both terminal
and non terminals, putting separator between the right hand sides.
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The LaTeX makefile presents a rule to produce a pdf file by calling the executable
pdflatex on the produced tex file and rules to clean the generated files. The only
information used to code the LaTeX makefile is the name of the input grammar,
which is retrieved by the global options. This is needed to write the rules that will
produce the pdf, as the tex file will have the same name as grammar.

4.3 Txt2Tags
Similarly to LaTeX, the txt2tags description of the language also is a backend in-
stance which will only implement the state initialisation, the abstract syntax and
the makefile methods.

The Txt2Tags backend produces a t2t file that will be the input for txt2tags exe-
cutable to produce a document of a certain target. Therefore, this backend state
will have one option for the txt2tags target, which default value is the html target.
The state will be initialised to contain the target option and the global options.

The abstract syntax generator will produce the t2t file describing the language. It is
coded the same way as to the tex file for the LaTeX backend, the only difference lays
in the syntax. The t2t file section documenting the grammar terminals is written by
exploiting the information in their relative LBNF fields. The rules section is again
produced by printing categories together with right hand sides.

The Txt2Tags makefile has a rule calling the txt2tags executable on the produced
file, and other rules to remove the generated files. The grammar name is again learnt
through the global options and used to refer to the generated t2t file.
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5.1 Related work
BNFC is a compiler construction tool that, starting from a Labelled BNF grammar,
generates a specification for the lexer and parser components of the front end of a
compiler. There are several lexer and parser generators that work on a grammar,
for instance all the ones targeted by BNFC. However, they all are specific to a pro-
gramming language and therefore do not share BNFC’s multilingual nature. Among
other similar multilingual tools that from a grammar generate a parser there are:
Grammatical Framework, ANTLR, syntax and tree-sitter.

5.1.1 Grammatical Framework
The Grammatical Framework (GF) [28] [7] is a grammar formalism used for multi-
lingual grammar applications. It provides a special-purpose, non Turing-complete,
functional language (the GF language), a compiler for the language and a generic
grammar processor [8]. GF programs are compiled to a multilingual grammar called
parallel multiple context free grammar (PMCFG) [22]. It includes an abstract syntax
definition and as many concrete syntaxes definitions as the supported languages.
The abstract syntax contains a system of syntax trees and the concrete syntaxes
implement a reversible map from the abstract trees to nested tuple of strings and
integers. Given a multilingual grammar, GF generates a linearization function, that
looks up a syntax tree in the concrete syntaxes map and retrieves the corresponding
concrete syntax tuple, and a parsing function that achieves the opposite by returning
an abstract syntax tree from a concrete syntax tuple.

BNFC and GF work on different grammar formats. GF ultimately handles a mul-
tilingual grammar (PMCFG), it has its own parser based on such grammar which
time and space complexity are polynomial in the length of the input, with an expo-
nent determined by the grammar [22]. BNFC handles context free grammars and
does not produce a parser directly, it instead produces a specification to be fed to a
parser generator, with the generated parsers mostly being LALR parsers.

Despite GF and BNFC sharing the ability to produce parsers for many target lan-
guages, one cannot substitute one for the other because of their different application
domains. GF focuses on natural languages and can handle translations between
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them by first parsing a string in a concrete syntax into an abstract syntax tree and
then linearizing the tree to a string in the desired concrete syntax. BNFC instead
targets the development of programming languages by proving the frontend of their
compilers, easing prototyping.

5.1.2 ANTLR
ANTLR [26, 2] is a parser generator that given a grammar produces code recognizing
the language defined by the grammar. The tool is able to produce a lexer and a
LL(k) parser (Left to right, Leftmost derivation) in different target languages. The
target language is specified through the command line options.

Both BNFC and ANTLR work with languages defined by context free grammars.
However, differently from the BNFC tool, which grammar is written in Labelled
BNF notation (LBNF), ANTLR’s grammar is expressed by Extended BNF (EBNF)
notation. ANTLR also allows to embed in the grammar actions written in the target
language, they will then appear in the generated lexer and parser rules. Since the
actions consist of target language code, ANTLR is not language agnostic like BNFC.

5.1.3 Syntax
Syntax [14] is a parser generator implementing an array of LR parsing algorithms,
together with LL(1) parsing. The fact that it separates the algorithms for parsing
table1 calculation from the parser code generation makes it language agnostic. It
is able to generated parsers in several target languages, where each target language
corresponds to a plugin, making the tool easy to extend.

Syntax supports more low level grammar formats than BNFC. In particular, it ac-
cepts context free grammars written either in a JSON-like notation or in a Yacc/Bison-
style notation. In such grammars is possible to specify the precedences and associa-
tivities of the grammars symbols and operators. Similarly to ANTLR, syntax allows
to include code in the grammar file that will then appear at the beginning of the
generated parser file. Although in this case the code is arbitrary, while in the case
of ANTLR it has to be written in the target language. Like ANTLR, syntax cur-
rent targets confine to languages belonging to the imperative and objected oriented
paradigms, while BNFC also covers functional languages including Agda, which also
provides verification facilities.

5.1.4 Tree-sitter
Tree-sitter [20] provides a parser generator. It receives as input a context free
grammar written in JavaScript, which will then be converted to JSON format and
go under a series of transformations to be finally split between its non terminals and
terminals. Tree-sitter generates an incremental parser for the language expressed by
the grammar written in the C language, together with bindings for the JavaScript

1a table encoding the grammar that given a state and a non terminal shows whether to apply
a shift action, how to apply a reduce action and also how to compute the next state
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and Rust languages. An incremental parser is a parser that is able to parse a program
incrementally, i.e. if a program is modified it does not require to re parse the entire
program. In the tree-sitter API text ranges are used to indicate what portions of
the source program should be re parsed.

The tool comes with a series of other bindings for other programming languages, so
that the generated parser can be integrated into projects written in the languages
supported by the bindings. Tree-sitter also includes JavaScript grammars describ-
ing a wider set of programming languages and their relative parsers generated by
tree-sitter. Ultimately, even though parsers are only generated in the C language,
tree-sitter qualifies as a multilingual tool in that its parsers can be integrated in
applications coded in some other languages.

5.2 Evaluation

The new backend API has been evaluated with tests, some of which involve golden
testing and round trip testing.

5.2.1 Golden testing

The golden tests in BNFC 3 are based on the tasty test framework [19] combined
with tasty-silver [18], which is a test runner supporting golden tests. Golden tests
are performed by running BNFC 3 on example grammars, which will yield the list
of generated components (see the Result data type in listing 27). The component
that is been tested is looked up in the list and compared with the content of the
corresponding golden file stored in the project. The test is successful when the
produced out equals to the expected value in the golden file.

Golden testing has been used to test the Haskell lexer and parser specification and
abstract syntax. Haskell golden tests also check the generated files when the functor
and gadt are specified. These options respectively make the abstract syntax functo-
rial and produce Haskell code that uses GADTs. The produced LaTeX and txt2tags
descriptions have also been checked with golden testing.

5.2.2 Round trip testing

The Haskell pretty printer has been tested with round trip testing. The first step
of these tests is parsing example files written in the languages of some example
grammars. The parser takes as argument the string holding the file content and
returns an abstract syntax object. As second step, the pretty printer is called on
the abstract syntax object coming from the first parsing. As a result, a string is
printed. In the third and last step, the printed string is parsed a second time. This
testing can be summarized as parsing, printing and parsing again.
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5.2.3 Testing the Haskell makefile and parser test
The makefile and parser test are tested together, as one of makefile’s goals is to
compile the parser test to produce its executable. These tests require to ability to
execute shell commands, such as changing directory and calling makefile rules. This
is achieved by using the shelly [17] library, which allows to insert shell like commands
in the tests code.

Firstly, it is necessary to move to the makefile directory so that its make rule can
be invoked. After the make rule invocation the parser test executable is available
and it is used to try to parse examples after. Finally, the make distclean rule is
called so that all generated file can be deleted. The shelly library assesses the given
commands exit codes to be zero, so in case of a non-zero exit code an exception will
be thrown.

5.3 Differences to BNFC 2.9
The section provides an overview of the aspects in which the version 2.9 and 3 of
BNFC differ from each other.

5.3.1 Code base structure
The first difference is that BNFC 3 uses a common interface for its backends that
are encoded as instances of the Backend type class. Since the Backend methods
yield a list of file paths and file contents, the output of a backend is available as an
intermediate result, instead of being written straight away.

The BNFC 3 code base decreases code duplication in comparison with BNFC 2.9.
This is due to having a shared state, which allows to compute exactly once the
needed information, and also to perform the specific checks exactly once, before
initialising the state. The project is consequently less error prone, as it is not
necessary to concern, and possibly risking to forget, about repeating the checks
or the information processing in more contexts in the code base. BNFC 3 also
presents an increased modularity and separation of concerns. Every target language
has a dedicated folder containing dedicated modules for the generated components,
options, state, state initialisation and eventually utilities function.

5.3.2 Types
In BNFC 3 the data type representing the labelled BNF grammar (LBNF) is more
structured than the one in BNFC 2.9. It presents a field for each pragma (token,
comment, layout, entrypoint) and rule (abstract syntax rules, parser rules, defined
functions rules). While the grammar data type in BNFC 2.9 contains a list of
pragmas, with the pragma data type having a case for each pragma, and a list of
rules, containg all the grammar rules, where different rules are encoded as different
fields of the rule data type. Dedicating a separate field to every pragma and set of
rules, and also to the other grammar elements, contributes to make the LBNF data

42



5. Discussion

type more explicit, increase separation of concern and therefore simplify the code
base.

Furthermore, the types in BNFC 3 express invariants and consequently enhance
type safety. For instance, names are encoded as non empty list of characters rather
than strings, which ensures that names are indeed not empty. In the LBNF fields
map data structures are used, meaning that duplicates are not allowed. In addi-
tion, BNFC 3 defines specific data types with specific constructors to describe the
grammar elements, so that different elements can be distinguished also on a type
level. In contrast, in BNFC 2.9 there is a tendency to define the grammar elements
as synonyms of strings. The latter approach constitutes a risk with respect to type
safety, since there is the possibility to exchange a data type for another.

In BNFC 2.9 there is also an inconsistent use of the string type and the document
type of a pretty printing library. It is not an issue in bnfc3 where a pretty printing
library [16] is always used.

5.3.3 Builtin types
The BNF Converter recognizes the following builtin types: Char, String, Integer,
Double and Ident, where the Ident builtin stands for an identifier, that is a name
staring with a letter followed by any combination of letters, digits, underscore and
apostrophe symbols. In BNFC 3 builtins category are represented with their own
data type, which does not include the Ident builtin because identifiers are encoded
as strings and treated like user defined tokens. In particular, the token definition
data type presents a boolean flag indicating whether the token is given by the use
of Ident. Unlike BNFC 2.9, BNFC 3 allows the user to overwrite the builtins by
defining categories or tokens with the same names. This entails that the used builtins
now need to be qualified.

5.3.4 Options
The options of BNFC 3 have been refactored to use the optparse-applicative library
[15]. Options consist of global options, which have their own parser, and a command
establishing which backend to produce. There is one command for each backend,
specifying a sub parser based on its target language’s specific options, which need
to be listed after the command.

The usage of BNFC 3 is illustrated in the following help message:
Usage : bnfc3 [−−ve r s i on ] [−−numeric−ve r s i on ]
[−− l i c e n s e ] [−v|−−verbose ] [−−dry−run ] [− f |−− f o r c e ]
[−o|−−outd i r OUTDIR] [−m|−−make f i l e ] GRAMMARFILE COMMAND

5.3.5 Haskell printer
Contrary to the generated printer of BNFC 2.9, which is based on the manipulation
of strings, the one of BNFC 3 relies on the prettyprinter [16] pretty printing library
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to produce an annotated document. The annotated document is rendered by calling
rendering functions that are all exported and that the user can eventually modify.
Exporting these functions and performing the rendering in more steps enhance the
printer configurability.

A further difference concerns the instances of the Print class for list categories. In
BNFC 2.9 there were two overlapping printing methods, one for categories and one
for list categories. In the print instance of a category there would be a case for each
of its rules followed, in case the grammar presents lists of that categories, by cases
for the lists of elements of the category. In BNFC 3 there is instead only one printing
method (prt) with categories and list categories implementing separate instances of
the Print class. The cases of list categories instances consist of the empty list, the
single element list and the list with more than one element. The empty list case is
omitted when the list category is coupled with the nonempty pragma.

5.4 Future work

5.4.1 Backend instances
The future work consists of finishing implementing the backend instances for the
remaining target languages. In order to do that it is necessary to provide a common
interface for the abstract syntax of object oriented language. Alongside with that, a
common interface for the lexer and parser specifications could also be implemented.

The project can eventually be extended to support new target languages. A sug-
gestion could be to substitute the Txt2Tags backend with a backend producing a
specification in other format, for instance markdown. This way the produced speci-
fication could be fed to another document converter, pandoc [13] for instance, which
supports many formats.

5.4.2 Testing
When the remaining backend instances will be implemented they will need to be
tested. The suggested approach would be to use building tools, as in the tests for
the Haskell backend. Thus, one does not need to have all the generators and need
libraries installed during testing.

5.5 Conclusion
In this thesis I contributed to the reimplementation of the BNF Converter. My
work was mainly focused on designing a common API for the BNFC backends.
Backends are now encoded as instances of the same type typeclass, the Backend
type class, so that their methods are now bounded to the same type signatures.
The backend methods employ a shared state to store useful information computed
during the generation of the components. The components are coded exploiting
common structures and data types.
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The produced code base presents better modularity and separation of concerns, less
duplication and a common structure for its backends. Being more structured, the
BNFC tool is easier to be understood, also by external contributors, maintained
and extended. Furthermore, the use of dedicated and more expressive data types
and structures strengthens the type safety and increases the level of checking of the
project.

To conclude, with this project I personally learned the important role that types
and modularity play in easing development and reaching satisfactory results. I hope
that the effort in this reimplementation will help the maintenance and growth of
the project, together with guaranteeing its continuity. Being BNFC an open source
project, I also hope that the project reimplementation will have a beneficial impact
on the open source community.
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